Lecture 10: Transformers

From Self-Attention to Transformers

Harvard AC295/CS287r/CSCI E-115B Chris Tanner

WHERE ARE THE BANANAS BERT?

I'M ON THE PHONE ERN.

ANNOUNCEMENTS

- HW1 is graded (few remaining). <u>Solutions are posted</u> on Canvas -> Files
- HW2 is due tonight @ 11:59pm!
- HW3 will be released tonight @ 11:59pm! The shortest assignment yet.
- Candidate Research Projects have been announced.
 - Read them on `Research Brainstorming` spreadsheet.
 - Indicate your preferences on the Google Form (see Ed post) by Wed 11:59pm
 - Tonight @ 8pm, Zoom will be open for anyone who wishes to discuss projects

RESEARCH PROJECTS

- Phase II is due Oct 14 @ 11:59pm. See website for full expectations.
- Abstract + Related Works + Introduction (this will improve over time).

Outline

Outline

Self-Attention

Step 1: Our Self-Attention Head I has just 3 weight matrices W_q, W_k, W_v in total. These same 3 weight matrices are multiplied by each x_i to create all vectors:

 $q_i = w_q x_i$ $k_i = w_k x_i$ $v_i = w_v x_i$

Under the hood, each x_i has 3 small, associated vectors. For example, x_1 has:

- Query **q**₁
- Key **k**₁
- Value **v**₁

Step 2: For word x_2 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" v_i

Step 2: For word x_2 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" v_i

Step 2: For word x_2 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" v_i

 $s_3 = q_2 \cdot k_3 = 22$ $s_2 = q_2 \cdot k_2 = 124$ $s_1 = q_2 \cdot k_1 = 92$ \mathbf{q}_2 \mathbf{k}_2 \mathbf{v}_2 k₃ v₃ **V**1 q₃ k₁ k₄ v₄ **q**₄ **q**₁ brown dog The ran **X**₂ **X**₄ **X**₃ **X**₁

Step 2: For word x_2 , let's calculate the scores s_1 , s_2 , s_3 , s_4 , which represent how much attention to pay to each respective "word" v_i

 $s_4 = q_2 \cdot k_4 = 8$ $s_3 = q_2 \cdot k_3 = 22$ $s_2 = q_2 \cdot k_2 = 124$

 $s_1 = q_2 \cdot k_1 = 92$

Step 3: Our scores s_1 , s_2 , s_3 , s_4 don't sum to 1. Let's divide by $\sqrt{len(k_i)}$ and softmax it

V۸

$\mathbf{s}_4 = \mathbf{q}_2 \cdot \mathbf{k}_4 =$	8 a ₄ = c	$\sigma(s_4/8) = 0$	
$s_3 = q_2 \cdot k_3 =$	22 a ₃ = a	$\sigma(s_3/8) = .01$	
$\mathbf{s}_2 = \mathbf{q}_2 \cdot \mathbf{k}_2 =$	124 a ₂ = a	$\sigma(s_2/8) = .91$	
$\mathbf{s}_1 = \mathbf{q}_2 \cdot \mathbf{k}_1 =$	92 a ₁ = a	$\sigma(s_1/8) = .08$	
	$V_1 \qquad \qquad$	v ₂ Q ₃ k ₃ v ₃	q ₄ k ₄
The	brown	dog	ran
x ₁	x ₂	X 3	X ₄

Step 3: Our scores s_1 , s_2 , s_3 , s_4 don't sum to 1. Let's divide by $\sqrt{len(k_i)}$ and softmax it

$$s_4 = q_2 \cdot k_4 = 8$$
 $a_4 = \sigma(s_4/8) = 0$

 $s_3 = q_2 \cdot k_3 = 22$ $a_3 = \sigma(s_3/8) = .01$

 $s_1 = q_2 \cdot k_1 = 92$

$$s_2 = q_2 \cdot k_2 = 124$$
 $a_2 = \sigma(s_2/8) = .91$

Instead of these a_i values directly weighting our original x_i word vectors, they directly weight our v_i vectors.

 $a_1 = \sigma(s_1/8) = .08$

Step 4: Let's weight our v_i vectors and simply sum them up!

Tada! Now we have great, new representations **z**_i via a self-attention head

Self-Attention is powerful; allows us to create great, context-aware

brown

 $q_1 k_1 v_1$

The

representations

dog

ran

Self-Attention may seem strikingly like Attention in seq2seq models

Q: What are the key, query, value vectors in the Attention setup?

