
Lecture 20: Review
A blitz through the course

Harvard IACS
Chris Tanner

2

4

ANNOUNCEMENTS
• HW3 is 75% graded

• Quiz 6 and Quiz 7 will be graded by tonight

• Quiz 8 will be released on Ed’s Sway by Thurs

• Phase 3 is 50% graded

• Research Project Phase 4 due Thurs night:

• Write a bulleted list of what each team member has done

• All member should sign it

• Submit on Canvas

Beginning Concepts

Neural Foundation

Attention and Beyond

Outline

Beginning Concepts

Neural Foundation

Attention and Beyond

Outline

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

Course Overview + What is NLP?

Lecture 1: Introduction

What is this course?

Our digital world is inundated with data, most textual data

62B pages 500M tweets/day 360M user pages 13M articles

8

What is this course?

Natural Language Processing (NLP) is the study of how to get computers to

process, “understand”, and leverage human language data.

Speech Audio

(Signal Processing work is a cousin

community and often done by EE folks)

Written Text

Neural Decipherment via Minimum-Cost Flow:
From Ugaritic to Linear B Luo, et al. (2019)

Sign Language

Including Signed Languages in Natural
Language Processing Yin, et al. (2021)

9

https://aclanthology.org/P19-1303.pdf
https://aclanthology.org/2021.acl-long.570.pdf

NLP Successes

NLP has been around since the 1960s, but the progress in the past 10 years has

been astronomical. Models are becoming effective enough for consumer use.

10

Voice Assistants

NLP has been around since the 1960s, but the progress in the past 10 years has

been astronomical. Models are becoming effective enough for consumer use.

11

Translation

NLP Successes

NLP Successes

NLP has been around since the 1960s, but the progress in the past 10 years has

been astronomical. Models are becoming effective enough for consumer use.

12

Auto-complete

NLP Successes

NLP has been around since the 1960s, but the progress in the past 10 years has

been astronomical. Models are becoming effective enough for consumer use.

13

Text Classification

NLP Successes has room for improvement

14

Chatbots

1.

2.

3.

4.

NLP Successes

15

NLP has been around since the 1960s, but the progress in the past 10 years has

been astronomical. Models are becoming effective enough for consumer use.

Search Engines
(information retrieval)

16

?

English
sentences

Spanish
sentences

Machine Translation
System

𝑓 𝑿X Y

How do these systems work?!

How do these systems work?!

Spanish
sentences

17

For example

?

English
sentences

Machine Translation
System

𝑓 𝑿X Y

While we don’t necessarily have to produce a Y for every NLP
problem (i.e., supervised learning), most interesting problems do.

Luckily, we have tons of (X, Y) data pairs, right? Kind of.

What’s in the box?!

18

?

English
sentences

Spanish
sentences

Model

𝑓 𝑿X Y

Our computational model could

be anything:

• Rule-based system

• CRF

• HMM

• Statistical Alignment Model

(e.g., IBM Models)

• Probabilistic Graphical Model

• Neural Network

Se7en (1995)

https://www.imdb.com/title/tt0114369/

What’s in the box?!

19

?

English
sentences

Spanish
sentences

Model

𝑓 𝑿X Y

Regardless of the model, it doesn’t actually “understand”
language. It simply approximates understanding for a
particular objective. This seems good enough.

Learning Objectives

20

• understand the theoretical concepts behind NLP tasks and models

• Not just a surface-level understanding of LSTMs, Transformers;

• What is the model actually doing? How does it work? Why does it work? What

are its limitations? Past approaches? What are alternatives?

• write effective programming solutions to popular problems in NLP

• tackle your own, novel goals with text data once this course is over

• conduct substantial, original NLP research

I want everyone to finish the course feeling confident and
empowered to develop NLP solutions and embark on novel research

Researcher:

• What is possible to build?

• How can we use existing blocks in new ways?

• What are the limitations of current blocks?

Software Developer:

• The Builders. Creators.

• Interested in tools to build better, quicker, organized, useful
structures

Manager:

• Bridges everyone’s skills to make great things actually happen

Image source: lego.com

Why so research-heavy?

21

Expectations of you

22

Expected to demonstrate not only the ability to understand the core

concepts of this course, but to be able to do some research, i.e.:

• read papers beyond what's mentioned in class

• critique other papers (even if the concepts are new to you)

• be curious

• come up w/ questions

• try to answer these questions

I expect you to challenge yourself. This class is intended to be

challenging (but not too challenging).

Expectations of me

23

I want this course to be an incredibly rewarding experience and the best

CS class you take. I pushed to create this course and offer it. Huge

thanks to IACS, DCE, CS, and higher-up folks at SEAS for approving it.

Hold me accountable to make it as equitable, fair, clear, and smooth of

an experience as possible. I gladly welcome anonymous feedback at any

time, and I solicit such as part of each HW assignment.

If something needs improving, let’s work to make it better. I’m here to

help you all learn and succeed in this course.

Assessment

All course assessment is structured around 3 pillars:

• Building a foundation of theory/concepts (pop-quizzes and exam)

• Demonstrating you can apply the knowledge (homework)

• Creating new knowledge (12-week research project)

24

Assessment

Pop quizzes
(10%)

Exam
(10%)

Homeworks
(30%)

Research
project
(50%)

foundation
application
creating knowledge

25

Language is funny

26

“Red tape holds up new bridges”

“Hospitals are sued by 7 foot doctors”

“Local high school dropouts cut in half”

“Tesla crashed today”

“Obama announced that he will run again”

“Kipchoge announced that he will run again”

“She made him duck”

“Will you visit the bank across from the river bank? You can bank on it”

“Yes” vs “Yes.” vs “YES” vs “YES!” vs “YAS” vs “Yea”

Why study NLP?

27

NLP: why

28

The entire point of computers is to assist humans.

Having computers ”understand” our language and how we

communicate as a species is a natural entry point and required

step to significantly assisting us in our lives.

What are some NLP tasks?

29

30

Morphology

Word Segmentation

Part-of-Speech Tagging

Parsing

Constituency

Dependency

Syntax
Sentiment Analysis

Topic Modelling

Named Entity Recognition (NER)

Relation Extraction

Word Sense Disambiguation

Natural Language Understanding (NLU)

Natural Language Generation (NLG)

Machine Translation

Entailment

Question Answering

Language Modelling

Semantics

Discourse
Summarization

Coreference Resolution

Common NLP Tasks (aka problems)

What are some trends of
NLP over the decades?

31

Very brief history of NLP

32

• 1960s: pattern-matching and rules (highly limiting)

• 1970s – 1980s: linguistically rich, logic-driven systems; labor-intensive

successes on a few, very specific tasks

• 1990s – 2000s: statistical modelling takeover! ML becomes a central

component; some systems are deployed for practical use (e.g., speech to text)

• 2010s – 2020s: Deep Learning (neural nets) yields astronomical progress on

nearly every NLP task; systems become fairly useful for consumers

• 2020s – 2030s?: you can help drive the change

Slide adapted from or inspired by Sam Bowman

Very brief history of NLP

33

First huge revolution: early 1990s (statistical approaches)

“But it must be recognized that the notion ‘probability of a sentence’ is

an entirely useless one, under any known interpretation of this term”

“Anytime a linguist leaves the group, the recognition rate goes up”

-- Noam Chomsky (1969)

-- Fredrick Jelinek (1988)

Very brief history of NLP

34

First huge revolution: early 1990s (statistical approaches)

“I refer to all of my work before ~1990 as the B.S. era. That is, ‘before

statistics’”

-- paraphrasing my PhD adviser, Eugene Charniak at his ACL Lifetime Achievement Award (2011)

NLP nowadays

35

GPT-2 (generates text and can fine-tune on your own data)

SYSTEM PROMPT (HUMAN-WRITTEN)
A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts
are unknown.

MODEL COMPLETION (MACHINE-WRITTEN, FIRST TRY)
The incident occurred on the downtown train line, which runs from Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal
Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative consequences on public and
environmental health, our workforce and the economy of our nation,” said Tom Hicks, the U.S. Energy
Secretary, in a statement. “Our top priority is to secure the theft and ensure it doesn’t happen again.”
The stolen material was taken from the University of Cincinnati’s Research Triangle Park nuclear
research site, according to a news release from Department officials.
The Nuclear Regulatory Commission did not immediately release any information.

NLP nowadays

36

GPT-2 (generates text and can fine-tune on your own data)

NLP nowadays

37VideoBERT: A Joint Model for Video and Language Representation Learning. Sun, et al. ICCV 2019.

What constitutes Deep
Learning?

38

Deep Learning

39

• Deep Learning is just neural networks with more than 1 hidden

layer (non-linear activation functions).

• For the 1st time ever, one paradigm of modelling (deep learning)

yields the best results across nearly every domain of problems

• Our understanding of why and how the results are so compelling is

very surface-level.

• Much work lies ahead (e.g., bias/fairness, explainability, robustness)

What are the two
“cornerstones” of NLP?

