Schedule



Date (Mon) Lecture (Mon) Lecture (Wed) Lab (Fri) Advanced Section (Wed) Assignment (R:Released Wed - D:Due Wed)
24-Jan Lecture 1: Clustering 1 Lecture 2: Clustering 2 Lab 1 R:HW1
31-Jan Lecture 3: Bayes 1 Lecture 4: Bayes 2 Lab 2 Advanced Section 1: Gaussian Mixture Models
7-Feb Lecture 5: Bayes 3 Lecture 6: Bayes 4 Lab 3 R:HW2 - D:HW1
14-Feb Lecture 7: Bayes 5 Lecture 8: Neural Networks 1 (MLP) Lab 4 Advanced Section 2: Particle Filters/Sequential Monte Carlo
21-Feb No Lecture (Holiday) Lecture 9: NN 2 Gradient Descent; SGD; BackProp) Lab 5 R:HW3 - D:HW2
28-Feb Lecture 10: NN 3 (Optimizers) Lecture 11: NN 4 (Regularization) Lab 6 Advanced Section 3: Solvers
7-Mar Lecture 12: Convolutional Neural Networks 1 (Basics) Lecture 13: CNNs 2 (Regularization) Lab 7 Advanced Section 4: Segmentation R:HW4 - D:HW3
14-Mar No Lecture (Spring Break) No Lecture No Lab
21-Mar Lecture 14: CNNs 3 (Receptive Field) Lecture 15: CNNs 4 (Saliency Map) No Lab (Midterm) Advanced Section 5: SOTA & Transfer Learning
28-Mar Lecture 16: Intro to Language Models Lecture 17: Recurrent Neural Networks Lab 8 Advanced Section 6: Autoencoders R:HW5 - D:HW4
4-Apr Lecture 18: NLP 1 (GRUs/LSTMs) Lecture 19: NLP 2 (ELMO) Lab 9 Advanced Section 7: Word2Vec R:HW6(Individual)
11-Apr Lecture 20: NLP 3 (Seq2Seq & Attention) Lecture 21: NLP 4 (Transformers) Lab 10 Advanced Section 8: BERT D:HW5
18-Apr Lecture 22: GANs 1 Lecture 23: GANs 2 Lab 11 Advanced Section 9: More GANs! D:HW6(Individual) - R:HW7
25-Apr Module: Lecture Domain Module: Problem Background Project Work D:HW7
2-May Project Work Project Work Project Submission Due
9-May Peer Evaluations Due Final Project Showcase