Lecture 18: Adversarial NLP

"If it's not broken ...", well, you're probably wrong. It's broken.

Harvard IACS

Chris Tanner

ADVERSARIAL NLP

ANNOUNCEMENTS

- HW4 is due tonight @ 11:59
- HW3 and Quiz 6 and Phase 3 are being graded
- **Research Project Phase 4** will be a soft-assessment

Many of today's slides are based on, inspired by, or directly from Jack Morris (Cornell Tech), Mohit Iyyer (UMass Amherst), Graham Neubig (CMU) Outline

Modern approaches

Outline

Classified as a 70 mph speed limit sign

Goodfellow et al., 2014

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe. Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe.

Does this count?

Could add random noise at the character level.

Input, *x*

"True Grit" was the best movie I've seen since I was a small boy.

Prediction: positive

Perturbation, x'

"True Grit" was the best **moive** I've seen **snice** I was a small boy.

Prediction: negative

Could add random noise at the character level.

Input, *x*

"True Grit" was the best movie I've seen since I was a small boy.

Prediction: positive

Perturbation, x'

"True Grit" was the best **moive** I've seen **snice** I was a small boy.

Prediction: negative

This is easy to defend against, right? How?

Input, *x*

Hi Enrique,

Did you get the photos that I sent from our hangout?

Prediction: not spam

Perturbation, x'

Hi Enrique,

Did u get the photoz that I sent from our hangout?

Prediction: spam

Could

- train an RNN to identify and correct typos
- use a spellchecker to auto-correct the input

Adversarial perturbations can be useful for augmenting training data

Pruthi et al., Combating Adversarial Misspellings with Robust Word Recognition (2019)

Could replace at the word level

Input, *x*

"True Grit" was the best movie I've seen since I was a <u>small boy</u>.

Prediction: positive

Perturbation, x'

"True Grit" was the best movie I've seen since I was a <u>tiny lad</u>.

Prediction: negative

Textual Entailment is the task of predicting whether, for a pair of sentences, the facts in the first sentence necessarily imply the facts in the second.

Premise

Two women are wandering along the shore drinking iced tea.

Hypothesis

Two women are sitting on a blanket near some rocks talking about politics.

It is **very likely** that the premise **contradicts** the hypothesis.

Premise

The dog ate all of the chickens

Hypothesis

chickens

It is **very likely** that the premise **entails** the hypothesis.

Judgement	Probal	bility
Entailment		98.6%
Contradiction		0.1%
Neutral		1.3%

Premise

The red box is in the blue box

Hypothesis

red is blue

It is very likely that the premise entails the hypothesis.

EMNLP 2017 had a "build-it-break-it" workshop that challenged humans to break existing systems by creating linguistic-based adversarial examples

"i.i.d. training data is unlikely to exhibit all the linguistic phenomena that we might see at testing time"

"NLP systems are quite brittle in the face of infrequent linguistic phenomena, a characteristic which stands in stark contrast to human language users"

How do we differentiate between an **adversarial attack** versus a model that is just bad?

An **adversarial attack** should slightly alter the input in a way that is **semantically equivalent to humans** but yields an incorrect, adverse change in the model's output

Let (x, y) be an input, output pair Let x' be an altered version of x, which yields output y'

A successful attack will minimize |x - x'| while maximizing |y - y'|, such that $|y - y'| > \tau$ or class(y) \neq class(y')

Outline

Outline

Introduction
 Paraphrasing
 Workshop time

Modern approaches

PROBLEM

How can we change text while preserving its meaning?

Word-level substitutions

(aka lexical adversaries)

- Embeddings: search for nearest-neighbors in the embedding space
- **Thesaurus**: look up the word in a thesaurus, WordNet, or PPDB
- Hybrid: search for nearest-neighbors in the counter-fitted embedding space (Mrkšić et al, 2016)

Paraphrasing

Word-level substitutions

		east	expensive	British
Counter-fitted embeddings		west	pricey	American
inject antonymy and		north	cheaper	Australian
inject antonymy and	Before	south	costly	Britain
synonymy constraints into		southeast	overpriced	European
Vester and as representations		northeast	inexpensive	England
vector space representations		eastward	costly	Brits
to help separate conceptual		eastern	pricy	London
· .• · ·	After	easterly	overpriced	BBC
association from semantic		-	pricey	UK
similarity		-	afford	Britain
	Table 1. Nearest neighbours for target words using CloV			

Table 1: Nearest neighbours for target words using GloVe vectors before and after counter-fitting

Word-level substitutions are difficult to craft (aka lexical adversaries)

- How we can determine if a word swap is "acceptable" or not?
- This can be approximated by, or includes, word sense disambiguation (WSD) and language modelling (LM)
- Thus, can't craft perfectly valid word substitutions all the time, but can do reasonably well

Sentence-level substitutions

(aka syntactic adversaries)

INPUT SENTENCE

MODEL PREDICTION

American drama doesn't get any more meaty and muscular than this.