40

The Two Cornerstones of NLP

41

How do we get any system to process, ”understand”, leverage language?

• Representation: how do we transform symbolic meaning (e.g., words,

signs, braille, speech audio) into something the computer can use

• Modelling: given these represented symbols, how do we use them to

model the task at hand?

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

What is NLP + How to represent language

Lecture 2: Language Representations

What are some of the
linguistic levels that NLP

addresses?

43

Multiple levels* to a single word

Slide adapted from or inspired by Chris Manning and Richard Socher
speech

text
phonetics

phonology orthography

Discourse

Pragmatics

Semantics

Syntax

Lexemes

Morphology

*

44

Representing Images

Meaningful relation between the byte values and color.

170 33 71

r g b

45

Representing Images

Meaningful relation between the byte values and color.

255 33 71

r g b

Thus, colors, and images at large, are well-represented.

46

Representing Language

• Words are represented by Strings

a t e
61 74 65

Each byte corresponds to language’s smallest meaningful unit! Yay!

47

But, no meaningful relation between the byte values and language!

Representing Language

• Words are represented by Strings

a t g
61 74 67

A.T.G. is, however, more intense. Never mind. Ignore this slide.

48

Conceptual Dependencies

49Conceptual Dependency and its Descendants. Lytinen, S.L. Computers, Mathematics, and Applications (1992)

What are some external NLP
data resources we can use?

50

External Resources

51

There are rich, external resources that define real-world

relationships and concepts

(e.g., WordNet, BabelNet, PropBank, VerbNet, FrameNet, ConceptNet)

WordNet

52

A large lexical database with English nouns, verbs, adjectives, and
adverbs grouped into over 100,000 sets of cognitive synonyms
(synsets) – each expressing a different concept.

Most frequent relation: super-
subordinate relation (”is-a” relations).

{furniture, piece_of_furniture}

Fine-grained relations:
{bed, bunkbed}

Part-whole relations:
{chair, backrest}

Synonyms:
{adept, expert, good, practiced,
proficient}

ConceptNet

53

A multilingual semantic knowledge graph, designed to help
computers understand the meaning of words that people use.

• Started in 1999. Pretty large now.

• Finally becoming useful (e.g, commonsense reasoning)

• Has synonyms, ways-of, related terms, derived terms

What are some pros and
cons of using external

resources?

54

Limitations

55

• Great resources but ultimately finite

• Can’t perfectly capture nuance (especially context-sensitive)
(e.g., ‘proficient’ is grouped with ‘good’, which isn’t always true)

• Will always have many out-of-vocabulary terms (OOV)
(e.g., COVID19, Brexit, bet, wicked, stankface, “no cap”)

• Subjective

• Laborious to annotate

• Words with the same spelling are doomed to be imprecise

Outline

NLP: what and why?

Representing Language

Bag-of-Words

TF-IDF

Outline

NLP: what and why?

Representing Language

Bag-of-Words

TF-IDF

What is a “bag-of-words”
model/representation?

58

Bag-of-words (BoW)

59

Let’s say our dataset’s entire vocabulary is just 10 words.

Each unique word can have its own dimension (feature index).

[0 0 0 0 0 0 0 0 0 0]
do

g

th
e

qu
ic

k

w
en

t

br
ow

n a

ju
m

pe
d

fa
st

ov
er

st
or

e

NOTE: This is the Boolean version, which isn’t the most popular BoW representation

Bag-of-words (BoW)

60

Each document’s vector has a 1 if the word is present. Otherwise, 0.

[1 1 0 0 0 0 1 0 0 0]

e.g., “the dog jumped” is represented as

do
g

th
e

qu
ic

k

w
en

t

br
ow

n a

ju
m

pe
d

fa
st

ov
er

st
or

e

NOTE: This is the Boolean version, which isn’t the most popular BoW representation

Bag-of-words (BoW)

61

Each document’s vector has a 1 if the word is present. Otherwise, 0.

[1 1 0 1 0 0 0 1 0 0]

e.g., “the dog went fast” is represented as

do
g

th
e

qu
ic

k

w
en

t

br
ow

n a

ju
m

pe
d

fa
st

ov
er

st
or

e

NOTE: This is the Boolean version, which isn’t the most popular BoW representation

Bag-of-words (BoW)

62

NOTE: The most common way of referring to this is as a “bag-of-words

model”. Technically, the “bag-of-words” is referring to the representation,

not the model.

“bag-of-words model” actually means “Model that uses a bag-of-words

representation”

Pros and cons of BoW?

63

Bag-of-words (BoW)

64

Weaknesses:

• Flattened view of the document

• Context-insensitive (“the horse ate” = “ate the horse”)

• Curse of Dimensionality (vocab could be over 100k)

• Orthogonality: no concept of semantic similarity at the word-level

• e.g., 𝑑(dog, cat) =𝑑(dog, chair)

What is TF-IDF?

65

66

TF-IDF

Notice that longer documents will naturally have higher counts than

shorter documents.

[2 9 17 8 0 2 0 0 0 2]
ba

se
ba

ll

ch
ic

ag
o

cu
bs th
e

w
rin

gl
ey

pa
dr

es

sh
oh

ei

m
vp

ho
m

er
un

cr
ow

d

67

TF-IDF

Also notice that “the” has a fairly high count, too.

[2 9 17 8 0 2 0 0 0 2]
ba

se
ba

ll

ch
ic

ag
o

cu
bs th
e

w
rin

gl
ey

pa
dr

es

sh
oh

ei

m
vp

ho
m

er
un

cr
ow

d

68

TF-IDF

Simple ideas. Let’s:

• disproportionately weight the common words that appear in many

documents

• Use that info and combine it with the word frequency info

69

TF-IDF

TF (term frequency) = 𝑓𝑤! = # times word 𝑤! appeared in the document

IDF (inverse document frequency) = 𝑙𝑜𝑔 (# docs in corpus
docs containing"!)

TFIDF = 𝑓𝑤! * 𝑙𝑜𝑔 (# docs in corpus
docs containing"!

)

70

TF-IDF

Weaknesses:

• Flattened view of the document

• Context-insensitive (“the horse ate” = “ate the horse”)

• Curse of Dimensionality (vocab could be over 100k)

• Orthogonality: no concept of semantic similarity at the word-level

• e.g., 𝑑(dog, cat) =𝑑(dog, chair)

71

TF-IDF

Weaknesses:

• Flattened view of the document

• Context-insensitive (“the horse ate” = “ate the horse”)

• Curse of Dimensionality (vocab could be over 100k)

• Orthogonality: no concept of semantic similarity at the word-level

• e.g., 𝑑(dog, cat) =𝑑(dog, chair)

Next lecture, we’ll address this

72

TF-IDF

Weaknesses:

• Flattened view of the document

• Context-insensitive (“the horse ate” = “ate the horse”)

• Curse of Dimensionality (vocab could be over 100k)

• Orthogonality: no concept of semantic similarity at the word-level

• e.g., 𝑑(dog, cat) =𝑑(dog, chair)

In the following lecture,
we’ll address these points

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

The backbone of NLP

Lecture 3: Language Models

74

Language Modelling

A Language Model represents the language used by a given entity
(e.g., a particular person, genre, or other well-defined class of text)

A Language Model estimates the probability of any sequence of words

75

FORMAL DEFINITION

Let 𝑿 = “Anqi was late for class”

P(𝑿) = 𝑃(“Anqi was late for class”)

𝑤# 𝑤$ 𝑤% 𝑤& 𝑤'

Language Modelling

What is LM used for?

76

Generate Text

77

Language Modelling

78

A Language Model is useful for:

Generating Text Classifying Text

• Auto-complete

• Speech-to-text

• Question-answering / chatbots

• Machine translation

• Summarization

• Authorship attribution

• Detecting spam vs not spam

• Grammar Correction

And much more!

Language Modelling

79

Scenario: assume we have a finite vocabulary 𝑉

𝑉 ∗ represents the infinite set of strings/sentences that we could
construct

e.g., 𝑉 ∗= {a, a dog, a frog, dog a, dog dog, frog dog, frog a dog, …}

Data: we have a training set of sentences x ∈ 𝑉 ∗

Problem: estimate a probability distribution:

;
(∈*

∗
𝑝 𝑥 = 1

𝑝 𝑡ℎ𝑒 = 10+$

𝑝 𝑤𝑎𝑡𝑒𝑟𝑓𝑎𝑙𝑙, 𝑡ℎ𝑒, 𝑖𝑐𝑒𝑐𝑟𝑒𝑎𝑚 = 3.2𝑥10+#,
𝑝 𝑡ℎ𝑒, 𝑠𝑢𝑛, 𝑜𝑘𝑎𝑦 = 2.5𝑥10+#%

Slide adapted from Luke Zettlemoyer @ UW 2018

Language Modelling

80

“Wreck a nice beach” vs “Recognize speech”

“I ate a cherry” vs “Eye eight uh Jerry!”

