lectures
-
Lecture 1: Introduction to CS109A
(Sep. 01, 2021)
-
Lecture 2: Introduction to PANDAS and EDA
(Sep. 08, 2021)
-
Lecture 3: Introduction to Regression kNN and Linear Regression
(Sep. 13, 2021)
-
Lecture 4: Multi-linear and Polynomial Regression
(Sep. 15, 2021)
-
Lecture 5: Model Selection and Cross Validation
(Sep. 20, 2021)
-
Lecture 6: Regularization Ridge and Lasso Regression
(Sep. 22, 2021)
-
Lecture 7: Probability
(Sep. 27, 2021)
-
Lecture 8: Inference in Regression and Hypothesis Testing
(Sep. 29, 2021)
-
Lecture 9: Missing Data & Imputation
(Oct. 04, 2021)
-
Lecture 10: Principal Component Analysis
(Oct. 06, 2021)
-
Lecture 12: Visualization
(Oct. 18, 2021)
-
Lecture 13: EthiCS
(Oct. 20, 2021)
-
Lecture 14: Logistic Regression I
(Oct. 25, 2021)
-
Lecture 15: Logistic Regression II
(Oct. 27, 2021)
-
Lecture 16: Decision Trees
(Nov. 01, 2021)
-
Lecture 17: Bagging
(Nov. 03, 2021)
-
Lecture 18: Random Forest
(Nov. 08, 2021)
-
Lecture 19: Random Forrest II
(Nov. 10, 2021)
-
Lecture 20: Boosting, Gradient Boosting
(Nov. 15, 2021)
-
Lecture 21: AdaBoost
(Nov. 17, 2021)
-
Lecture 22: Working Example
(Nov. 22, 2021)
-
Lecture 23: Natural Language Processing
(Nov. 29, 2021)
-
Lecture 24: Review
(Dec. 01, 2021)