Doesn't get any more meaty and muscular than this American drama.

positive

negative

How can we create these **syntactic adversaries** (aka sentence-level substitutions) automatically?

Sentence-level substitutions

(aka syntactic adversaries)

- Cosine similarity between sentence embeddings of x and x' (e.g., based on a Universal Sentence Encoder)
- Substitute many phrases (e.g., PPDB 2.0)
- Perform machine translation

Ideal syntactic paraphraser

- Produces grammatically-correct paraphrases the retain the meaning of the original sentence
- Minimizes the lexical differences between the input sentence x and paraphrase x'
- Generates many diverse syntactic paraphrases from the same input

Syntactic paraphrase generation

ORIGINAL

Usually you require inventory only when you plan to sell your assets

PARAPHRASES

- Usually, you required the inventory only if you were planning to sell the assets
- When you plan to sell your assets, you usually require inventory
- You need inventory when you plan to sell your assets
- Do the inventory when you plan to sell your assets

These are grammatical, preserve input semantics, have minimal lexical substitution, and high syntactic diversity

PARAPHRASES

- Usually, you required the inventory only if you were planning to sell the assets
- When you plan to sell your assets, you usually require inventory
- You need inventory when you plan to sell your assets
- Do the inventory when you plan to sell your assets

Long history of paraphrase work

- rule / template-based syntactic paraphrasing (e.g., McKeown, 1983; Carl et al., 2005)
 - high grammaticality, but very low diversity
- translation-based uncontrolled paraphrasing that rely on parallel text to apply machine translation methods (e.g., Bannard & Callison-Burch, 2005; Quirk et al., 2004)
 - high diversity, but low grammaticality and no syntactic control
- 3 deep learning-based controlled language generation with conditional encoder/decoder architectures (e.g., Ficler & Goldberg, 2017; Shen et al., 2017)
 - grammatical, but low diversity and no paraphrase constraint

M

1. Paraphrasing with descriptive syntactic transformations

- first experiment: rule-based labels
 - She drives home. She is driven home. active > passive
- Easy to write these rules, but low syntactic variance between the paraphrase pairs

2. Translation-based uncontrolled paraphrasing

isn't that more a topic for your priest ?

translate to Czech

není to více téma pro tvého kněze?

translate back to English

are you sure that's not a topic for you to discuss with your priest ?

BACK-TRANSLATION

backtranslate the CzEng parallel corpus (Bojar et al., 2016) using a state-of-the-art NMT system, which yields ~50 million paraphrase pairs

2. Translation-based uncontrolled paraphrasing

- Could use several intermediate languages for backtranslation
- There is no control over how wild these sentences may get
- Limited research on the diversity and quality, due to many moving parts (data available, metrics, required human annotation)

3. Translation-based controlled paraphrasing

Step 1: Generate back-translation sentences from original sentences

Step 2: Run parser (e.g., constituency parsing) on the back-translation

Step 3: Train a new model that generates new text, conditioned on the original sentence and the parsed back-translation

3. Translation-based controlled paraphrasing

s₁ isn't that more a topic for your priest ?

Step 1

are you sure that's not a topic for you to discuss with your priest ?

p₂

 S_2

p1

3. Translation-based <u>controlled</u> paraphrasing

3. Translation-based controlled paraphrasing

s₁ isn't that more a topic for your priest?

p₂

Step 3

 $s_2 \quad \begin{array}{l} \text{are you sure that's not a topic for you to} \\ \text{discuss with your priest ?} \end{array}$

Step 3 (SCPN system)

The man is standing in the water at the base of a waterfall The man, at the base of the waterfall, is standing in the water

parse encoder (fine-tuned BERT?)

Step 3 (SCPN system)

The man is standing in the water at the base of a waterfall The man, at the base of the waterfall, is standing in the water

MT

- Conditioning on the full target parse could be too rigorous and demanding
- Could "back-off" and use a pruned version of the parse

She drove home. (S (NP (PRP)) (VP (VBD) (NP (NN))) (.))

template: $S \rightarrow NP VP$.

MT

MT	3. Translation-based <u>controlled</u> paraphrasing		
		Template	Paraphrase
SCPN system		GOLD	you seem to be an excellent burglar when the time comes.
		(S (SBAR) (,) (NP) (VP))	when the time comes, you'll be a great thief.
		(S ('') (UCP) ('') (NP) (VP))	"you seem to be a great burglar, when the time comes", you said.
		(SQ (MD) (SBARQ))	can i get a good burglar when the time comes?
		(S (NP) (IN) (NP) (NP) (VP))	look at the time the thief comes.