“What is the weather today?”

“What is the whether two day?”

“What is the whether too day?”

“What is the Wrether today?”

Motivation

81

Important Terminology

a word token is a specific occurrence of a word in a text

a word type refers to the general form of the word, defined by its
lexical representation

If our corpus were just “I ran and ran and ran”, you’d say we have:

- 6 word tokens [I, ran , and , ran , and , ran]

- 3 word types: {I, ran, and}

Language Modelling

82

Naive Approach: unigram model

Assumes each word is independent of all others.

𝑃 𝑤#, … , 𝑤$ =&
%&#

$

𝑝(𝑤𝑡)

P(𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓) = P(𝒘𝟏), 𝑷(𝒘𝟐), 𝑷 𝒘𝟑 𝑷 𝒘𝟒 𝑷(𝒘𝟓)

Unigram Model

83

Let 𝑿 = “Anqi was late for class”
𝑤# 𝑤$ 𝑤% 𝑤& 𝑤'

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

P(Anqi) = #'
#22,222 = 0.00015

P(was) = #,222
#22,222 = 0.01

P(w4) =
5"!(𝒅)
5"∗(𝒅)

𝑛"!(𝒅) = # of times word 𝒘𝒊 appears in 𝒅

𝑛"∗(𝒅) = # of times any word 𝒘 appears in 𝒅

𝑛"∗(𝒅) = 100,000

Unigram Model

84

Let 𝑿 = “Anqi was late for class”
𝑤# 𝑤$ 𝑤% 𝑤& 𝑤'

P Anqi, was, late, for, class = P Anqi P was P late P for P class

= 0.00015 ∗ 0.01 ∗ 0.004 ∗ 0.03 ∗ 0.0035

= 6.3 ∗ 10 − 13

This iterative approach is much more efficient than
dividing by all possible sequences of length 5

85

1. Probabilities become too small

2. Out-of-vocabulary words <UNK>

UNIGRAM ISSUES?

3. Context doesn’t play a role at all

𝑃(“Anqi was late for class”) = 𝑃(“class for was late Anqi”)

Anqi was late for class the

Anqi was late for class the the

Anqi was late for class _____

4. Sequence generation: What’s the most likely next word?

86

Solution:

UNIGRAM ISSUES?

log&
%&#

$

𝑝 𝑤𝑡 = .
%&#

$

log(𝑝 𝑤')

log(10+#22) = −230.26even is manageable

Problem 1: Probabilities become too small

𝑃 𝑤#, … , 𝑤$ =&
%&#

$

𝑝(𝑤𝑡)

87

UNIGRAM ISSUES?

Problem 2: Out-of-vocabulary words <UNK>

Solution: Smoothing

(give every word’s count some inflation)

P(w) = (! 𝒅 *+
(!∗*+|-|

P(“Anqi”) = #.*+
#//,/// * +|-|

P("COVID19”) = /*+
#//,/// * +|-|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

𝑝(“𝐶𝑂𝑉𝐼𝐷19”) = 0

88

UNIGRAM ISSUES?

Problems 3 and 4: Context doesn’t play a role at all

𝑃(“Anqi was late for class”) = 𝑃(“class for was late Anqi”)

Question: How can we factor in context?

89

Bigram LM

Let 𝑿 = “Anqi was late for class”
probability

P(𝑿) = 𝑃(was|Anqi)𝑃(late|was)𝑃(for|late)𝑃(class|for)

Look at pairs of consecutive words

𝑤# 𝑤$ 𝑤% 𝑤& 𝑤'

90

Bigram Model

Let 𝑿 = “Anqi was late for class”
𝑤# 𝑤$ 𝑤% 𝑤& 𝑤'

𝑛",": (𝒅) = # of times words 𝒘 and 𝒘′ appear together as a bigram in 𝒅

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350
P(class|for) = P(for, class) = #$

%,222

𝑛","∗(𝒅) = # of times word 𝒘 is the first token of a bigram in 𝒅

𝑛"∗(𝒅) = 100,000

P w:|𝑤 = P ”w,w:” = 5","% (𝒅)
5","∗ (𝒅)

91

1. Out-of-vocabulary bigrams are 0 à kills the overall probability

2. Could always benefit from more context but sparsity is an issue
(e.g., rarely seen 5-grams)

BIGRAM ISSUES?

3. Storage becomes a problem as we increase the window size

4. No semantic information conveyed by counts (e.g., vehicle vs car)

Why do we commonly
pad sentences with <s>?

92

93

IMPORTANT:

It is common to pad sentences with <S> tokens on each side, which
serve as boundary markers. This helps LMs learn the transitions
between sentences.

Let 𝑿 = “I ate. Did you?”
𝑤# 𝑤$ 𝑤% 𝑤&

𝑿 = “<S> I ate <S> Did you? <S>”
𝑤# 𝑤$𝑤% 𝑤& 𝑤'

à
𝑤< 𝑤=

94

Generation

• We can also use these LMs to generate text

• Generate the very first token manually by making it be <S>

• Then, generate the next token by sampling from the probability

distribution of possible next tokens (the set of possible next

tokens sums to 1)

• When you generate be <S> again, that represents the end of

the current sentence

95

Example of Bigram generation

• Force a <S> as the first token

• Of the bigrams that start with <S>, probabilistically pick one

based on their likelihoods

• Let’s say the chosen bigram was <S>_The

• Repeat the process, but now condition on “The”. So, perhaps

the next select Bigram is “The_dog”

• The sentence is complete when you generate a bigram whose

second half is <S>

96

Language Modelling

Better Approach: n-gram model

The likelihood of any event
occurring hinges upon all
prior events occurring

𝑃 𝑥#, … , 𝑥$ =&
%&#

$

𝑝 𝑥% 𝑥%1#, … , 𝑥#)

This compounds for all
subsequent events, too

How do we measure the
performance of LMs?

97

98

Evaluation

N-gram models seem useful, but how can we measure
how good they are?

Can we just use the likelihood values?

99

Almost!

The likelihood values aren’t adjusted for the length of sequences,
so we would need to normalize by the sequence lengths.

𝐻 𝐶>?@> =
1
𝑁
;
!A#

5

log2(𝑝 𝑤!)

Evaluation

100

Perplexity

The best language model is one that
best predicts an unseen test set

Perplexity, denoted as 𝑃𝑃, is the inverse probability of the test set,
normalized by the number of words.

𝑃𝑃 𝑤#, … , 𝑤2 = 𝑝 𝑤#, 𝑤3, … , 𝑤2 1#/2

=
1
𝑝 𝑤#, 𝑤3, … , 𝑤2

What does perplexity
measure / represent?

101

102

Perplexity

Perplexity is also equivalent to the exponentiated, per-word cross-entropy

𝑃𝑃 𝑤#, … , 𝑤2 = 𝑝 𝑤#, 𝑤3, … , 𝑤2 1#/2

=
1
𝑝 𝑤#, 𝑤3, … , 𝑤2

= 215, where l = #
2
∑'&#(log2(𝑝 𝑤')

103

Perplexity

Very related to entropy, perplexity measures the uncertainty of the
model for a particular dataset. So, very high perplexity scores
correspond to having tons of uncertainty (which is bad).

Entropy represents the average number of bits needed to
represent each word.

Perplexity represents the branching factor needed to predict each
next word. That is, the more branches (aka bits) at each step, the
more uncertainty there is, meaning the worse the model.

104

Perplexity

Good models tend to have perplexity scores around 40-100 on

large, popular corpora.

If our model assumed a uniform distribution of words, then our

perplexity score would be:

𝑉 = the # of unique word types

105

Perplexity

Example: let our corpus 𝑋 have only 3 unique words: {the, dog, ran} but our

particular text has a length of 𝑁.

= # 1
1
3

2 =
32 = 3

𝑃𝑃 𝑤#, … , 𝑤2 = 𝑝 𝑤#, 𝑤3, … , 𝑤2 1#/2

=
1
𝑝 𝑤#, 𝑤3, … , 𝑤2

106

Perplexity

More generally, if we have 𝑀 unique words for a sequence of

length 𝑁.

𝑃𝑃 𝑋 = # 1
1
𝑀

2 =
𝑀2 = 𝑀

107

Perplexity

Example perplexity scores: when trained on a corpus of 38 million

words and tested on 1.5 million words:

model perplexity

unigram 962

bigram 170

trigram 109

108

Evaluation

Very Important:

• Any given LM must be able to generate the test set (at least).

Otherwise, it cannot be fairly evaluated (OOV problem).

• When comparing multiple LMs to each other, their vocabularies

must be the same (e.g., words, sub-words, characters).

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

Featurized Model

109

”passing a _____”

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

𝑤!+$ 𝑤!+# 𝑤!

passing a

Vx1

+ + =

Vx1 Vx1 Vx1

bias raw scores

softmax =

Vx1

word probs

Lookup tablei-1(𝑤!"#) Lookup tablei-2(𝑤!"$)

quiz
ball
car
kidney
..
..

