Lecture 10: Transformers

From Self-Attention to Transformers

Harvard
AC295/CS287r/CSCI E-115B

Chris Tanner

WHLRE ARE THE BANANAS BERTE

\square
\square
\square

ANNOUNCEMENTS

- HW1 is graded (few remaining). Solutions are posted on Canvas -> Files
- HW2 is due tonight @ 11:59pm!
- HW3 will be released tonight @ 11:59pm! The shortest assignment yet.
- Candidate Research Projects have been announced.
- Read them on `Research Brainstorming` spreadsheet.
- Indicate your preferences on the Google Form (see Ed post) by Wed 11:59pm
- Tonight @ 8pm, Zoom will be open for anyone who wishes to discuss projects

RESEARCH PROJECTS

- Phase II is due Oct 14 @ 11:59pm. See website for full expectations.
- Abstract + Related Works + Introduction (this will improve over time).

Outline

Self-Attention
Transformer Encoder
Transformer Decoder

BERT

Outline

Self-Attention
Transformer Encoder
Transformer Decoder

BERT

Self-Attention

Step 1: Our Self-Attention Head I has just 3 weight matrices W_{q}, W_{k}, W_{v} in total. These same 3 weight matrices are multiplied by each x_{i} to create all vectors:

$$
\begin{aligned}
\mathrm{q}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{q}} \mathrm{x}_{\mathrm{i}} \\
\mathrm{k}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{k}} \mathrm{x}_{\mathrm{i}} \\
\mathrm{v}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{v}} \mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

Under the hood, each x_{i} has 3 small, associated vectors. For example, x_{1} has:

- Query q_{1}
- Key k 1_{1}
- Value \mathbf{v}_{1}

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}
$s_{1}=q_{2} \cdot k_{1}=92$

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}

$$
\begin{aligned}
& s_{2}=q_{2} \cdot k_{2}=124 \\
& s_{1}=q_{2} \cdot k_{1}=92
\end{aligned}
$$

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}
$s_{3}=q_{2} \cdot k_{3}=22$
$s_{2}=q_{2} \cdot k_{2}=124$
$s_{1}=q_{2} \cdot k_{1}=92$

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}
$\mathrm{s}_{4}=\mathrm{q}_{2} \cdot \mathrm{k}_{4}=8$
$\mathrm{s}_{3}=\mathrm{q}_{2} \cdot \mathrm{k}_{3}=22$
$\mathrm{s}_{2}=\mathrm{q}_{2} \cdot \mathrm{k}_{2}=124$
$\mathrm{s}_{1}=\mathrm{q}_{2} \cdot \mathrm{k}_{1}=92$

Self-Attention

Step 3: Our scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$ don't sum to 1 . Let's divide by $\sqrt{l e n}\left(k_{i}\right)$ and softmax it

$$
\begin{array}{ll}
\mathrm{s}_{4}=\mathrm{q}_{2} \cdot \mathrm{k}_{4}=8 & \mathrm{a}_{4}=\sigma\left(s_{4} / 8\right)=0 \\
\mathrm{~s}_{3}=\mathrm{q}_{2} \cdot \mathrm{k}_{3}=22 & \mathrm{a}_{3}=\sigma\left(s_{3} / 8\right)=.01 \\
\mathrm{~s}_{2}=\mathrm{q}_{2} \cdot \mathrm{k}_{2}=124 & \mathrm{a}_{2}=\boldsymbol{\sigma}\left(s_{2} / 8\right)=.91 \\
\mathrm{~s}_{1}=\mathrm{q}_{2} \cdot \mathrm{k}_{1}=92 & \mathrm{a}_{1}=\boldsymbol{\sigma}\left(s_{1} / 8\right)=.08
\end{array}
$$

Self-Attention

Step 3: Our scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$ don't sum to 1 . Let's divide by $\sqrt{l e n}\left(k_{i}\right)$ and softmax it

$$
\begin{array}{ll}
\mathrm{s}_{4}=\mathrm{q}_{2} \cdot \mathrm{k}_{4}=8 & \mathrm{a}_{4}=\sigma\left(s_{4} / 8\right)=0 \\
\mathrm{~s}_{3}=\mathrm{q}_{2} \cdot \mathrm{k}_{3}=22 & \mathrm{a}_{3}=\boldsymbol{\sigma}\left(s_{3} / 8\right)=.01 \\
\mathrm{~s}_{2}=\mathrm{q}_{2} \cdot \mathrm{k}_{2}=124 & \mathrm{a}_{2}=\boldsymbol{\sigma}\left(s_{2} / 8\right)=.91 \\
\mathrm{~s}_{1}=\mathrm{q}_{2} \cdot \mathrm{k}_{1}=92 & \mathrm{a}_{1}=\boldsymbol{\sigma}\left(s_{1} / 8\right)=.08
\end{array}
$$

Instead of these a_{i} values directly weighting our original x_{i} word vectors, they directly weight our v_{i} vectors.