Outline

Introduction
 Paraphrasing
 Workshop time
 Modern approaches

Outline

Workshop time

Modern approaches

WORKSHOP TIME!

- How would you analyze how vulnerable your model is to adversarial attacks?
- How would you defend against such?

Outline

Workshop time

Modern approaches

Outline

Modern approaches

The field is budding (aka Wild West)

- Automated methods for determining semantic preservation are really hacky
- No agreed-upon definition of NLP adversarial examples
- We tried to lay out a theoretical definition for adversarial examples
 - TLDR: there are different definitions, depending on use case some adversarial examples wrt semantics, some wrt edit distance...

Input, x: "Shall I compare thee to a summer's day?" – William Shakespeare, Sonnet XVIII			
Constraint	Perturbation, x_{adv}	Explanation	
Semantics	Shall I compare thee to a winter's day?	\mathbf{x}_{adv} has a different meaning than \mathbf{x} .	
Grammaticality	Shall I compares thee to a summer's day?	\mathbf{x}_{adv} is less grammatically correct than \mathbf{x} .	
Edit Distance	Shall i conpp\$haaare thee to a 5umm3r's day?	x and x_{adv} have a large edit distance.	
Non-suspicion	Am I gonna compare thee to a summer's day?	A human reader may suspect this sentence to have been modified. ¹	

¹ Shakespeare never used the word "gonna". Its first recorded usage wasn't until 1806, and it didn't become popular until the 20th century. Table 1: Adversarial Constraints and Violations. For each of the four proposed constraints, we show an example for which violates the specified constraint.

The field is budding (aka Wild West)

Did human studies on a lot of generated adversarial examples from two NLP attacks

- original human studies said: these adversarial examples don't really preserve meaning, or grammar
- and if we increase the threshold so that meaning is preserved, attack success rate drops a lot

Morris et al., Reevaluating Adversarial Examples in Natural Language (2020)

Slide based on, inspired by, or directly from Jack Morris

Examples of poor adversarial perturbations

Input, x:

"True Grit" was the **best movie** I've seen since I was a small boy.

Prediction: **Positive √**

Perturbation, \mathbf{x}_{adv} :

"True Grit" was the **worst film** I've seen since I was a small boy.

"True Grit" was the best movie I've seen since I **were boy small**.

"True Grit" was the best movie I've seen since I was a **miniscule youngster**.

Morris et al., Reevaluating Adversarial Examples in Natural Language (2020)

Slide based on, inspired by, or directly from Jack Morris

Examples of poor adversarial perturbations

Morris et al., Reevaluating Adversarial Examples in Natural Language (2020)

Slide based on, inspired by, or directly from Jack Morris

Prediction: Negative X

Trends within adversarial literature

1. Attacks take the same overall approach, but modify one or two things

- ex: use a greedy search instead of genetic algorithm
- ex: use BERT word substitution instead of a thesaurus
- 2. Attacks compare success rates to each other but don't share code or models
- minor implementation difference can make a massive impact on attack success rate

Overview

- A framework for Adversarial Attacks, Data Augmentation, and Adversarial Training
- Attacks consists of 4 main components

TextAttack

Overview

 A task-specific goal function that determines whether the attack is successful in terms of the model outputs.

Examples: untargeted classification, targeted classification, non-overlapping output, minimum BLEU score.

 A transformation that, given an input, generates a set of potential perturbations.
 Examples: word embedding word swap, thesaurus word swap, homoglyph character substitution. 2. A set of **constraints** that determine if a perturbation is valid with respect to the original input.

Examples: maximum word embedding distance, part-of-speech consistency, grammar checker, minimum sentence encoding cosine similarity.

4. A search method that successively queries the model and selects promising perturbations from a set of transformations.
Examples: greedy with word importance ranking, beam search, genetic algorithm.

TextAttack Example

Is BERT Really Robust? (Jin, 2019)