Featurized Model

110

”passing a _____”

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

passing a

bias raw scores word probs

Lookup tablei-1(𝑤!"#) Lookup tablei-2(𝑤!"$)

quiz
ball
car
kidney
..
..

𝑤!+$ 𝑤!+# 𝑤!

Vx1

+ + =

Vx1 Vx1 Vx1

softmax =

Vx1

𝑤!+$ 𝑤!+# 𝑤!

Vx1

+ + =

Vx1
Vx1 Vx1

softmax =

Vx1

words

vector
size N

Embedding/ feature matrix 𝝂 is an “input word matrix”. The 𝑖>C column
of 𝝂 corresponds to each unique word 𝑤𝑖

𝑣𝑖 = 𝝂𝑥𝑖

Vx1NxVNx1 = ∗

Can retrieve Embedding 𝑣 via:
- Slicing the index, or
- Matrix multiply

Unknown Words

111

• We still need to handle UNK words. Always.

• Language is always evolving

• Zipfian distribution

• Larger vocabularies require more memory and compute time

How can we handle UNK words in a neural model?

How do we handle UNK
words in a neural model?

112

Unknown Words

113

• Common ways:

• Frequency threshold (e.g., UNK <= 2)

• Remove bottom N%

Remaining Issues

1. More context while avoiding sparsity, storage, and compute issues

2. No semantic information conveyed by counts (e.g., vehicle vs car)

3. Cannot leverage non-consecutive patterns

4. Cannot capture combinatorial signals (i.e., non-linear prediction)

Dr. Cornell West ____Dr. West ____

Occurred 25 times Occurred 3 times

P(Chef cooked food) P(Customer cooked food)

P(Customer ate food)P(Chef ate food)

New goals!

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021
114

115

UP NEXT

We clearly need:

• denser representations, not |V|

• semantic information

• non-linear power

Neural models, here we come!

Beginning Concepts

Neural Foundation

Attention and Beyond

Outline

Beginning Concepts

Neural Foundation

Attention and Beyond

Outline

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

An introduction with word2vec

Lecture 4: Neural Language Models

Neural Network Motivation

Non-linear power: using non-linear activation

functions can allow us to capture rich, combinatorial

attributes of language

119

Neural Network Motivation

Curse of dimensionality:

• Say our vocab |𝑽| = 100,000

• Naively modelling the joint probability of 10 consecutive,

discrete random variables (e.g., words in a sentence) yields

100,000#2 − 1 = 10'2 free parameters.

• Word embeddings reduce the # of parameters and hopefully

improve the model’s ability to generalize

Slide adapted from or inspired by Ryan Cotterell ETH-Zurich 2021 120

Bengio (2003)

A Neural Probabilistic Language Model. Bengio et al. JMLR (2003) 121

Bengio (2003)

A Neural Probabilistic Language Model. Bengio et al. JMLR (2003) 122

Bengio (2003)

123

Simultaneously learn the representation and do the modelling!

man

woman

table

Bengio (2003)

124

Simultaneously learn the representation and do the modelling!

man

woman

table

• Each circle is a specific floating point scalar

• Words that are more semantically similar to one
another will have embeddings that are
proportionally similar, too

Bengio (2003)

125

𝑦 = 𝑏 +𝑊𝑥 +𝑈tanh(𝑑 + 𝐻𝑥)

𝜃 = {𝑏,𝑊,𝑈, 𝑑, 𝐻, 𝐶}

𝑥 = [𝐶 𝑤>+% , 𝐶 𝑤>+$, 𝐶 𝑤>+#]

predict the most likely
word w, via softmax

Bengio (2003)

126

SAME AS WE DO FOR ALL OF OUR NEURAL NETS

Train the model using gradient descent:

• Use our output probabilities

• Calculate the cross-entropy loss

• Use backprop to calculate gradients

• Update all weight matrices and bias via GD

Bengio (2003) Remaining Issues

127

This was not the first neural language model, but it was the first, highly

compelling model with great results (e.g., beating n-grams)

The softmax output layer is annoyingly slow

128

Distributional Semantics

Distributional: meaning is represented by the contexts in which its used

“Distributional statements can cover all of the material of a language

without requiring support from other types of information”

-- Zellig Harris. Distributional Structure. (1954)

“You shall know a word by the company it keeps”

-- John Rupert Firth. A Synopsis of Linguistics Theory. (1957)

129

Auto-regressive language models

Good morning, _____

I bought a _____

I got my ______

130

Masked language models

Good morning, _____. Rise and shine!

I bought a _____ from the bakery

I got my ______ license last week

How does CBOW work?

131

132

word2vec

Two approaches:

1. Continuous Bag-of-Words (CBOW)

2. Skip-gram w/ negative sampling

133

word2vec: CBOW

Step 1: Iterate through your entire corpus, with sliding context

windows of size 𝑵 and step size 𝟏

Step 2: Using all 2N context words, except the center word, try

to predict the center word.

Step 3: Calculate your loss and update parameters (like always)

134

word2vec: CBOW

D x V

𝑦 = 𝑈 ∗sum(𝐻𝑥)

𝑥 = 𝑤>+$, 𝑤>+# , 𝑤>E# , 𝑤>E$

𝑁 = # total context words

𝑉 = # word types

𝑥

𝑃
D x 1

𝐻

V x D
𝐷 = embedding size

𝑈
V x 1

𝑦

V x 1

135

word2vec: CBOW

• Linear projection layer

• Non-linear output layer (softmax)

• Training in batches helps a lot

136

word2vec: results

• Smaller window sizes yield embeddings such that high

similarity scores indicates that the words are interchangeable

• Larger window sizes (e.g., 15+) yield embeddings such that

high similarity is more indicative of relatedness of the words.

137

word2vec: results

• Words that appear in the same contexts are forced to

gravitate toward having the same embeddings as one

another

• Imagine two words, w1 and w2, that never appear together,

but they each, individually have the exact same contexts with

other words. w1 and w2 will have ~identical embeddings!

• “The” appears the most. What do you imagine its

embedding is like?

138

word2vec results

How can we evaluate
word embeddings?

139

140

Evaluation

We cheated by looking ahead, so it’s unfair to measure

perplexity against n-gram or other auto-regressive LM

Intrinsic evaluation:

• Word similarity tasks

• Word analogy tasks

Extrinsic evaluation:

• Apply to downstream tasks (e.g., Natural language inference,
entailment, question answering, information retrieval)

141

Evaluation Word Analogy

Slide adapted from or inspired by Sam Bowman’s NYU NLP 2021

Remaining Challenges

142

• Still can’t handle long-range dependencies.

• Each decision is independent of the previous!

• Having a small, fixed window that repeats is a bit forced and

awkward

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

Contextualized, Token-based Representations

Lecture 5: Recurrent Neural Networks

RECAP: L4 These are the learned word embeddings that we

want to extract and use

144

145

word2vec training

millions of books word2vec word embeddings

aardvark

apple

before

zoo

How can we use the learned
word embeddings?

146

147

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

“The food was delicious. Amazing!” 4.8/5

the

food

was

delicious

amazing

+

+

+

+

=

average embedding

Feed-forward
Neural Net

average embedding

4.8/5

148

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

daaang

what

supa

lit

+

+

+

=

average embedding

Strengths:

• Can create general-purpose, useful
embeddings by leveraging tons of
existing data

• Captures semantic similarity

149

word embeddings (type-based)
approaches:
• count-based/DSMs (e.g., SVD, LSA)
• Predictive models (e.g., word2vec, GloVe)

daaang

what

supa

lit

+

+

+

=

average embedding

Issues:

• Not tailored to this dataset

• Out-of-vocabulary (OOV) words

• Limited context

• Each prediction is independent from previous

• A FFNN is a clumsy, inefficient way to handle context;
fixed context that is constantly being overwritten (no
persistent hidden state).

• Requires inputting entire context just to predict 1 word

150

word2vec Results

• SkipGram w/ Negative Sampling tends to outperform CBOW

• SkipGram w/ Negative Sampling is slower than CBOW

• Both SkipGram and CBOW are predictive, neural models that

take a type-based approach (not token-based).

• Both SkipGram and CBOW can create rich word embeddings

that capture both semantic and syntactic information.

RNNs

151

We especially need a system that:

• Has an “infinite” concept of the past, not just a fixed window

• For each new input, output the most likely next event (e.g., word)

Motivation

152

Language often has long-range dependencies:

Emily earned the top grade on the quiz! Everyone was proud of her.

Miquel earned the top grade on the quiz! Everyone was proud of him.

Motivation

153

Language is sequential in nature:

• characters form words.

• words form sentences.

• sentences form narratives/documents

NLP folks like to operate at the word level, as that's the smallest, convenient

unit of meaning.

Input layer

Hidden layer

Output layer

𝑊

𝑈

z𝑦#

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

z𝑦$ z𝑦% z𝑦&

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

RNN

Some people find this abstract view useful.