Self-Attention

Step 4: Let's weight our v_{i} vectors and simply sum them up!

$$
\begin{aligned}
z_{2} & =a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4} \\
& =0.08 \cdot v_{1}+0.91 \cdot v_{2}+0.01 \cdot v_{3}+0 \cdot v_{4}
\end{aligned}
$$

Self-Attention

Tada! Now we have great, new representations z_{i} via a self-attention head

Self-Attention may seem strikingly like Attention in seq2seq models

Q: What are the key, query, value vectors in the Attention setup?

$$
\begin{array}{ll}
\mathrm{s}_{4}=h_{1}^{D} * h_{4}^{E} & \mathrm{a}_{4}=\sigma\left(s_{4}\right) \\
\mathrm{s}_{3}=h_{1}^{D} * h_{3}^{E} & \mathrm{a}_{3}=\sigma\left(s_{3}\right) \\
\mathrm{s}_{2}=h_{1}^{D} * h_{2}^{E} & \mathrm{a}_{2}=\sigma\left(s_{2}\right) \\
\mathrm{s}_{1}=h_{1}^{D} * h_{1}^{E} & \mathrm{a}_{1}=\sigma\left(s_{1}\right)
\end{array}
$$

Attention

$$
\begin{array}{ll}
\mathrm{s}_{4}=h_{1}^{D} * h_{4}^{E} & \mathrm{a}_{4}=\sigma\left(s_{4}\right) \\
\mathrm{s}_{3}=h_{1}^{D} * h_{3}^{E} & \mathrm{a}_{3}=\sigma\left(s_{3}\right) \\
\mathrm{s}_{2}=h_{1}^{D} * h_{2}^{E} & \mathrm{a}_{2}=\sigma\left(s_{2}\right) \\
\mathrm{s}_{1}=h_{1}^{D} * h_{1}^{E} & \mathrm{a}_{1}=\sigma\left(s_{1}\right)
\end{array}
$$

We multiply each encoder's hidden layer by its a_{i}^{1} attention weights to create a context vector c_{1}^{D}

Attention

$$
\begin{array}{ll}
\mathrm{s}_{4}=h_{1}^{D} * h_{4}^{E} & \mathrm{a}_{4}=\sigma\left(s_{4}\right) \\
\mathrm{s}_{3}=h_{1}^{D} * h_{3}^{E} & \mathrm{a}_{3}=\sigma\left(s_{3}\right) \\
\mathrm{s}_{2}=h_{1}^{D} * h_{2}^{E} & \mathrm{a}_{2}=\sigma\left(s_{2}\right) \\
\mathrm{s}_{1}=h_{1}^{D} * h_{1}^{E} & \mathrm{a}_{1}=\sigma\left(s_{1}\right)
\end{array}
$$

We multiply each encoder's hidden layer by its a_{i}^{1} attention weights to create a context vector c_{1}^{D}
$c_{1}^{D}=a_{1} \cdot h_{1}{ }^{E}+a_{2} \cdot h_{2}{ }^{E}+a_{3} \cdot h_{3}{ }^{E}+a_{4} \cdot h_{4}{ }^{E}$

Attention

$$
\begin{array}{ll}
s_{4}=q_{2} \cdot k_{4} & a_{4}=\sigma\left(s_{4} / 8\right) \\
s_{3}=q_{2} \cdot k_{3} & a_{3}=\sigma\left(s_{3} / 8\right) \\
s_{2}=q_{2} \cdot k_{2} & a_{2}=\sigma\left(s_{2} / 8\right) \\
s_{1}=q_{2} \cdot k_{1} & a_{1}=\sigma\left(s_{1} / 8\right)
\end{array}
$$

We multiply each word's value vector by its a_{i}^{1} attention weights to create a better vector z_{1}
$z_{1}=a_{1} \cdot v_{1}^{E}+a_{2} \cdot v_{2}^{E}+a_{3} \cdot v_{3}^{E}+a_{4} \cdot v_{4}^{E}$

Self-Attention

Outline

Self-Attention
Transformer Encoder
Transformer Decoder

BERT

Outline

Self-Attention
Transformer Encoder
\longrightarrow Transformer Decoder

BERT

Self-Attention

Let's further pass each z_{i} through a FFNN

Self-Attention + FFNN

Let's further pass each z_{i} through a FFNN

Self-Attention + FFNN

Let's further pass each z_{i} through a FFNN

We concat w/ a residual connection to help ensure relevant info is getting forward passed.

