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ANNOUNCEMENTS
• HW1 is graded (few remaining). Solutions are posted on Canvas -> Files

• HW2 is due tonight @ 11:59pm!

• HW3 will be released tonight @ 11:59pm! The shortest assignment yet.

• Candidate Research Projects have been announced.

• Read them on `Research Brainstorming` spreadsheet.

• Indicate your preferences on the Google Form (see Ed post) by Wed 11:59pm

• Tonight @ 8pm, Zoom will be open for anyone who wishes to discuss projects
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RESEARCH PROJECTS
• Phase II is due Oct 14 @ 11:59pm. See website for full expectations.

• Abstract + Related Works + Introduction (this will improve over time).



Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Outline

5



Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Outline

6



Self-Attention

The brown dog ran
x1 x2 x3 x4

Under the hood, each xi has 3 
small, associated vectors. For 
example, x1 has:
• Query q1

• Key k1

• Value v1

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 1: Our Self-Attention Head l has just 3 weight 
matrices Wq, Wk, Wv in total. These same 3 weight 
matrices are multiplied by each xi to create all vectors:

qi = wq xi
ki = wk xi
vi = wv xi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi
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Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22
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much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4
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Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how 
much attention to pay to each respective ”word” vi



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘!) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .08
a2 = 𝝈(𝒔𝟐/𝟖)= .91

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘!) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .08
a2 = 𝝈(𝒔𝟐/𝟖)= .91

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0 Instead of these ai values directly 
weighting our original xi word vectors, 
they directly weight our vi vectors.

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 4: Let’s weight our vi vectors and simply sum them up! 

= 0.08⋅v1 + 0.91⋅v2 + 0.01⋅v3 + 0⋅v4

z2



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head

z4z3z2z1

Self-attention Head



Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head
z4z3z2z1

Takeaway:

Self-Attention is powerful; allows us to 
create great, context-aware 
representations



Self-Attention may seem strikingly 
like Attention in seq2seq models

Q: What are the key, query, value vectors in the Attention setup?



Attention

∗ ℎ!"ℎ!# a1 = 𝝈(𝒔𝟏)

a2 = 𝝈(𝒔𝟐)

a3 = 𝝈(𝒔𝟑)

a4 = 𝝈(𝒔𝟒)

s1 =

s2 =

s3 =

s4 =

∗ ℎ$"ℎ!#
∗ ℎ%"ℎ!#
∗ ℎ&"ℎ!#

The brown dog ran

ENCODER RNN

ℎ!" ℎ$" ℎ%" ℎ&" ℎ!#

<s>

DECODER RNN
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Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ$" ℎ%" ℎ&" ℎ!#

∗ ℎ!"ℎ!#

<s>

DECODER RNN

a1 = 𝝈(𝒔𝟏)

a2 = 𝝈(𝒔𝟐)

a3 = 𝝈(𝒔𝟑)

a4 = 𝝈(𝒔𝟒)

s1 =

s2 =

s3 =

s4 =

∗ ℎ$"ℎ!#
∗ ℎ%"ℎ!#
∗ ℎ&"ℎ!#

We multiply each encoder’s hidden 

layer by its 𝑎!& attention weights to 
create a context vector 𝑐&'

𝒄𝟏𝑫 = a1⋅h1
E + a2⋅ h2

E + a3⋅ h3
E + a4⋅ h4

E



Self-Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ$" ℎ%" ℎ&"We multiply each word’s value

vector by its 𝑎!& attention weights to 
create a better vector z1

z1 = a1⋅v1
E + a2⋅ v2

E + a3⋅ v3
E + a4⋅ v4

E

q1 k1 v1

a1 = 𝝈(𝒔𝟏/𝟖)

a2 = 𝝈(𝒔𝟐/𝟖)

a3 = 𝝈(𝒔𝟑/𝟖)

a4 = 𝝈(𝒔𝟒/𝟖)