Input layer

Hidden layer

Output layer

𝑊

𝑈

z𝑦!

𝑥!

𝑉

The recurrent loop 𝑉 conveys that the
current hidden layer is influenced by the
hidden layer from the previous time step.

The initial hidden layer 𝒉𝟎 can be initialized
to 0s

RNN

Some people find this abstract view useful.

Input layer

Hidden layer

Output layer

𝑊

𝑈

z𝑦!

𝑥!

𝑉
The recurrent loop 𝑉 conveys that the
current hidden layer is influenced by the
hidden layer from the previous time step.

RNN

Definition: an RNN is any neural net that has a
non-linear combination of the recurrent state
(e.g., hidden layer) and the input

Input layer

Hidden layer

Output layer

𝑊

𝑈

z𝑦#

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

z𝑦$ z𝑦% z𝑦&

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

Training Process

𝐶𝐸 𝑦$, K𝑦$ 𝐶𝐸 𝑦&, K𝑦& 𝐶𝐸 𝑦', K𝑦'𝐶𝐸 𝑦#, K𝑦#Error

She went to class

𝐶𝐸 𝑦! , K𝑦! = −M
(∈*

𝑦(! log(K𝑦(!)
RNN

Input layer

Hidden layer

Output layer

𝑊

𝑈

z𝑦#

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

z𝑦$ z𝑦% z𝑦&

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

Training Process

𝐶𝐸 𝑦$, K𝑦$ 𝐶𝐸 𝑦&, K𝑦& 𝐶𝐸 𝑦', K𝑦'𝐶𝐸 𝑦#, K𝑦#Error

She went to class

During training, regardless of our output predictions,
we feed in the correct inputs

𝐶𝐸 𝑦! , K𝑦! = −M
(∈*

𝑦(! log(K𝑦(!)
RNN

Training Process

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈𝑉 𝑉 𝑉

She went to class

went? over? class? after?

𝐶𝐸 𝑦$, K𝑦$ 𝐶𝐸 𝑦&, K𝑦& 𝐶𝐸 𝑦', K𝑦'𝐶𝐸 𝑦#, K𝑦#Error

z𝑦

𝐶𝐸 𝑦! , K𝑦! = −M
(∈*

𝑦(! log(K𝑦(!)

Our total loss is simply the average loss across all 𝑻 time steps

RNN

RNN Training Details

Output layer

𝑈 𝑈 𝑈 𝑈
𝑉%

went? over? class?

𝐶𝐸 𝑦', K𝑦'

z𝑦
Using the chain rule, we trace the derivative all the
way back to the beginning, while summing the results.

𝝏𝑳
𝝏𝑽

𝑉$𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

To update our weights (e.g. 𝑽), we calculate the gradient

of our loss w.r.t. the repeated weight matrix (e.g., 𝝏𝑳
𝝏𝑽
).

Training Details

• This backpropagation through time (BPTT) process is expensive

• Instead of updating after every timestep, we tend to do so

every 𝑇 steps (e.g., every sentence or paragraph)

• This isn’t equivalent to using only a window size 𝑇

(a la n-grams) because we still have ‘infinite memory’

RNN

We can generate the most likely next event (e.g., word) by sampling from |𝒚

Continue until we generate <EOS> symbol.

RNN: Generation

RNN: Generation

We can generate the most likely next event (e.g., word) by sampling from |𝒚

Continue until we generate <EOS> symbol.

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

<START> “Sorry” Harry shouted,

“Sorry” Harry shouted, panicking

Pros and cons of an RNN?

164

RNNs: Overview

RNN ISSUES?

RNN STRENGTHS?

• Can handle infinite-length sequences (not just a fixed-window)

• Has a “memory” of the context (thanks to the hidden layer’s recurrent loop)

• Same weights used for all inputs, so word order isn’t wonky (like FFNN)

• Slow to train (BPTT)

• Due to ”infinite sequence”, gradients can easily vanish or explode

• Has trouble actually making use of long-range context

RNNs: Vanishing and Exploding Gradients

𝑈 𝑈 𝑈 𝑈
𝑉%

𝐶𝐸 𝑦', K𝑦'

z𝑦

𝝏𝑳𝟒

𝝏𝑽𝟏

𝑉$𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑
𝝏𝑽𝟑

𝝏𝑽𝟐
𝝏𝑽𝟐

𝝏𝑽𝟏

RNNs: Vanishing and Exploding Gradients

𝑈 𝑈 𝑈 𝑈
𝑉%

𝐶𝐸 𝑦', K𝑦'

z𝑦

𝝏𝑳𝟒

𝝏𝑽𝟏

𝑉$𝑉#

Input layer

Hidden layer

𝑊 𝑊 𝑊 𝑊

She went to class

𝝏𝑳𝟒

𝝏𝑽𝟏
= 𝝏𝑳𝟒

𝝏𝑽𝟑
𝝏𝑽𝟑

𝝏𝑽𝟐
𝝏𝑽𝟐

𝝏𝑽𝟏

This long path makes it easy
for the gradients to become
really small or large.

If small, the far-away context
will be ”forgotten.”

If large, recency bias and no
context.

Exploding Gradients

Source: https://www.deeplearningbook.org/contents/rnn.html Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

https://www.deeplearningbook.org/contents/rnn.html
http://proceedings.mlr.press/v28/pascanu13.pdf

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

Contextualized, Token-based Representations

Lecture 6: LSTMs

How does an LSTM yield
improvements?

170

LSTM

• A type of RNN that is designed to better handle long-range

dependencies

• In ”vanilla” RNNs, the hidden state is perpetually being rewritten

• In addition to a traditional hidden state h, let’s have a dedicated

memory cell c for long-term events. More power to relay

sequence info.

LSTM

At each each time step 𝑡, we have a hidden state ℎ> and cell state 𝑐>:

• Both are vectors of length n

• cell state 𝑐> stores long-term info

• At each time step 𝑡, the LSTM erases, writes, and reads information from the
cell 𝑐>

• 𝑐> never undergoes a nonlinear activation though, just – and +

LSTM

Input layer

Hidden layer

Output layer

𝑥# 𝑥$

𝐻#

𝐶#

𝑥$

𝐻$

𝐶$

𝐶 and 𝐻 relay long- and short-term memory to the hidden layer,
respectively. Inside the hidden layer, there are many weights.

LSTM

𝐻>+#

𝐶>+#

𝐻>

𝐶>

𝐻>E#

𝐶>E#
some old memories are “forgotten” some new memories are made

a nonlinear weighted version of the
long-term memory becomes our
short-term memory

memory is written, erased, and
read by three gates – which are
influenced by 𝒙 and 𝒉

Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM

LSTM

It’s still possible for LSTMs to suffer from vanishing/exploding

gradients, but it’s way less likely than with vanilla RNNs:

• If RNNs wish to preserve info over long contexts, it must delicately

find a recurrent weight matrix 𝑊C that isn’t too large or small

• However, LSTMs have 3 separate mechanism that adjust the flow of

information (e.g., forget gate, if turned off, will preserve all info)

LSTM

LSTM ISSUES?

LSTM STRENGTHS?

• Almost always outperforms vanilla RNNs

• Captures long-range dependencies shockingly well

• Has more weights to learn than vanilla RNNs; thus,

• Requires a moderate amount of training data (otherwise, vanilla
RNNs are better)

• Can still suffer from vanishing/exploding gradients

How can we use LSTMs
for classification?

178

Sequential Modelling

If your goal isn’t to predict the next item in a sequence, and you rather

do some other classification or regression task using the sequence,

then you can:

• Train an aforementioned model (e.g., LSTM) as a language model

• Use the hidden layers that correspond to each item in your

sequence

IMPORTANT

Sequential Modelling

Input
layer

Hidden
layer

Output
layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

Language Modelling 1-to-1 tagging/classification

Input
layer

Hidden
layer

Output
layer

𝑊

𝑈

z𝑦#

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

z𝑦$ z𝑦% z𝑦&

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

𝑥$ 𝑥% 𝑥& 𝑥'

Sequential Modelling

Many-to-1 classification

Sentiment score

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

z𝑦&

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

Sequential Modelling

Many-to-1 classification

Input layer

Hidden layer

Output layer

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑈

𝑥# 𝑥$ 𝑥% 𝑥&

𝑉 𝑉 𝑉

Sentiment score

Summary

• Distributed Representations can be:

• Type-based (“word embeddings”)

• Token-based (“contextualized representations/embeddings”)

• Type-based models include Bengio’s 2003 and word2vec 2013

• Token-based models include RNNs/LSTMs, which:

• demonstrated profound results in 2015 onward.

• it can be used for essentially any NLP task.

RNNs/LSTMs use the left-to-right context and sequentially

process data.

If you have full access to the data at testing time, why not

make use of the flow of information from right-to-left, also?

