Lecture 11: BERT

The Power of Transformer Encoders

Harvard AC295/CS287r/CSCI E-115B Chris Tanner

Bert, have you seen my waste=paper basket?

Ask me that again and look into my eyes.

ANNOUNCEMENTS

- HW3 has been released! Due Oct 19 (Tues) @ 11:59pm.
- Research Project Selection (Google Form) is now closed.
 - We're making selections now!
- Read "Man is to Computer Programmer as Woman is to Homemaker? Debiasing

Word Embeddings" before Oct 14 (Thurs)

Outline

Transformer Decoder

Outline

The <u>original Transformer</u> model was intended for Machine Translation, so it had Decoders, too

Three ways to Attend

Encoder-Decoder Attention

Encoder Self-Attention

Decoder Masked Self-Attention

https://jalammar.github.io/illustrated-transformer/

Decoding time step: 1 2 3 4 5 6

OUTPUT

https://jalammar.github.io/illustrated-transformer/

Figure 1: The Transformer - model architecture.

Attention is All you Need (2017) https://arxiv.org/pdf/1706.03762.pdf

Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs

Layer Type	Complexity per Layer	Sequential	Maximum Path Length
		Operations	
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

n = sequence length

d = length of representation (vector)

Q: Is the complexity of self-attention good?

Layer Type	Complexity per Layer	Sequential	Maximum Path Length					
		Operations						
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)					
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)					
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$					
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)					

Important: when learning dependencies b/w words, you don't want long paths. Shorter is better.

Self-attention connects all positions with a constant # of sequentially executed operations, whereas RNNs require O(n).

Layer Type	Complexity per Layer	Sequential	Maximum Path Length					
		Operations						
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)					
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)					
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$					
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)					

Machine Translation results: state-of-the-art (at the time)

Madal	BL	EU	Training Cost (FLOPs)					
Model	EN-DE	EN-FR	EN-DE	EN-FR				
ByteNet [18]	23.75							
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$				
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$				
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$				
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$				
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$				
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$				
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$				
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$					
Transformer (big)	28.4	41.8	$2.3 \cdot$	10^{19}				

Machine Translation results: state-of-the-art (at the time)

You can <u>train</u> to translate from Language A to Language B.

Then train it to translate from Language B. to Language C.

<u>Then, without training</u>, it can translate from Language A to Language C

• What if we don't want to decode/translate?

Just want to perform a particular task (e.g., classification)

• Want even more robust, flexible, rich representation!

• Want to explicitly capture fluency, somehow.

Outline

Outline

Transformer Decoder

Everything we've discussed so far

GOALS/TASKS:

- Learn distributed representations
 - word2vec (type-based word embeddings)
 - RNNs/LSTMs (token-based contextualized)
- Machine Translation
- Text classification

MODELS:

- n-gram (not neural)
- RNNs/LSTMs
- seq2seq
- Transformer Encoder/Decoder

Everything we've discussed so far

GO/ Aside from text classification (e.g., IMDb sentiments), we've
only worked with unlabelled, naturally occurring data so far.
There's a vast ocean of interesting tasks that require labelled
M data, and we often perform <u>different types of learning</u> in der
Te order to better leverage our *limited* labelled data.

Types of Data

UNLABELLED

- Raw text (e.g., web pages)
- Parallel corpora (e.g., for translations)

LABELLED

- Linear/unstructured
 - N-to-1 (e.g., sentiment analysis)
 - N-to-N (e.g., POS tagging)
 - N-to-M (e.g., summarization)
- Structured
 - Dependency parse trees
 - Constituency parse trees
 - Semantic Role Labelling

Types of Data

UNLABELLED

We most often about this type of data

LABELLED

- Linear/unstructured
 - N-to-1 (e.g., sentiment analysis)
 - N-to-N (e.g., POS tagging)
 - N-to-M (e.g., summarization)
- Structured
 - Dependency parse trees
 - Constituency parse trees
 - Semantic Role Labelling

Labelled data is a scarce commodity.

How can we get more of it?

How can we leverage more plentiful, other data (either labelled or unlabelled) so as to make better use of our limited labelled data?

