Schedule



Date (Mon) Lecture (Mon) Lecture (Wed) Lecture (Fri) Advanced Section (Wed) Assignment (R:Released Wed - D:Due Wed)
25-Jan Lecture 1: Splines Smoothers and GAMs (part 1) Lecture 2: Splines Smoothers and GAMs (part 2) Lecture 3: Setup and Review of statsmodels
1-Feb Lecture 4: Splines Smoothers and GAMs (part 3) Lecture 5: Unsupervised learning cluster analysis (part 1) Lecture 5_5: Smoothers pyGAM csaps R:HW1
8-Feb Lecture 6: Unsupervised learning cluster analysis (part 2) Lecture 7: Bayesian statistics (part 1) Lecture 8: Clustering in Python (Lab) R:HW2 - D:HW1
15-Feb No Lecture (Holiday) Lecture 9: Bayesian statistics (part 2) Lecture 10: Bayes PyMC3 R:HW3 - D:HW2
22-Feb Lecture 11: Bayesian statistics (part 3) Lecture 12: Bayesian statistics (part 4) Lecture 13: Hierarchical Models (Lab)
1-Mar No Lecture (Wellness Day) Lecture 14: Π CNNs basics Lecture 15: ⍺ CNNs Pooling and CNNs Structure R: HW4 - D: HW3
8-Mar Lecture 16: ύ Backprop max pooling Receptive Fields and feature map viz Lecture 17: λ Saliency maps Lecture 18: 𝗈 State of the art models (SOTA) and Transfer Learning Advanced Section 1: Segmentation Techniques YOLO Unet
15-Mar Lecture 19: ς RNNs Lecture 20: Π GRUs Lecture 21: ⍴ LSTMs Advanced Section 2: Recurrent Neural Networks and Reservoir Computing R:HW5 - D:HW4
22-Mar Lecture 22: 💬 Language Modelling NLP 1/4 Lecture 23: 🔢 Language Representations NLP 2/4 Lecture 24: 🧠 Attention (Transformers I) NLP 3/4 Advanced Section 3: Word Embeddings R:HW6 - D:HW5
29-Mar Lecture 25: 🤖 (Transformers II) NLP 4/4 No Lecture (Wellness Day) Lecture 26: Autoencoder
5-Apr Lecture 27: Variational Autoencoder 1/2 Lecture 28: Variational Autoencoder 2/2 Lecture 29: GANS 1/2 Advanced Section 4: Inference in NN R:HW7 - D:HW6
12-Apr Lecture 30: GANS 2/2 Lecture 31: Reinforcement Learning - Basics 1 Lecture 32: Reinforcement Learning - Basics 2 Advanced Section 5: GANS
19-Apr Lecture 33: Deep Reinforcement Learning Module: Lecture Domain Module: Problem Background Advanced Section:6 Reinforcement Learning D:HW7
26-Apr
3-May Reading Period
10-May Module: Final Presentations Finals Week