Schedule



Date (Mon) Lecture (Mon) Lecture (Wed) Lab (Fri) Advanced Section (Wed) Assignment (R:Released Wed - D:Due Wed)
30-Aug No Lecture Lecture 1: Introduction to CS109A Lab 1: Data - formats| sources| & scraping
6-Sep No Lecture (Labor Day) Lecture 2: Introduction to PANDAS and EDA Lab 2: Pandas & EDA 2 R:HW1 - D:HW0
13-Sep Lecture 3: Introduction to Regression kNN and Linear Regression Lecture 4: Multi-linear and Polynomial Regression Lab 3: kNN & Linear Regression R:HW2 - D:HW1
20-Sep Lecture 5: Model Selection and Cross Validation Lecture 6: Regularization Ridge and Lasso Regression Lab 4: Multiple Regression & Polynomial Regression
27-Sep Lecture 7: Probability Lecture 8: Inference in Regression and Hypothesis Testing Lab 5: Estimation of Regulariztion Coeffs /w CV Advanced Section 1: Linear Algebra Primer R:HW3 - D:HW2
4-Oct Lecture 9: Missing Data & Imputation Lecture 10: Principal Component Analysis Lab 6: PCA Advanced Section 2: Hypothesis Testing
11-Oct No Lecture (Indigenous Peoples' Day) Lecture 11: Case Study Midterm Advanced Section 3: Math Foundations of PCA D: HW3
18-Oct Lecture 12: Visualization Lecture 13: Ethics Lab 7: Visualization R:HW4
25-Oct Lecture 14: Logistic Regression 1 Lecture 15: Logistic Regression 2 Lab 8: Classification Advanced Section 4: GLM R:HW5 - D:HW4
1-Nov Lecture 16: Decision Tree Lecture 17: Bagging Lab 9: Decision Trees
8-Nov Lecture 18: Random Forest Lecture 19: Boosting Lab 10: Random Forest Advanced Section 5: Stacking & Mixture of Experts R:HW6 - D:HW5
15-Nov Lecture 20: Model Interpretability Lecture 21: Experimental Design Lab 11: Model Interpretability & Ethics Advanced Section 6: Bandits (tentative)
22-Nov Lecture 22: NLP 1 No Lecture No Lab R:HW7 - D:HW6
29-Nov Lecture 23: NLP 2 Lecture 24: Final Review D:HW7
6-Dec Project Submission Deadline Reading Period
13-Dec Finals Week
20-Dec Projects: Final Showcase