lectures
-
Lecture 1: Splines Smoothers and GAMs (part 1)
(Jan. 25, 2021)
-
Lecture 2: Splines Smoothers and GAMs (part 2)
(Jan. 27, 2021)
-
Lecture 3: Setup and Review of statsmodels
(Jan. 29, 2021)
-
Lecture 4: Splines Smoothers and GAMs (part 3)
(Feb. 01, 2021)
-
Lecture 5_5: Smoothers pyGAM csaps
(Feb. 03, 2021)
-
Lecture 5: Unsupervised learning cluster analysis (part 1)
(Feb. 03, 2021)
-
Lecture 6: Unsupervised learning cluster analysis (part 2)
(Feb. 08, 2021)
-
Lecture 7: Bayesian statistics (part 1)
(Feb. 10, 2021)
-
Lecture 8: Clustering in Python (Lab)
(Feb. 12, 2021)
-
Lecture 9: Bayesian statistics (part 2)
(Feb. 17, 2021)
-
Lecture 10: Bayes PyMC3
(Feb. 19, 2021)
-
Lecture 11: Bayesian statistics (part 3)
(Feb. 22, 2021)
-
Lecture 12: Bayesian statistics (part 4)
(Feb. 24, 2021)
-
Lecture 13: Hierarchical Models (Lab)
(Feb. 26, 2021)
-
Lecture 14: Π CNNs basics
(Mar. 03, 2021)
-
Lecture 15: ⍺ CNNs Pooling and CNNs Structure
(Mar. 05, 2021)
-
Lecture 16: ύ Backprop max pooling, Receptive Fields and feature map viz
(Mar. 08, 2021)
-
Lecture 17: λ Saliency maps
(Mar. 10, 2021)
-
Lecture 18: 𝗈 State of the art models (SOTA) and Transfer Learning
(Mar. 12, 2021)
-
Lecture 19: ς RNNs
(Mar. 15, 2021)
-
Lecture 20: Π GRUs
(Mar. 17, 2021)
-
Lecture 21: ⍴ LSTMs
(Mar. 19, 2021)
-
Lecture 22: 💬 Language Modelling NLP 1/4
(Mar. 22, 2021)
-
Lecture 23: 🔢 Language Representations NLP 2/4
(Mar. 24, 2021)
-
Lecture 24: 🧠 Attention (Transformers I) NLP 3/4
(Mar. 26, 2021)
-
Lecture 25: 🤖 (Transformers II) NLP 4/4
(Mar. 29, 2021)
-
Lecture 26: ⍵ AutoEncoder (AE)
(Apr. 02, 2021)
-
Lecture 27: τ AE the Bayesian Approach
(Apr. 05, 2021)
-
Lecture 28: ο Variational AE 2
(Apr. 07, 2021)
-
Lecture 29: π GANs
(Apr. 09, 2021)
-
Lecture 30: ⍺ GANs DOS
(Apr. 12, 2021)
-
Lecture 31: π Reinforcement Learning: Basics
(Apr. 14, 2021)
-
Lecture 32: ά Bellman equation, Optimality and Recursive algorithms
(Apr. 16, 2021)
-
Lecture 33: ς Deep Q-Learning
(Apr. 19, 2021)