RNN Extensions: Bi-directional LSTMs

184

RNN Extensions: Bi-directional LSTMs

Input layer

Hidden layer

𝑥# 𝑥$ 𝑥% 𝑥& 𝑥# 𝑥$ 𝑥% 𝑥&

ℎ#T ℎ$T ℎ%T ℎ&T ℎ#U ℎ$U ℎ%U ℎ&U

For brevity, let’s use the follow schematic to represent an RNN

185

RNN Extensions: Bi-directional LSTMs

Input layer

Hidden layer

Output layer

𝑥# 𝑥$ 𝑥% 𝑥& 𝑥# 𝑥$ 𝑥% 𝑥&

ℎ#T ℎ$T ℎ%T ℎ&T ℎ#U ℎ$U ℎ%U ℎ&U

ℎ#T
ℎ#U

ℎ$T
ℎ$U

ℎ%T
ℎ%U

ℎ&T
ℎ&U

z𝑦# z𝑦$ z𝑦% z𝑦&

Concatenate the hidden layers

186

• Usually performs at least as well as uni-directional RNNs/LSTMs

RNN Extensions: Bi-directional LSTMs

BI-LSTM ISSUES?

BI-LSTM STRENGTHS?

• Slower to train

• Only possible if access to full data is allowed

187

RNN Extensions: Stacked LSTMs

Input layer

Hidden layer #1

𝑥# 𝑥$ 𝑥% 𝑥&

ℎ#T ℎ$T ℎ%T ℎ&T

ℎ&T$ℎ%T$ℎTℎ#T$

z𝑦# z𝑦$ z𝑦% z𝑦&Output layer

Hidden layer #2

Hidden layers provide an

abstraction (holds “meaning”).

Stacking hidden layers provides

increased abstractions.

188

ELMo: Stacked Bi-directional LSTMs

Illustration: http://jalammar.github.io/illustrated-bert/ 189

http://jalammar.github.io/illustrated-bert/

Illustration: http://jalammar.github.io/illustrated-bert/ 190

http://jalammar.github.io/illustrated-bert/

RECAP: L6

191

𝐻>+#

𝐶>+#

𝐻>

𝐶>

𝐻>E#

𝐶>E#
Forget Gate

Output Gate

Diagram: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Input Gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Beginning Concepts

Neural Foundation

Attention and Beyond

Outline

Beginning Concepts

Neural Foundation

Attention and Beyond

Outline

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

Sequence Generation

Lecture 7: seq2seq + Attention

Types of Prediction

195

(difficult scenario when your output has

exponential/infinite # of possibilities)

Regression I love hiking!

input output

0.9

Positive or negativeI love hiking!Binary Classification

Multi-class Classification Very positive, positive, neutral,
negative, or very negative

I love hiking!

Structured Prediction I love hiking! PRP VBP NN

Types of Prediction (an independent axis)

196

Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”

Types of Prediction (an independent axis)

197

Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”

(un)conditioned is referring to if
you’re entire model is predicated
upon some particular input.

Types of Prediction (an independent axis)

198

Unconditioned Prediction: predict some single variable. P(X)

Conditioned Prediction: predict the probability of an output variable,

given the input. P(Y|X)

Example: language modelling. X = “I like hiking!”

Example: text classification. Y = positive. X = “I like hiking!”

Language modelling is unconditional

prediction, but one could do so by making

use of conditional probabilities of X

Types of Unconditional Prediction

199Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

Types of Unconditional Prediction

200

Formally, a language model estimates the probability of a

sequence, so this is illegal. It ”cheats”, and we call this style

masked language models (not proper probability distribution and

they don’t estimate sequences)

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

Types of Conditional Prediction

201

Many-to-1 classification

𝑃 𝑦 𝑋

Many-to-many classification

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

202

We want to produce a variable-length output
(e.g., n à m predictions)

Thank you for visiting! Děkujeme za návštěvu!

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#V ℎ$V ℎ%V ℎ&V

The brown dog ran

ENCODER RNN

ℎ#W ℎ$W

<s> chien brun a

DECODER RNN

couru

ℎ%W ℎ&W ℎ'W

Le

ℎ<W

Le chien brun a couru <s>

The final hidden state of the encoder RNN
is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#V ℎ$V ℎ%V ℎ&V

The brown dog ran

ENCODER RNN

ℎ#W ℎ$W

<s> chien brun a

DECODER RNN

couru

ℎ%W ℎ&W ℎ'W

Le

ℎ<W

z𝑦# z𝑦$ z𝑦% z𝑦& z𝑦' z𝑦<

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#V ℎ$V ℎ%V ℎ&V

The brown dog ran

ENCODER RNN

ℎ#W ℎ$W

<s> chien brun a

DECODER RNN

couru

ℎ%W ℎ&W ℎ'W

Le

ℎ<W

z𝑦# z𝑦$ z𝑦% z𝑦& z𝑦' z𝑦<

Training occurs like RNNs typically do; the
loss (from the decoder outputs) is calculated,
and we update weights all the way to the
beginning (encoder)

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#V ℎ$V ℎ%V ℎ&V

The brown dog ran

ENCODER RNN

ℎ#W ℎ$W

<s> chien brun a

DECODER RNN

couru

ℎ%W ℎ&W ℎ'W

Le

ℎ<W

z𝑦# z𝑦$ z𝑦% z𝑦& z𝑦' z𝑦<

Testing generates decoder outputs one word
at a time, until we generate a <S> token.

Each decoder’s 6𝒚𝒊 becomes the input 𝒙𝒊"𝟏

What’s a serious weakness
with this seq2seq approach?

207

Sequence-to-Sequence (seq2seq)

Input layer

Hidden layer

ℎ#V ℎ$V ℎ%V ℎ&V

The brown dog ran

ENCODER RNN

ℎ#W ℎ$W

<s> chien brun a

DECODER RNN

couru

ℎ%W ℎ&W ℎ'W

Le

ℎ<W

z𝑦# z𝑦$ z𝑦% z𝑦& z𝑦' z𝑦<

It’s crazy that the entire “meaning” of the 1st sequence
is expected to be packed into this one embedding,
and that the encoder then never interacts w/ the
decoder again. Hands free.

Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to

a distribution of all of the encoder’s hidden states?

Intuition: when we (humans) translate a sentence, we don’t just

consume the original sentence, reflect on the meaning of the last

word, then regurgitate in a new language; we continuously think

back at the original sentence while focusing on different parts.

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ#V ℎ$V ℎ%V ℎ&V ℎ#W

Separate FFNN

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

ℎ&V ℎ#W

𝑒& −0.5

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ#V ℎ$V ℎ%V ℎ&V ℎ#W

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

𝑒& −0.5

Attention (raw scores)

𝑒% 0.2
𝑒$ 0.9
𝑒# 1.5

Attention (softmax’d)

𝑎!# =
exp(𝑒!)

∑!X exp(𝑒#)<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ#V ℎ$V ℎ%V ℎ&V ℎ#W

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

𝑒& −0.5

Attention (raw scores)

𝑒% 0.2
𝑒$ 0.9
𝑒# 1.5

Attention (softmax’d)

𝑎$$ = 0.51
𝑎%$ = 0.28
𝑎&$ = 0.14
𝑎&$ = 0.07

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ#V ℎ$V ℎ%V ℎ&V ℎ#W

Attention (softmax’d)

𝑎$$ = 0.51
𝑎%$ = 0.28
𝑎&$ = 0.14
𝑎&$ = 0.07

𝑎## 𝑎$# 𝑎%# 𝑎&#

We multiply each encoder’s hidden layer

by its 𝑎'$ attention weights to create a
context vector 𝑐$(

𝑐#W

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ#V ℎ$V ℎ%V ℎ&V

<s>

[ℎ#W; 𝑐#W]

𝑐'W

𝑎#' 𝑎$' 𝑎%' 𝑎&'

REMEMBER: each attention weight 𝑎'
) is based on the decoder’s current hidden state, too.

z𝑦#
Le

Le

[ℎ$W; 𝑐$W]

z𝑦$
chien

[ℎ%W; 𝑐%W]

z𝑦%
brun

chien

[ℎ&W; 𝑐&W]

z𝑦&
a

brun

[ℎ'W; 𝑐'W]

z𝑦&
couru

a

DECODER RNN

215Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Popular Attention Scoring functions:

seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the

contribution each encoding word

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015

https://arxiv.org/pdf/1409.0473.pdf

Image Captioning

Input: image

Output: generated text

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)

218

• LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)

• seq2seq+Attention was an even more revolutionary idea (Google
Translate used it)

• Attention allows us to place appropriate weight to the encoder’s
hidden states

• But, LSTMs require us to iteratively scan each word and wait until we’re
at the end before we can do anything

SUMMARY

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

And the power of Attention

Lecture 8: Machine Translation

220

Machine Translation (MT) is an NLP task that aims
to convert text from one language to another.

Thank you for visiting! Děkujeme za návštěvu!