Algorithm 1 Adversarial Attack by TEXTFOOLER

Input: Sentence example $X = \{w_1, w_2,, w_n\}$, the corresponding ground truth label Y, target model F, sentence similarity function $Sim(\cdot)$, sentence similarity threshold ϵ , word embed-
dings Emb over the vocabulary Vocab.
Output: Adversarial example X_{adv}
1: Initialization: $X_{adv} \leftarrow X$
2: for each word w_i in X do
3: Compute the importance score I_{w_i} via Eq. (2)
4: end for
5:
6: Create a set W of all words $w_i \in X$ sorted by the descending
order of their importance score I_{mi} .
7: Filter out the stop words in W.
8: for each word w_i in W do
9: Initiate the set of candidates CANDIDATES by extracting
the top N synonyms using $CosSim(Emb_{max}, Emb_{max})$ for
each word in Vocab
10: CANDIDATES \leftarrow POSFilter(CANDIDATES)
11: FINCANDIDATES \leftarrow {}
12: for ch in CANDIDATES do
13: $X' \leftarrow \text{Replace } w_i \text{ with } c_i \text{ in } X_{rdw}$
14: if $Sim(X', X_{rdw}) > \epsilon$ then
15: Add ct to the set FINCANDIDATES
16: $Y_{k} \leftarrow F(X')$
17: $P_{k} \leftarrow F_{Y}(X')$
18: end if
19: end for
20: if there exists c ₁ whose prediction result $Y_1 \neq Y$ then
21: In FINCANDIDATES only keep the candidates c_k whose
prediction result $Y_k \neq Y$
22: $c^* \leftarrow \operatorname{argmax} \operatorname{Sim}(X, X'_{-},)$
$c \in FinCandidates$
23: $X_{adv} \leftarrow \text{Replace } w_j \text{ with } c^* \text{ in } X_{adv}$
24: return X_{adv}
25: else if $P_{Y_k}(X_{adv}) > \min_{c_k \in FinCandidates} P_k$ then
26: $c^* \leftarrow \operatorname{argmin} P_k$
ck∈FinCandidates
27: $X_{adv} \leftarrow \text{Replace } w_j \text{ with } c^* \text{ in } X_{adv}$
28: end if
29: end for
30: return None

Morris et al., TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Adversarial Training in NLP (2020)

TextAttack Example

Is BERT Really Robust? (Jin, 2019)

	for each word w_i in X do	
3:	Compute the importance score $I_{w_{i}}$ via Eq. (2)	
-4:	end for	
5:		
6:	Create a set W of all words $w_i \in X$ sorted by the descending	
	order of their importance score I_{w_i} .	
7:	Filter out the stop words in W .	
8:	for each word w_i in W do	
9:	Initiate the set of candidates CANDIDATES by extracting	
	the top N synonyms using $CosSim(Emb_{w_i}, Emb_{word})$ for	
	each word in Vocab.	
10:	CANDIDATES \leftarrow POSFilter(CANDIDATES)	
11:	FINCANDIDATES $\leftarrow \{ \}$	
12:	for c_k in CANDIDATES do	
13:	$X' \leftarrow \text{Replace } w_{\beta} \text{ with } c_{\mathbb{P}} \text{ in } X_{\text{adv}}$	
14:	if $Sim(X', X_{adv}) > \epsilon$ then	
15:	Add c_k to the set FINCANDIDATES	
16:	$Y_k \leftarrow F(X')$	
17:	$P_k \leftarrow F_{Y_k}(X')$	
18:	end if	
19:	end for	
20:	if there exists c_k whose prediction result $Y_k \neq Y$ then	
21:	In FINCANDIDATES, only keep the candidates c_k whose	
	prediction result $Y_k \neq Y$	
22:	$c^* \leftarrow \operatorname{argmax} \operatorname{Sim}(X, X'_{w, \to c})$	
	c∈FinCandidates	
23:	$X_{adv} \leftarrow \text{Replace } w_j \text{ with } c^* \text{ in } X_{adv}$	
24:	return X_{adv}	
	else if $P_{Y_k}(X_{adv}) > \min_{c_k \in FINCANDIDATES} P_k$ then	

Search method: Greedy with "Word Importance Ranking"

Transformation: Counter-fitted embedding word swap

Constraint #1: Word embedding cosine similarity

Constraint #2: Word part-of-speech consistency

Constraint #1: Sentence embedding cosine similarity

Goal function: Untargeted classification

Better practices

Beyond Accuracy: Behavioral Testing of NLP Models with CHECKLIST

Marco Tulio Ribeiro1Tongshuang Wu2Carlos Guestrin2Sameer Singh31Microsoft Research2University of Washington3University of California, Irvinemarcotcr@gmail.com{wtshuang,guestrin}@cs.uw.edusameer@uci.edu

- Motivation: <u>dev accuracy</u> is very short-sighted and tends to over-estimate performance
- This paper is inspired by principles of behavioral testing in software engineering
- New evaluation methodology and accompanying tool for comprehensive behavioral testing of NLP models
 - Guides users in what to test, by providing a list of linguistic capabilities, which are applicable to most tasks.

- Adversarial NLP is relatively new and still forming as a field
- Touches on software testing, data augmentation, robustness, learning theory, etc
- All systems can break; it's highly informative to be aware of this and understand how your model breaks
- One may want to analyze, defend, or attack.