$\mathbf{s_4} = \mathbf{h_1^D} * \mathbf{h_4^E}$	$a_4 = \sigma(s_4)$
$\mathbf{s}_3 = \mathbf{h}_1^D * \mathbf{h}_3^E$	$a_3 = \sigma(s_3)$
$\mathbf{s}_2 = \mathbf{h}_1^D * \mathbf{h}_2^E$	$a_2 = \sigma(s_2)$
$\mathbf{s}_1 = \mathbf{h}_1^D * \mathbf{h}_1^E$	$a_1 = \sigma(s_1)$

Attention

$\mathbf{s_4} = \mathbf{h_1^D} * \mathbf{h_4^E}$	$a_4 = \sigma(s_4)$
$\mathbf{s}_3 = \mathbf{h}_1^D * \mathbf{h}_3^E$	$a_3 = \sigma(s_3)$
$\mathbf{s}_2 = \mathbf{h}_1^D * \mathbf{h}_2^E$	$a_2 = \sigma(s_2)$
$\mathbf{s}_1 = \mathbf{h}_1^D * \mathbf{h}_1^E$	$a_1 = \sigma(s_1)$

We multiply each encoder's hidden layer by its a_i^1 attention weights to create a context vector c_1^D

Attention

$\mathbf{s_4} = h_1^D * h_4^E$	$a_4 = \sigma(s_4)$
$\mathbf{s}_3 = \mathbf{h}_1^D * \mathbf{h}_3^E$	$a_3 = \sigma(s_3)$
$\mathbf{s}_2 = \mathbf{h}_1^D * \mathbf{h}_2^E$	$a_2 = \sigma(s_2)$
$\mathbf{s}_1 = \mathbf{h}_1^D * \mathbf{h}_1^E$	$a_1 = \sigma(s_1)$

We multiply each encoder's hidden layer by its a_i^1 attention weights to create a context vector c_1^D

 $c_1^D = a_1 \cdot h_1^E + a_2 \cdot h_2^E + a_3 \cdot h_3^E + a_4 \cdot h_4^E$

Attention

$s_4 = q_2 \cdot k_4$	$a_4 = \sigma(s_4/8)$
$\mathbf{s}_3 = \mathbf{q}_2 \cdot \mathbf{k}_3$	$a_3 = \sigma(s_3/8)$
$s_2 = q_2 \cdot k_2$	$a_2 = \sigma(s_2/8)$
$\mathbf{s}_1 = \mathbf{q}_2 \cdot \mathbf{k}_1$	$a_1 = \sigma(s_1/8)$

We multiply each word's value vector by its a_i^1 attention weights to create a better vector z_1

 $z_1 = \mathbf{a_1} \cdot \mathbf{v_1}^{\mathsf{E}} + \mathbf{a_2} \cdot \mathbf{v_2}^{\mathsf{E}} + \mathbf{a_3} \cdot \mathbf{v_3}^{\mathsf{E}} + \mathbf{a_4} \cdot \mathbf{v_4}^{\mathsf{E}}$

Self-Attention

Outline

Self-Attention

Outline

Let's further pass each \boldsymbol{z}_i through a FFNN

Self-Attention + FFNN

Let's further pass each \boldsymbol{z}_i through a FFNN

Self-Attention + FFNN

Let's further pass each \boldsymbol{z}_i through a FFNN

We concat w/ a residual connection to help ensure relevant info is getting forward passed.

We perform LayerNorm to stabilize the network and allow for proper gradient flow. You should do this after the FFNN, too.

Self-Attention + FFNN

Let's further pass each \mathbf{z}_i through a FFNN

We concat w/ a residual connection to help ensure relevant info is getting forward passed.

We perform LayerNorm to stabilize the network and allow for proper gradient flow. You should do this after the FFNN, too.

Each **z**_i can be computed in **parallel**, unlike LSTMs!

Yay! Our r_i vectors are our new representations, and this entire process is called a **Transformer Encoder**

Yay! Our r_i vectors are our new representations, and this entire process is called a **Transformer Encoder**

Problem: there is no concept of <u>positionality</u>. Words are weighted as if a "bag of words"

Yay! Our r_i vectors are our new representations, and this entire process is called a **Transformer Encoder**

Problem: there is no concept of <u>positionality</u>. Words are weighted as if a "bag of words"

Solution: add to each input word x_i a positional encoding $\sim sin(i) cos(i)$

Position Encodings

https://jalammar.github.io/illustrated-transformer/

A Self-Attention Head has just one set of query/key/value weight matrices w_q, w_k, w_v

Words can relate in many ways, so it's restrictive to rely on just one Self-Attention Head in the system.