One axis that refers to our <u>style of</u> <u>using/learning</u> our data:

Multi-task Learning

Transfer Learning

Pre-training

One axis that hinges upon the <u>type of</u> <u>data</u> we have: Supervised Learning Unsupervised Learning Self-supervised Learning Semi-supervised Learning One axis that refers to our <u>style of</u> <u>using/learning</u> our data:

Multi-task Learning = general term for training on multiple tasks Transfer Learning = type of multi-task learning where we only care about one of the tasks

Pre-training = type of transfer learning where we first focus on one objective

See chalkboard for example

Multi-task heuristics

- Ideally, your tasks should be closely related (e.g., constituency parsing and dependency parsing)
- Multi-task learning may help improve the task that has limited data
 - General domain \rightarrow specific domain (e.g., all of the web's text -> law text)
 - High-resourced language → low-resourced language (e.g., English -> Igbo)
 - Unlabelled text → labelled text (e.g., language model -> named entity recognition)

Outline

Transformer Decoder

Outline

Transformer Decoder

Like Bidirectional LSTMs, let's look in both directions

Let's only use Transformer *Encoders*, no Decoders

It's a language model that builds rich representations

Many deep learning models, including pre-trained ones with cute names (e.g., ELMo, BERT, ALBERT, GPT-3), refer to an exact combination of:

- The model's architecture
- The training objective to pre-train (e.g., MLM prediction)
- The data (e.g., Google BooksCorpus, Wikipedia)

Many people abuse the terms and swap out components.

BERT

BERT:

- Model: several Transformer Encoders. Input sentence or sentence pairs, [CLS] token, subword embeddings
- Objective: MLM and next-sentence prediction
- Data: BooksCorpus and Wikipedia

BERT

BERT has 2 training objectives:

1. Predict the **Masked word** (a la CBOW)

15% of all input words are randomly masked.

- 80% become [MASK]
- 10% become revert back
- 10% become are deliberately corrupted as wrong words

isNext 0.98

notNext 0.02

BERT has 2 training objectives:

BERT Encoder #6 Encoder #2 Encoder #1 ran [...] [SEP] Fido came home [SEP] dog The brown <CLS> X₄ X_1 X_2 X₃

2. Two sentences are fed in at a time. Predict the if the <u>second sentence</u> of input truly follows the <u>first</u> one or not.

https://jalammar.github.io/illustrated-bert/

BERT (alternate view)

0.1% Aardvark Use the output of the Possible classes: masked word's position All English words 10% Improvisation to predict the masked word 0% Zyzzyva FFNN + Softmax ... 512 2 3 5 8 6 BERT Randomly mask ... 512 5 8 15% of tokens stick to [MASK] this skit Let's in [CLS] Input skit stick this to improvisation in [CLS] Let's

BERT's clever language modeling task masks 15% of words in the input and asks the model to predict the missing word.

BERT

The two sentences are separated by a **<SEP>** token.

50% of the time, the 2nd sentence is a randomly selected sentence from the corpus.

50% of the time, it truly follows the first sentence in the corpus.

BERT

NOTE: BERT also embeds the inputs by their **WordPiece** embeddings.

WordPiece is a <u>sub-word tokenization</u> learns to merge and use characters based on which pairs maximize the likelihood of the training data if added to the vocab.

BERT's inputs

Input	[CLS]	my	dog	is	cute	[SEP]	he	likes	play	##ing	[SEP]
Token Embeddings	E _[CLS]	E _{my}	E _{dog}	E _{is}	E _{cute}	E _[SEP]	E _{he}	Elikes	E _{play}	E _{##ing}	E _[SEP]
Compat	+	+	+	+	+	+	+	+	+	+	+
Embeddings	EA	EA	EA	EA	EA	EA	E _B	EB	E _B	E _B	EB
	+	+	+	+	+	+	+	+	+	+	+
Position Embeddings	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings. Outline

Transformer Decoder

Outline

Transformer Decoder

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating questions/answers).

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER BERT

Or, one could extract the contextualized embeddings

BERT

Later layers have the best contextualized embeddings

Dev F1 Score

Picture: https://jalammar.github.io/illustrated-bert/

BERT yields <u>state-of-the-art</u> (SOTA) results on many tasks

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).

Takeaway BERT is incredible for learning contextualized embeddings of words and using transfer learning for other tasks (e.g., classification).

Can't generate new sentences though, due to no decoders.

The brown dog ran

 $\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \mathbf{x}_3$

Outline

Transformer Decoder

Outline

Transformer Decoder

Transformer-Encoders

- BERT
- ALBERT (A Lite BERT ...)
- RoBERTa (A Robustly Optimized BERT ...)
- DistilBERT (small BERT)
- ELECTRA (Pre-training Text Encoders as Discriminators not Generators)
- Longformer (Long-Document Transformer)

Autoregressive

- GPT (Generative Pre-training)
- CTRL (Conditional Transformer LM for Controllable Generation)
- Reformer
- XLNet

ICPC

The last International Collegiate Programming Contest has hosted over 60,000 students from 3,514 universities in 115 countries that span the globe. October 5 more than 100 teams will compete in logic, mental speed, and strategic thinking at Russia's main Manege Central Conference Hall.

