Resources


Topics

adaboost and xgboost

Adam

Back Propagation

bagging

batching

beautiful soup

beautifulsoup

bias

bias/variance trade-off

big data

boosting

bootstrap

Case Study

Categorical Data

categorical variables

classification

clustering

confidence intervals

cross validation

data

Data Augmentation

Data Science Demo

data science process

data scraping

datasets

debugging

decision boundaries

decision trees

design

dimensionality reduction

dropout

eda

explained variance

Feature Interpretation

feed forward

Generalized Linear Models

Gradient Boositng

Gradient Descent

graphing

Hyperparameters

hypothesis testing

Imbalanced Data

Imputation

inference

interaction terms

Interpretation

Introduction

k-Nearest Neighbors

keras

kNN

KNN-classification

knn k-Nearest Neighbors (kNN)

kNN regression

lasso

Lime

linear algeba

linear regression

logistic regression

logistics

matplotlib

Missing Data

MLP

MNIST

model selection

models

MSE

multiple linear regression

Multiple Logistic Regression

Neural Networks

nonparametric

normalization

Optimizers

overfitting

pairplot

pandas

parametric

parsing

PCA

Perceptron

pipeline

plotting

polynomial regression

principal components analysis

probability

R-squared

random forest

regex

regression

regular expressions

regularization

requests

ridge

SHAP

sklearn

Stacking

standardization

standarization

statsmodels

Stochastic Gradient Descent

tensorflow

testing data

The Data Science Process

training

training and testing data splitting

training data

Tuning

underfitting

visualization

web scraping

Weight Decay