𝒙 𝒚
(source language) (target language)

Many slides in the MT section were inspired by or adapted from Abigail See’s Stanford CS224N lecture

http://web.stanford.edu/class/cs224n/slides/cs224n-2021-lecture07-nmt.pdf

221

Machine Translation (MT) is an NLP task that aims
to convert text from one language to another.

9th century: Al-Kindi (cryptographer)

17th century: René Descartes theorized about a universal, symbolic language

1946: Warren Weaver had a seminal publication

1950s: First huge efforts; MIT, IBM, US Government. Motivated by the Cold War.

1990s – 2014: Statistical MT.

2014 – present: Neural MT (Deep Learning)

222

We want to produce a variable-length output
(e.g., n à m predictions)

Thank you for visiting! Děkujeme za návštěvu!

223

What’s an issue w/ greedy decoding?

Greedy Decoding

224

We can stop generating candidates when sequences

are of length N, or when we have M completed

sequences

Beam Search Decoding

Must normalize by lengths!

Pros and cons of Neural MT
(compared to previous

approaches)

225

226

Pros:

• Better performance

• Uses context more robustly

• Better phrases

• Single model that can be optimized end-to-end

(no subcomponents)

• Way less manual, feature engineering

Neural MT

227

Cons:

• Not too interpretable

• Hard to control/ force any Language-specific aspect

• A vanilla seq2seq approach can have gradient issues

Neural MT

228

BLEU: A similarity metric that compares the generated machine

translation to a human-produced translation.

Uses n-gram precision (e.g., n=1,2,3,4,5)

MT Evaluation

Target: the dog ran fast

Computer Generated: the dog

Adds a penalty for translations that are too short (akin to recall) or over-
representative (e.g., can‘t produce “the the the” and game it)

https://cloud.google.com/translate/automl/docs/evaluate has a nice example

https://cloud.google.com/translate/automl/docs/evaluate

229

2014 - present: NMT

SUMMARY

• Became SOTA in just 2 years

• OOV issues still need to be handled

• Susceptible to training data, as always (domain mismatch issues)

• Long-context is always difficult

• Low-resource languages still remain a challenge

• Biases from training data

• seq2seq doesn’t have to use RNNs/LSTMs

• seq2seq doesn’t have to be used exclusively for NMT

• NMT doesn’t have to use seq2seq

(but it’s natural and the best we have for now)

CHECKPOINT

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

From Attention to Self-Attention

Lecture 9: Self-Attention

Goals

• Each word in a sequence to be transformed into a rich, abstract

representation (context embedding) based on the weighted sums of

the other words in the same sequence (akin to deep CNN layers)

• Inspired by Attention, we want each word to determine, “how much

should I be influenced by each of my neighbors”

• Want positionality

Self-Attention

Input vectors

The brown dog ran

z1

Output
representation

z2 z3 z4

??????

x1 x2 x3 x4

Self-Attention’s goal is to create

great representations, zi, of the input

Self-Attention

The brown dog ran

z1

Output
representation

z1 will be based on a weighted

contribution of x1, x2, x3, x4

x1 x2 x3 x4

Input vectors

Self-Attention’s goal is to create

great representations, zi, of the input

𝑎## 𝑎$# 𝑎%# 𝑎&#

𝒂𝒊𝟏 is “just” a weight. More is

happening under the hood, but

it’s effectively weighting

versions of x1, x2, x3, x4

Self-Attention

The brown dog ran
x1 x2 x3 x4

Under the hood, each xi has 3
small, associated vectors. For
example, x1 has:
• Query q1

• Key k1

• Value v1

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 1: Our Self-Attention Head has just 3 weight
matrices Wq, Wk, Wv in total. These same 3 weight
matrices are multiplied by each xi to create all vectors:

qi = wq xi
ki = wk xi
vi = wv xi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘') and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .87
a2 = 𝝈(𝒔𝟐/𝟖)= .12

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘') and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .87
a2 = 𝝈(𝒔𝟐/𝟖)= .12

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0 Instead of these ai values directly
weighting our original xi word vectors,
they directly weight our vi vectors.

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z1 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 4: Let’s weight our vi vectors and simply sum them up!

= 0.87⋅v1 + 0.12⋅v2 + 0.01⋅v3 + 0⋅v4

z1

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!
z2

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z3 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!

z3

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z4 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!
z4

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head

z4z3z2z1

Self-attention Head

Self-Attention may seem strikingly
like Attention in seq2seq models

Q: What are the key, query, value vectors in the Attention setup?

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

From Self-Attention to Transformers

Lecture 10: Transformers

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new
representations, and this
entire process is called a
Transformer Encoder

Problem: there is no concept
of positionality. Words are
weighted as if a “bag of
words”

Solution: add to each input
word xi a positional encoding
~ sin 𝑖 cos(𝑖)

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

Words can relate in many ways, so it’s restrictive to
rely on just one Self-Attention Head in the system.

Let’s create Multi-headed Self-Attention

A Self-Attention Head has just one set of
query/key/value weight matrices wq, wk, wv

The brown dog ran
x1 x2 x3 x4

To recap: all of this looks
fancy, but ultimately it’s
just producing a very
good contextualized
embedding riof each
word xi

Why stop with just 1
Transformer Encoder?
We could stack several!

Transformer Encoder

r2

Encoder #1

Encoder #2

Encoder #3

r3 r4r1

<s> El perro marrón
x1 x2 x3 x4

Masked Self-attention Head

Decoder

Transformer Decoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C

=

Where does the Decoder
Attend to?

253

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 Transformer Decoders are
identical to the Encoders,
except they have an
additional Attention Head
in between the Self-
Attention and FFNN
layers.

This additional Attention
Head focuses on parts of
the encoder’s
representations.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The Transformer
Decoders have positional
embeddings, too, just like
the Encoders.

Critically, each position is
only allowed to attend to
the previous indices. This
masked Attention
preserves it as being an
auto-regressive LM.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer IMPORTANT

https://jalammar.github.io/illustrated-transformer/

Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs

• What if we don’t want to decode/translate?

• Just want to perform a particular task (e.g., classification)

• Want even more robust, flexible, rich representation!

• Want positionality to play a more explicit role, while not

being restricted to a particular form (e.g., CNNs)

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

The Power of Transformer Encoders

Lecture 11: BERT

Bidirectional Encoder Representations from Transformers

BERT

Let’s only use Transformer Encoders, no Decoders

260

Types of Data

261

UNLABELLED

• Raw text (e.g., web pages)

• Parallel corpora (e.g., for translations)

LABELLED

• Linear/unstructured

• N-to-1 (e.g., sentiment analysis)

• N-to-N (e.g., POS tagging)

• N-to-M (e.g., summarization)

• Structured

• Dependency parse trees

• Constituency parse trees

• Semantic Role Labelling

Types of Data

262

UNLABELLED

• Raw text (e.g., web pages)

• Parallel corpora (e.g., for translations)

LABELLED

• Linear/unstructured

• N-to-1 (e.g., sentiment analysis)

• N-to-N (e.g., POS tagging)

• N-to-M (e.g., summarization)

• Structured

• Dependency parse trees

• Constituency parse trees

• Semantic Role Labelling

We most often about

this type of data

Types of Data

263

Labelled data is a scarce commodity.

How can we get more of it?

How can we leverage more plentiful, other data (either

labelled or unlabelled) so as to make better use of our

limited labelled data?

Types of Learning

264

One axis that hinges upon the type of

data we have:

Supervised Learning

Unsupervised Learning

Self-supervised Learning

Semi-supervised Learning

One axis that refers to our style of

using/learning our data:

Multi-task Learning

Transfer Learning

Pre-training

Types of Learning

265

One axis that refers to our style of

using/learning our data:

Multi-task Learning = general term for training on multiple tasks

Transfer Learning = type of multi-task learning where we only care about

one of the tasks

Pre-training = type of transfer learning where we first focus on one objective

See chalkboard for example

Multi-task heuristics

266

• Ideally, your tasks should be closely related (e.g., constituency parsing and

dependency parsing)

• Multi-task learning may help improve the task that has limited data

• General domain à specific domain (e.g., all of the web’s text -> law text)

• High-resourced language à low-resourced language (e.g., English -> Igbo)

• Unlabelled text à labelled text (e.g., language model -> named entity recognition)

Inspired by or based on http://www.phontron.com/class/anlp2021/assets/slides/anlp-08-pretraining.pdf

Many deep learning models, including pre-trained ones with cute names

(e.g., ELMo, BERT, ALBERT, GPT-3), refer to an exact combination of:

• The model’s architecture

• The training objective to pre-train (e.g., MLM prediction)

• The data (e.g., Google BooksCorpus, Wikipedia)

Many people abuse the terms and swap out components.

Naming convention

267

What are the two training
objectives of BERT?

268

<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
1. Predict the Masked word (a la CBOW)

15% of all input words are randomly masked.

• 80% become [MASK]

• 10% become revert back

• 10% become are deliberately corrupted
as wrong words

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03

269

<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
2. Two sentences are fed in at a time.
Predict the if the second sentence of
input truly follows the first one or not.

