Resources
Topics
??
- Lecture 20 - Π GRUs [Notebook]
- Lecture 20 - Π GRUs [Notebook]
- Lecture 20 - Π GRUs [Notebook]
- Lecture 19 - ς RNNs [Notebook]
- Lecture 18 - 𝗈 State of the art models (SOTA) and Transfer Learning [Notebook]
- Lecture 18 - 𝗈 State of the art models (SOTA) and Transfer Learning [Notebook]
- Lecture 13 - Hierarchical Models (Lab) [Notebook]
- Feed-Forward Neural Networks vs Convolution Neural Networks [Notebook]
- Lecture 12 - Bayesian statistics (part 4) [Notebook]
- Lecture 12 - Bayesian statistics (part 4) [Notebook]
- Lecture 10 - Bayes. PyMC3 [Notebook]
- Lecture 8 - Clustering in Python (Lab) [Notebook]
- Lecture 8 - Clustering in Python (Lab) [Notebook]
- Lecture 7 - Bayesian statistics (part 1) [Notebook]
- Lecture 7 - Bayesian statistics (part 1) [Notebook]
- Lecture 6 - Unsupervised learning, cluster analysis (part 2) [Notebook]
- Lecture 5.5 - pyGAM [Notebook]
- Lecture 5.5 - pyGAM with some additions [Notebook]
- Lecture 5 - Unsupervised learning, cluster analysis (part 1) [Notebook]
- Lecture 4 - Splines, Smoothers, and GAMs (part 3) [Notebook]
- Lecture 2 - Splines, Smoothers, and GAMs (part 1) [Notebook]
- Lecture 1 - Splines, Smoothers, and GAMs (part 1) [Notebook]
- Sections 02:
- ?? [Notebook]
- Sections 01:
- Sections 03:
ADD TAGS HERE
AlexNet
attention
- Lecture 28: ο Variational AE 2
- Lecture 28: ο Variational AE 2 [Notebook]
- Lecture 28: ο Variational AE 2 [Notebook]
- Lecture 27: τ AE the Bayesian Approach
- Lecture 27: τ AE the Bayesian Approach [Notebook]
- Lecture 27: τ AE the Bayesian Approach [Notebook]
- Lecture 26: ⍵ AutoEncoder (AE)
- Lecture 26: ⍵ AutoEncoder (AE) [Notebook]
- Lecture 26: ⍵ AutoEncoder (AE) [Notebook]
- Lecture 26: ⍵ AutoEncoder (AE) [Notebook]
- Lecture 25: 🤖 (Transformers II) NLP 4/4
- Lecture 25: 🤖 (Transformers II) NLP 4/4 [Notebook]
- Lecture 24: 🧠 Attention (Transformers I) NLP 3/4
- Lecture 24: 🧠 Attention (Transformers I) NLP 3/4 [Notebook]
Bayes Rule
Bayesian Neural Networks
Bayesian Statistics
Bellman Equation
- Lecture 32: ά Bellman equation, Optimality and Recursive algorithms
- Lecture 32: ά Bellman equation, Optimality and Recursive algorithms [Notebook]
Bernoulli
Bet Distribution
Bidirectional
class repo
- Lecture 3: Setup and Review of statsmodels
- Lecture 3: Setup and Review of statsmodels [Notebook]
- Lecture 3: Setup and Review of statsmodels [Notebook]
Cluster Analysis
- Lecture 8: Clustering in Python (Lab)
- Lecture 6: Unsupervised learning cluster analysis (part 2)
- Lecture 5: Unsupervised learning cluster analysis (part 1)
CNNs
- Lecture 17: λ Saliency maps
- Investigating CNNs [Notebook]
- Lecture 16: ύ Backprop max pooling, Receptive Fields and feature map viz
- Image Occlusion [Notebook]
- Investigating CNNs [Notebook]
- Lecture 15: ⍺ CNNs Pooling and CNNs Structure
- Avg vs Max Pooling [Notebook]
- Pooling Mechanics [Notebook]
- Lecture 14: Π CNNs basics
ConceptNet
- Lecture 23: 🔢 Language Representations NLP 2/4
- Lecture 23: 🔢 Language Representations NLP 2/4 [Notebook]
conda
- Lecture 3: Setup and Review of statsmodels
- Lecture 3: Setup and Review of statsmodels [Notebook]
- Lecture 3: Setup and Review of statsmodels [Notebook]
Confidence Intervals
Content
Convolutional Neural Network
- Lecture 17: λ Saliency maps
- Investigating CNNs [Notebook]
- Lecture 16: ύ Backprop max pooling, Receptive Fields and feature map viz
- Image Occlusion [Notebook]
- Investigating CNNs [Notebook]
- Lecture 15: ⍺ CNNs Pooling and CNNs Structure
- Avg vs Max Pooling [Notebook]
- Pooling Mechanics [Notebook]
- Lecture 14: Π CNNs basics
csaps
Cubic Polynomia
DCGAN
- Lecture 29: π GANs
- Lecture 29: π GANs [Notebook]
DenseNet
Discourse
echo-state
Evaluating GANs
- Lecture 30: ⍺ GANs DOS
- Lecture 30: ⍺ GANs DOS [Notebook]
Exploration vs Exploitation
- Lecture 31: π Reinforcement Learning: Basics
- Lecture 31: π Reinforcement Learning: Basics [Notebook]
FAS onDemand
- Lecture 3: Setup and Review of statsmodels
- Lecture 3: Setup and Review of statsmodels [Notebook]
- Lecture 3: Setup and Review of statsmodels [Notebook]
GANs