Let's create Multi-headed Self-Attention

Each Self-Attention Head produces a z_i vector.

We can, in parallel, use multiple heads and concat the z_i's.

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding r_i of each word x_i

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding r_i of each word x_i

Why stop with just 1 Transformer Encoder? We could stack several!

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding r_i of each word x_i

Why stop with just 1 Transformer Encoder? We could stack several!

The <u>original Transformer</u> model was intended for Machine Translation, so it had Decoders, too

Outline

Outline

Transformer Decoder

Transformer Encoders produce <mark>contextualized</mark> embeddings of each word

Transformer Decoders generate new sequences of text

NOTE

Transformer Decoders are identical to the Encoders, except they have an additional Attention Head in between the <u>Self-</u> <u>Attention</u> and <u>FFNN</u> layers.

This additional Attention Head focuses on parts of the encoder's representations.

NOTE

The **query** vector for a Transformer Decoder's Attention Head (not Self-Attention Head) is from the output of the <u>previous</u> <u>decoder layer</u>.

However, the **key** and **value** vectors are from the **Transformer Encoders**' outputs.

NOTE

The query, key, and value vectors for a Transformer Decoder's Self-Attention Head (not Attention Head) are all from the output of the previous decoder layer.

IMPORTANT

The Transformer Decoders have positional embeddings, too, just like the Encoders.

Critically, each position is only allowed to attend to the previous indices. This *masked* Attention preserves it as being an auto-regressive LM.

https://jalammar.github.io/illustrated-transformer/

Decoding time step: 1 2 3 4 5 6

OUTPUT

https://jalammar.github.io/illustrated-transformer/

Figure 1: The Transformer - model architecture.

Attention is All you Need (2017) https://arxiv.org/pdf/1706.03762.pdf

Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

n = sequence length

d = length of representation (vector)

Q: Is the complexity of self-attention good?

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Important: when learning dependencies b/w words, you don't want long paths. Shorter is better.

Self-attention connects all positions with a constant # of sequentially executed operations, whereas RNNs require O(n).

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Machine Translation results: state-of-the-art (at the time)

Model	BL	EU	Training Co	Training Cost (FLOPs)		
Niddel	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [18]	23.75			50 		
Deep-Att + PosUnk [39]		39.2		$1.0\cdot 10^{20}$		
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot10^{20}$		
ConvS2S [9]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot 10^{20}$		
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot10^{20}$		
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot10^{21}$		
Transformer (base model)	27.3	38.1	3.3 ·	10 ¹⁸		
Transformer (big)	28.4	41.8	$2.3\cdot 10^{19}$			

Machine Translation results: state-of-the-art (at the time)

You can <u>train</u> to translate from Language A to Language B.

Then train it to translate from Language B. to Language C.

<u>Then, without training</u>, it can translate from Language A to Language C

• What if we don't want to decode/translate?

Just want to perform a particular task (e.g., classification)

• Want even more robust, flexible, rich representation!

• Want positionality to play a more explicit role, while not being restricted to a particular form (e.g., CNNs)

Outline

Transformer Decoder

Outline

Like Bidirectional LSTMs, let's look in both directions

Let's only use Transformer *Encoders*, no Decoders

It's a language model that builds rich representations

BERT has 2 training objectives:

1. Predict the **Masked word** (a la CBOW)

15% of all input words are randomly masked.

- 80% become [MASK]
- 10% become revert back
- 10% become are deliberately corrupted as wrong words

BERT has 2 training objectives:

2. Two sentences are fed in at a time. Predict the if the <u>second sentence</u> of input truly follows the <u>first</u> one or not.

Every two sentences are separated by a **<SEP>** token.

50% of the time, the 2nd sentence is a randomly selected sentence from the corpus.

50% of the time, it truly follows the first sentence in the corpus.

NOTE: BERT also embeds the inputs by their **WordPiece** embeddings.

WordPiece is a <u>sub-word tokenization</u> learns to merge and use characters based on which pairs maximize the likelihood of the training data if added to the vocab.

One could extract the contextualized embeddings

Later layers have the best contextualized embeddings

Dev F1 Score

Picture: https://jalammar.github.io/illustrated-bert/

BERT yields <u>state-of-the-art</u> (SOTA) results on many tasks

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).

Takeaway BERT is incredible for learning contextualized embeddings of words and using transfer learning for other tasks (e.g., classification).

Can't generate new sentences though, due to no decoders.

The brown dog ran