We perform LayerNorm to stabilize the network and allow for proper gradient flow. You should do this after the FFNN, too.

Self-Attention + FFNN

Let's further pass each z_{i} through a FFNN

We concat w/ a residual connection to help ensure relevant info is getting forward passed.

We perform LayerNorm to stabilize the network and allow for proper gradient flow. You should do this after the FFNN, too.

Each z_{i} can be computed in parallel, unlike LSTMs!

Transformer Encoder

Yay! Our r_{i} vectors are our new representations, and this entire process is called a Transformer Encoder

Transformer Encoder

Yay! Our r_{i} vectors are our new representations, and this entire process is called a Transformer Encoder

Problem: there is no concept of positionality. Words are weighted as if a "bag of words"

Transformer Encoder

Yay! Our r_{i} vectors are our new representations, and this entire process is called a Transformer Encoder

Problem: there is no concept of positionality. Words are weighted as if a "bag of words"

Solution: add to each input word x_{i} a positional encoding $\sim \sin (i) \cos (i)$

Position Encodings

A Self-Attention Head has just one set of query/key/value weight matrices $\mathrm{w}_{\mathrm{q}}, \mathrm{w}_{\mathrm{k}}, \mathrm{w}_{\mathrm{v}}$

Words can relate in many ways, so it's restrictive to rely on just one Self-Attention Head in the system.

Let's create Multi-headed Self-Attention

Transformer Encoder

Each Self-Attention Head

 produces a z_{i} vector.We can, in parallel, use multiple heads and concat the z_{i}^{\prime} s.

Transformer Encoder

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding r_{i} of each word x_{i}

Transformer Encoder

Transformer Encoder

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding r_{i} of each word x_{i}

Transformer Encoder

To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding r_{i} of each word x_{i}

> Why stop with just 1 Transformer Encoder? We could stack several!

Transformer Encoder

> To recap: all of this looks fancy, but ultimately it's just producing a very good contextualized embedding r_{i} of each word x_{i}

Why stop with just 1 Transformer Encoder? We could stack several!

Transformer Encoder

The original Transformer model was intended for Machine Translation, so it had Decoders, too

Outline

Self-Attention
Transformer Encoder
\longrightarrow Transformer Decoder

BERT

Outline

Self-Attention
Transformer Encoder
Transformer Decoder

BERT

Transformer Decoder

Transformer Encoders and Decoders

Transformer Encoders and Decoders

NOTE

Transformer Decoders are identical to the Encoders, except they have an additional Attention Head in between the SelfAttention and FFNN layers.

This additional Attention Head focuses on parts of the encoder's representations.

Transformer Encoders and Decoders

Transformer Encoders and Decoders

NOTE

The query, key, and value vectors for a Transformer Decoder's Self-Attention Head (not Attention Head) are all from the output of the previous decoder layer.

Transformer Encoders and Decoders

IMPORTANT

The Transformer Decoders have positional embeddings, too, just like the Encoders.

Critically, each position is only allowed to attend to the previous indices. This masked Attention preserves it as being an auto-regressive LM.

Decoding time step:(1) 23456
OUTPUT

Embedding WITH TIME SIGNAL

$\square \square$

\square
\square

EMBEDDINGS

Figure 1: The Transformer - model architecture.

Loss Function: cross-entropy (predicting translated word)

Training Time: ~ 4 days on (8) GPUs

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O\left(n^{2} \cdot d\right)$	$O(1)$	$O(1)$
Recurrent	$O\left(n \cdot d^{2}\right)$	$O(n)$	$O(n)$
Convolutional	$O\left(k \cdot n \cdot d^{2}\right)$	$O(1)$	$O\left(\log _{k}(n)\right)$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	$O(1)$	$O(n / r)$

$n=$ sequence length
$d=$ length of representation (vector)

Q: Is the complexity of self-attention good?

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O\left(n^{2} \cdot d\right)$	$O(1)$	$O(1)$
Recurrent	$O\left(n \cdot d^{2}\right)$	$O(n)$	$O(n)$
Convolutional	$O\left(k \cdot n \cdot d^{2}\right)$	$O(1)$	$O\left(\log _{k}(n)\right)$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	$O(1)$	$O(n / r)$

Important: when learning dependencies b/w words, you don't want long paths. Shorter is better.