- Lecture 30: ⍺ GANs DOS
- Lecture 30: ⍺ GANs DOS [Notebook]
- Lecture 29: π GANs
- Lecture 29: π GANs [Notebook]
Gates
generative model
- Lecture 29: π GANs
- Lecture 29: π GANs [Notebook]
Generative Models
GoogLeNet
Graphs
- Lecture 8: Clustering in Python (Lab)
- Lecture 6: Unsupervised learning cluster analysis (part 2)
- Lecture 5: Unsupervised learning cluster analysis (part 1)
GRU
Help
Hierarchical Clustering
- Lecture 8: Clustering in Python (Lab)
- Lecture 6: Unsupervised learning cluster analysis (part 2)
- Lecture 5: Unsupervised learning cluster analysis (part 1)
Instructor
Inter-Observation Distances
- Lecture 8: Clustering in Python (Lab)
- Lecture 6: Unsupervised learning cluster analysis (part 2)
- Lecture 5: Unsupervised learning cluster analysis (part 1)
Intro
KL-Divergence
Language Modeling
Least Squares Regression
LeNet
Likelihood
Linear Algebra
LSTM
- Lecture 21: ⍴ LSTMs
- Lecture 21 - ⍴ LSTMs [Notebook]
MCMC
Metropolis
MobileNet
Modal collapse
- Lecture 30: ⍺ GANs DOS
- Lecture 30: ⍺ GANs DOS [Notebook]
Monte Carlo
Morphology
MPL
- Lecture 17: λ Saliency maps
- Investigating CNNs [Notebook]
- Lecture 16: ύ Backprop max pooling, Receptive Fields and feature map viz
- Image Occlusion [Notebook]
- Investigating CNNs [Notebook]
- Lecture 15: ⍺ CNNs Pooling and CNNs Structure
- Avg vs Max Pooling [Notebook]
- Pooling Mechanics [Notebook]
- Lecture 14: Π CNNs basics
Neural Networks
- Lecture 17: λ Saliency maps
- Investigating CNNs [Notebook]
- Lecture 16: ύ Backprop max pooling, Receptive Fields and feature map viz
- Image Occlusion [Notebook]
- Investigating CNNs [Notebook]
- Lecture 15: ⍺ CNNs Pooling and CNNs Structure
- Avg vs Max Pooling [Notebook]
- Pooling Mechanics [Notebook]
- Lecture 14: Π CNNs basics
Numpy
object detection
Off-policy
On-policy
Ordering
p-Value
Policy Evaluation
- Lecture 32: ά Bellman equation, Optimality and Recursive algorithms
- Lecture 32: ά Bellman equation, Optimality and Recursive algorithms [Notebook]
Policy Improvement
- Lecture 32: ά Bellman equation, Optimality and Recursive algorithms
- Lecture 32: ά Bellman equation, Optimality and Recursive algorithms [Notebook]
Policy Iteration vs Value Iteration
Polynomial Regression
Posterior
Prior
Probability
pyGAM
PyMC3
Q - Learning
Reinforcement Learning
- Lecture 33: ς Deep Q-Learning
- Lecture 33: ς Deep Q-Learning [Notebook]
- Lecture 32: ά Bellman equation, Optimality and Recursive algorithms
- Lecture 32: ά Bellman equation, Optimality and Recursive algorithms [Notebook]
- Lecture 31: π Reinforcement Learning: Basics
- Lecture 31: π Reinforcement Learning: Basics [Notebook]
Rejection Sampling
ReLU
Reparameterization Trick
reservoir computing
ResNet
RNN
RNN Issues
SARSA
semantic segmentation
Semantics
seq2seq
- Lecture 28: ο Variational AE 2
- Lecture 28: ο Variational AE 2 [Notebook]
- Lecture 28: ο Variational AE 2 [Notebook]
- Lecture 27: τ AE the Bayesian Approach
- Lecture 27: τ AE the Bayesian Approach [Notebook]
- Lecture 27: τ AE the Bayesian Approach [Notebook]
- Lecture 26: ⍵ AutoEncoder (AE)
- Lecture 26: ⍵ AutoEncoder (AE) [Notebook]
- Lecture 26: ⍵ AutoEncoder (AE) [Notebook]
- Lecture 26: ⍵ AutoEncoder (AE) [Notebook]
- Lecture 25: 🤖 (Transformers II) NLP 4/4
- Lecture 25: 🤖 (Transformers II) NLP 4/4 [Notebook]
- Lecture 24: 🧠 Attention (Transformers I) NLP 3/4
- Lecture 24: 🧠 Attention (Transformers I) NLP 3/4 [Notebook]
Sequences
Setup
- Lecture 3: Setup and Review of statsmodels
- Lecture 3: Setup and Review of statsmodels [Notebook]
- Lecture 3: Setup and Review of statsmodels [Notebook]
Smoothers
SOTA
Stats Models
Statsmodels
- Lecture 8: Clustering in Python (Lab)
- Lecture 3: Setup and Review of statsmodels
- Lecture 3: Setup and Review of statsmodels [Notebook]
- Lecture 3: Setup and Review of statsmodels [Notebook]
Syntax
Taylor’s theorem
Teaching Fellows
TSTR
- Lecture 30: ⍺ GANs DOS
- Lecture 30: ⍺ GANs DOS [Notebook]
Unsupervised Learning
- Lecture 8: Clustering in Python (Lab)
- Lecture 6: Unsupervised learning cluster analysis (part 2)
- Lecture 5: Unsupervised learning cluster analysis (part 1)