lectures
Lecture 1: Introduction
(Sep. 02, 2020)
Lecture 2: Data + RegEx
(Sep. 04, 2020)
Lecture 3: Web Scraping + PANDAS
(Sep. 09, 2020)
Lecture 4: Advanced PANDAS
(Sep. 11, 2020)
Lecture 5: kNN & Linear Regression
(Sep. 13, 2020)
Lecture 6: Linear Regression
(Sep. 16, 2020)
Lecture 7: Model Selection
(Sep. 18, 2020)
Lecture 8: Probability
(Sep. 21, 2020)
Lecture 9: Inference in Linear Regression
(Sep. 23, 2020)
Lecture 10: Hypothesis Testing and Predictive CI
(Sep. 25, 2020)
Lecture 11: Regularization
(Sep. 28, 2020)
Lecture 12: Estimation of the Regularization Coefficients using CV and comparison
(Sep. 30, 2020)
Lecture 13: Thinking critically about models, data, and debugging
(Oct. 02, 2020)
Lecture 14: Visualization
(Oct. 05, 2020)
Lecture 15: kNN classification and Logistic Regression I
(Oct. 07, 2020)
Lecture 16: Case Study
(Oct. 10, 2020)
Lecture 17: kNN classification and Logistic Regression II
(Oct. 14, 2020)
Lecture 18: Multiclass Logistic Regression
(Oct. 16, 2020)
Lecture 19: Missing Data
(Oct. 19, 2020)
Lecture 22: Classification Trees
(Oct. 21, 2020)
Lecture 20: PCA
(Oct. 21, 2020)
Lecture 21: PCA & Missing Data
(Oct. 23, 2020)
Lecture 23: Regression Trees, Bagging, and RF
(Oct. 28, 2020)
Lecture 24: Tuning Hyperparameters
(Oct. 30, 2020)
Lecture 25: Boosting Methods for Regression
(Nov. 02, 2020)
Lecture 26: Boosting Methods for Classification
(Nov. 04, 2020)
Lecture 27: Case Study 2
(Nov. 06, 2020)
Lecture 28: Neural Networks 1 - Perceptron & MLP
(Nov. 09, 2020)
Lecture 29:Neural Networks 2 - Anatomy of NN & Design Choices
(Nov. 11, 2020)
Lecture 30: Neural Networks 3: Design Choices II & Gradient Descent
(Nov. 13, 2020)
Lecture 31: Neural Networks 4 -Back Propagation, SGD
(Nov. 16, 2020)
Lecture 32: Regularization methods - Weight decay, data augmentation and dropout
(Nov. 18, 2020)
Lecture 33: Full Example of Regression & Classification FFNN
(Nov. 20, 2020)
Lecture 35: Interpreting Prediction Models
(Nov. 30, 2020)
Lecture 36: Wrap-Up Review
(Dec. 02, 2020)