Self-attention connects all positions with a constant \# of sequentially executed operations, whereas RNNs require $O(n)$.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O\left(n^{2} \cdot d\right)$	$O(1)$	$O(1)$
Recurrent	$O\left(n \cdot d^{2}\right)$	$O(n)$	$O(n)$
Convolutional	$O\left(k \cdot n \cdot d^{2}\right)$	$O(1)$	$O\left(\log _{k}(n)\right)$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	$O(1)$	$O(n / r)$

Machine Translation results: state-of-the-art (at the time)

| Model | BLEU | | | Training Cost (FLOPs) | |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- |
| | EN-DE | EN-FR | | EN-DE | EN-FR |
| ByteNet [18] | 23.75 | | | | |
| Deep-Att + PosUnk [39] | | 39.2 | | | |
| GNMT + RL [38] | 24.6 | 39.92 | | $2.3 \cdot 10^{20}$ | |
| ConvS2S [9] | 25.16 | 40.46 | | $9.6 \cdot 10^{18}$ | $1.5 \cdot 10^{20}$ |
| MoE [32] | 26.03 | 40.56 | | $2.0 \cdot 10^{19}$ | $1.2 \cdot 10^{20}$ |
| Deep-Att + PosUnk Ensemble [39] | | 40.4 | | | $8.0 \cdot 10^{20}$ |
| GNMT + RL Ensemble [38] | 26.30 | 41.16 | | $1.8 \cdot 10^{20}$ | $1.1 \cdot 10^{21}$ |
| ConvS2S Ensemble [9] | 26.36 | $\mathbf{4 1 . 2 9}$ | | $7.7 \cdot 10^{19}$ | $1.2 \cdot 10^{21}$ |
| Transformer (base model) | 27.3 | 38.1 | | $\mathbf{3 . 3} \cdot \mathbf{1 0} \mathbf{1 0}^{\mathbf{1 8}}$ | |
| Transformer (big) | $\mathbf{2 8 . 4}$ | $\mathbf{4 1 . 8}$ | | $2.3 \cdot 10^{19}$ | |

Machine Translation results: state-of-the-art (at the time)

You can train to translate from Language A to Language B.

Then train it to translate from Language B. to Language C.

Then, without training, it can translate from Language A to
Language C

- What if we don't want to decode/translate?
- Just want to perform a particular task (e.g., classification)
- Want even more robust, flexible, rich representation!
- Want positionality to play a more explicit role, while not being restricted to a particular form (e.g., CNNs)

Outline

Self-Attention
Transformer Encoder
Transformer Decoder

BERT

Outline

Self-Attention
Transformer Encoder
Transformer Decoder

BERT

BERT

Bidirectional Encoder Representations from Transformers

BERT

Bidirectional Encoder Representations from Transformers

Like Bidirectional LSTMs, let's look in both directions

BERT

Bidirectional Encoder Representations from Transformers

Let's only use Transformer Encoders, no Decoders

BERT

Bidirectional Encoder Representations from Transformers

It's a language model that builds rich representations

BERT

brown 0.92
lazy 0.05
playful 0.03

BERT has 2 training objectives:

1. Predict the Masked word (a la CBOW)
15% of all input words are randomly masked.

- 80\% become [MASK]
- 10\% become revert back
- 10% become are deliberately corrupted as wrong words

BERT

brown 0.92
lazy 0.05
playful 0.03

BERT has 2 training objectives:

2. Two sentences are fed in at a time. Predict the if the second sentence of input truly follows the first one or not.

BERT

Every two sentences are separated by a <SEP> token.
50% of the time, the $2^{\text {nd }}$ sentence is a randomly selected sentence from the corpus.
50% of the time, it truly follows the first sentence in the corpus.

BERT

NOTE: BERT also embeds the inputs by their WordPiece embeddings.

WordPiece is a sub-word tokenization

 learns to merge and use characters based on which pairs maximize the likelihood of the training data if added to the vocab.
BERT

One could extract the contextualized embeddings

The output of each encoder layer along each token's path can be used as a feature representing that token.

BERT

Later layers have the best contextualized embeddings

BERT

BERT yields state-of-the-art (SOTA) results on many tasks

System	MNLI- $(\mathrm{m} / \mathrm{mm})$	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392 k	363 k	108 k	67 k	8.5 k	5.7 k	3.5 k	2.5 k	-
Pre-OpenAI SOTA	$80.6 / 80.1$	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMO+Attn	$76.4 / 76.1$	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT $^{\text {BERT }_{\text {BASE }}}$	$82.1 / 81.4$	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT $_{\text {LARGE }}$	$84.6 / 83.4$	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).