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03

270

BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

NOTE: BERT also embeds the inputs

by their WordPiece embeddings.

WordPiece is a sub-word tokenization

learns to merge and use characters

based on which pairs maximize the

likelihood of the training data if

added to the vocab.

271

Three ways to Attend

Encoder-Decoder Attention

Encoder Self-Attention

Decoder Masked Self-Attention

BERT (alternate view)

273

https://jalammar.github.io/illustrated-bert/

BERT (alternate view)

274

https://jalammar.github.io/illustrated-bert/

BERT’s inputs

275

https://arxiv.org/pdf/1810.04805.pdf

RECAP: L11

276
https://jalammar.github.io/illustrated-transformer/

BERT is easy to fine-tune on
any other classification task

• replace the top layer

• ensure your inputs are
tokenized the same way as
training, and no OOV
tokens

• usually best to allow the
original BERT weights to
adjust, too (don’t freeze)

Extensions

277

Transformer-Encoders

• BERT

• ALBERT (A Lite BERT …)

• RoBERTa (A Robustly Optimized BERT …)

• DistilBERT (small BERT)

• ELECTRA (Pre-training Text Encoders as Discriminators not Generators)

• Longformer (Long-Document Transformer)

Extensions

278

Autoregressive

• GPT (Generative Pre-training)

• CTRL (Conditional Transformer LM for Controllable Generation)

• Reformer

• XLNet

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

Generative pre-training

Lecture 12: GPT-2

Transformer

What if we want to generate a new output sequence?

GPT-2 model to the rescue!

Generative Pre-trained Transformer 2

280

Does GPT have an encoder,
decoder, both, or none?

281

GPT-2 (a Transformer)

GPT-2 uses only Transformer Decoders (no Encoders) to generate
new sequences from scratch or from a starting sequence

282
Image by http://jalammar.github.io/illustrated-gpt2/

How is masking performed?

283

GPT-2 (a Transformer)

• There is no Attention (since there is no Transformer Encoder to

attend to). So, there is only Self-Attention.

• As it processes each word/token, it masks the “future” words and

conditions on and attends to the previous words

284
Image by http://jalammar.github.io/illustrated-gpt2/

GPT-2 (a Transformer)

As it processes each word/token, it masks the “future” words and

conditions on and attends to the previous words

285
Image by http://jalammar.github.io/illustrated-gpt2/

GPT-2 (a Transformer)

286
Image by http://jalammar.github.io/illustrated-gpt2/

GPT-2 (a Transformer)

• Technically, it doesn’t use words as input but Byte Pair Encodings

(sub-words), similar to BERT’s WordPieces.

• Includes positional embeddings as part of the input, too.

• Easy to fine-tune on your own dataset (language)

287

GPT-2 (a Transformer)

288
Image by http://jalammar.github.io/illustrated-gpt2/

GPT-2’s Masked Attention

289
Image by http://jalammar.github.io/illustrated-gpt2/

For efficiency, we can still calculate all query-key calculations

with matrix multiplications, then mask before softmax’ing.

GPT-2’s Masked Attention

290
Image by http://jalammar.github.io/illustrated-gpt2/

For efficiency, we can still calculate all query-key calculations

with matrix multiplications, then mask before softmax’ing.

GPT-2’s Masked Attention

291
Image by http://jalammar.github.io/illustrated-gpt2/

For efficiency, we can still calculate all query-key calculations

with matrix multiplications, then mask before softmax’ing.

GPT-2’s

292
Image by http://jalammar.github.io/illustrated-gpt2/

Representations are propagated upwards through the network

GPT-2’s

293
Image by http://jalammar.github.io/illustrated-gpt2/

Self-attention is otherwise identical to what we saw in BERT

GPT-2’s

294
Image by http://jalammar.github.io/illustrated-gpt2/

Can have Multiple Self-Attention heads

GPT-2’s

295
Image by http://jalammar.github.io/illustrated-gpt2/

Each Self-Attention head is responsible for exactly 1 resulting,

output embedding

GPT-2’s

296
Image by http://jalammar.github.io/illustrated-gpt2/

Remember, these Masked Self-Attention layers are fed into a FFNN

GPT-2’s

297
Image by http://jalammar.github.io/illustrated-gpt2/

298
Image by http://jalammar.github.io/illustrated-gpt2/

Each Decoder block has its own weights (e.g., 𝑊Y,𝑊Z,𝑊[)

But the entire model only has 1 token-embedding weight matrix and
positional encoding weight matrix. This helps all the blocks to work
together and supplement their captured aspects

299

GPT-1

• Model: Transformer Decoders we just described

• Objective: next word prediction (cross-entropy loss)

• Data: BooksCorpus (7k books from a variety of genres,
such as Adventure, Fantasy, and Romance)

300https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

What insights did GPT-2
yield over GPT-1?

301

302

GPT-2 is identical to GPT-1, but:

• has Layer normalization in between each sub-block (as
we’ve already seen)

• Vocab extended to 50,257 tokens and context size
increased from 512 to 1024

• Data: 8 million docs from the web (Common Crawl),
minus Wikipedia

303

You can finagle the system to yield synthetic
predictions.

Children’s Book Test (CBT) is a classification task.
Fill-in-the-blank, and you predict which of the 10
possible choices is correct.

You can compute the probability of each choice +
its ending.

304

You can finagle the system to yield synthetic
predictions.

LAMBADA dataset tests model’s ability to
understand long-range dependencies.

Task: predict the final word of sentences which
humans need 50+ tokens of context in order to
accurately predict.

GPT-2 Results

305

306

You can finagle the system to yield synthetic
predictions.

Summarization. The add the text “TL;DR:” after an
article, then generate 100 tokens with top-2
random sampling, then extract the first 3
sentences.

307

GPT-2 Results

GPT-2 Results

308

GPT-2 Results

Easy to fine-tune on your own dataset (language)

SYSTEM PROMPT (HUMAN-WRITTEN)
A train carriage containing controlled nuclear materials was stolen in Cincinnati today. Its whereabouts
are unknown.

MODEL COMPLETION (MACHINE-WRITTEN, FIRST TRY)
The incident occurred on the downtown train line, which runs from Covington and Ashland stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the Federal
Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative consequences on public and
environmental health, our workforce and the economy of our nation,” said Tom Hicks, the U.S. Energy
Secretary, in a statement. “Our top priority is to secure the theft and ensure it doesn’t happen again.”
The stolen material was taken from the University of Cincinnati’s Research Triangle Park nuclear
research site, according to a news release from Department officials.
The Nuclear Regulatory Commission did not immediately release any information. 309

GPT-2 is:

• trained on 40GB of text data (8M webpages)!

• 1.5B parameters

GPT-3 is an even bigger version (175B parameters) of GPT-2, but

isn’t open-source

Yay, for transfer learning!

GPT-2 (a Transformer Decoder)

310

There are several issues to be aware of:

• It is very costly to train these large models. The companies who

develop these models easily spend an entire month training one

model, which uses incredible amounts of electricity.

• BERT alone is estimated to cost over $1M for their final models

Concerns

Source: https://arxiv.org/pdf/2004.08900.pdf
311

It is very costly to train these large models.

Concerns

Source: https://arxiv.org/pdf/2004.08900.pdf
312

Concerns

313

• Further, these very large language models have been shown to

be biased (e.g., in terms of gender, race, sex, etc).

• Converting from one language to another often converts gender

neutral pronouns to sexist stereotypes

• Using these powerful LMs comes with risks of producing such

text and/or evaluating/predicting tasks based on these biased

assumptions.

• People are researching how to improve this

Concerns

314

• As computer-generated text starts to become indistinguishable

from authentic, human-generated text, consider the ethical

impact of fraudulently claiming text to be from a particular

author.

• If used maliciously, it can easily contribute toward the problem of

Fake News

Concerns

315

Summary

• NLP is incredibly fun, with infinite number of problems to work on

• Neural models allow us to easily represent words as distributed

representations

• Input unique word (or sub-words) as tokens

• Recurrent models can be for capturing the sequential nature, but it puts

too much responsibility on the model to keep track of the entire

meaning and to pass it onwards

316

Summary

• Transformers allow for more complete, free access to everything

(unless masked) at once

• It’s very useful to pre-train a large unsupervised/self-supervised LM

then fine-tune on your particular task (replace the top layer, so that it

can work)

317

Outstanding Questions

• What is the model actually learning à probing tasks/interpretability

• biases exist within data & model. How can we improve this? à debiasing

• How can we make models faster, smaller, more robust? à distillation, robustness

• Can we better understand the sensitivity of models and protect against
vulnerabilities? à adversarial NLP

• How can we better handle low-resource/scarce/unlabelled data?

• How can we get better at complex tasks? (e.g., coreference resolution, tasks that
require commonsense reasoning and leveraging real-world knowledge)

• How can we get better at long-form documents, mixed-mediums? (e.g., tabular
data, images, structured text such as scientific papers)

318