RANK	K TEAM S	SCORE	Α	В	С	D	E	F	G	Η	Ι	J	K	L	M	N	0
1	Northern Eurasia) Nizhny Novgorod State University	2 1714	172 1 try	123 2 tries	99 3 tries	28 2 tries	36 1 try	109 2 tries	76 1 try	287 2 tries	227 3 tries	60 1 try		36 tries	152 3 tries		65 5 tries
2	(Asia Pacific) Seoul National University	1 1068	85 2 tries	143 2 tries	72 4 tries	17 1 try	31 1 try	31 2 tries	49 1 try	16 tries	217 1 try	76 1 try	1 try		185 2 tries		22 1 try
3	St. Petersburg ITMO University	1 1174	70 3 tries	215 2 tries	59 2 tries	68 2 tries	37 1 try	116 1 try	66 1 try	11 tries	187 1 try	102 1 try		11 tries	117 1 try	1 try	37 1 try
4	Moscow Institute of Physics and Technology 12	1 1664	31 1 try	204 1 try	203 3 tries	110 1 try	48 1 try	214 3 tries	80 2 tries	3 tries	262 1 try	99 1 try			184 2 tries		69 3 tries
5	Europe University of Wroclaw 1	1 1772	122 1 try	193 4 tries	187 7 tries	60 2 tries	47 1 try	222 1 try	18 1 try	7 tries	255 2 tries	86 2 tries			173 2 tries		109 3 tries
6	University of Cambridge 1	1 1905	27 1 try	295 5 tries	221 3 tries	65 1 try	55 1 try	202 6 tries	124 1 try		251 1 try	173 2 tries			85 4 tries		87 2 tries
7	Belarusian State University 1	1 1912	279 2 tries	245 1 try	158 5 tries	91 3 tries	30 1 try	149 1 try	41 1 try		274 3 tries	109 1 try			204 1 try		152 1 try
8	University of Bucharest	0 1077	153 1 try	200 3 tries	39 1 try	13 3 tries	33 1 try	74 1 try	45 1 try		5 tries	240 3 tries			123 2 tries		17 1 try
9	North America Massachusetts Institute of Technology	0 1220	106 1 try	8 tries	244 7 tries	83 4 tries	14 1 try	71 2 tries	25 1 try		272 1 try	26 1 try			94 4 tries	2 tries	25 1 try
10	Kharkiv National University of Radio Electronics	0 1504	71 2 tries	237 1 try	142 2 tries	39 2 tries	21 1 try	293 1 try	91 3 tries			148 1 try			285 1 try		77 1 try
11	University of Illinois at Urbana-Champaign	0 1837	247 2 tries	280 1 try	50 1 try	72 1 try	77 1 try	271 3 tries	147 4 tries			133 1 try			208 4 tries		112 4 tries
12	National Research University Higher School of Economics	9 1348	262 1 try	1 try	142 2 tries	54 1 try	50 1 try	61 1 try	176 5 tries			185 1 try			257 2 tries		41 1 try
13	St. Petersburg State University	9 1530	158 1 try	239 2 tries	10 tries	17 1 try	31 1 try		195 5 tries		295 5 tries	94 1 try			207 1 try		74 3 tries
14	University of Warsaw	9 1653	191 2 tries		74 2 tries	39 1 try	30 1 try	286 7 tries	48 1 try			274 4 tries			268 2 tries		143 4 tries
15	Utrecht - Leiden University	9 1747	197 1 try		269 6 tries	144 1 try	46 1 try	249 1 try	97 2 tries			119 1 try			297 3 tries		129 3 tries
16	Harvard University	9 1756	182 2 tries		136 3 tries	128 1 try	22 1 try	243 1 try	35 1 try		7 tries	219 3 tries				296 16 tries	55 3 tries
17	University of Central Florida	8 1091	235 1 try	8 tries	147 3 tries	144 3 tries	27 1 try	159 2 tries	69 1 try			153 1 try					37 2 tries
18	National Taiwan University 8	8 1106	131 3 tries		49 1 try	61 2 tries	36 1 try	13 tries	174 4 tries			209 2 tries			182 2 tries		64 3 tries
		1															_