s1 = q2⋅k1

s2 = q2⋅k2

s3 = q2⋅k3

s4 = q2⋅k4



Self-Attention

The brown dog ran

ENCODER RNN
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the probe 

item being 
compared

vi ℎ/1
item being 
weighted



Self-Attention

The brown dog ran

ENCODER RNN

ℎ!" ℎ$" ℎ%" ℎ&"We multiply each word’s value

vector by its 𝑎!& attention weights to 
create a better vector z1

z1 = a1⋅v1
E + a2⋅ v2

E + a3⋅ v3
E + a4⋅ v4

E

q1 k1 v1

a1 = 𝝈(𝒔𝟏/𝟖)

a2 = 𝝈(𝒔𝟐/𝟖)

a3 = 𝝈(𝒔𝟑/𝟖)

a4 = 𝝈(𝒔𝟒/𝟖)

s1 = q2⋅k1

s2 = q2⋅k2

s3 = q2⋅k3

s4 = q2⋅k4

Attention
Self-

Attention

ℎ/0

ℎ/1

Description 

the probe 

item being 
compared

ℎ/1
item being 
weighted

All of these are like 
surrogates/proxies/abstractions.

This provides flexibility and fewer 
constraints.

More room for rich abstractions.

qi

ki

vi
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Self-Attention

Transformer Encoder

Transformer Decoder

BERT



Self-Attention

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Let’s further pass each zi through a 
FFNN



Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1 Let’s further pass each zi through a 
FFNN



Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1

Let’s further pass each zi through a 
FFNN

We concat w/ a residual connection 
to help ensure relevant info is 
getting forward passed.

We perform LayerNorm to stabilize 
the network and allow for proper 
gradient flow. You should do this 
after the FFNN, too.

+ x Residual Connections   +LayerNorm



Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1

Let’s further pass each zi through a 
FFNN

We concat w/ a residual connection 
to help ensure relevant info is 
getting forward passed.

We perform LayerNorm to stabilize 
the network and allow for proper 
gradient flow. You should do this 
after the FFNN, too.

Each zi can be computed in parallel, 
unlike LSTMs!

+ x Residual Connections   +LayerNorm



The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new 
representations, and this 
entire process is called a 
Transformer Encoder

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections   +LayerNorm
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z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new 
representations, and this 
entire process is called a 
Transformer Encoder

Problem: there is no concept 
of positionality. Words are 
weighted as if a “bag of 
words”

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections   +LayerNorm



The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new 
representations, and this 
entire process is called a 
Transformer Encoder

Problem: there is no concept 
of positionality. Words are 
weighted as if a “bag of 
words”

Solution: add to each input 
word xi a positional encoding
~ sin 𝑖 cos(𝑖)

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections   +LayerNorm



Position Encodings

https://jalammar.github.io/illustrated-transformer/



Words can relate in many ways, so it’s restrictive to 
rely on just one Self-Attention Head in the system.

Let’s create Multi-headed Self-Attention

A Self-Attention Head has just one set of 
query/key/value weight matrices wq, wk, wv



The brown dog ran
x1 x2 x3 x4

Self-attention Head

Each Self-Attention Head 

produces a zi vector.

We can, in parallel, use 

multiple heads and 

concat the zi‘s.

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections   +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C



The brown dog ran
x1 x2 x3 x4

Self-attention Head

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections   +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C

To recap: all of this looks 
fancy, but ultimately it’s 
just producing a very 
good contextualized 
embedding riof each 
word xi



The brown dog ran
x1 x2 x3 x4

Self-attention Head

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections   +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C
=



The brown dog ran
x1 x2 x3 x4

Transformer Encoder

Encoder #1

r2 r3 r4r1

To recap: all of this looks 
fancy, but ultimately it’s 
just producing a very 
good contextualized 
embedding riof each 
word xi



The brown dog ran
x1 x2 x3 x4

To recap: all of this looks 
fancy, but ultimately it’s 
just producing a very 
good contextualized 
embedding riof each 
word xi

Why stop with just 1 
Transformer Encoder? 
We could stack several!

Transformer Encoder

Encoder #1

r2 r3 r4r1



The brown dog ran
x1 x2 x3 x4

To recap: all of this looks 
fancy, but ultimately it’s 
just producing a very 
good contextualized 
embedding riof each 
word xi

Why stop with just 1 
Transformer Encoder? 
We could stack several!

Transformer Encoder

r2

Encoder #1

Encoder #2

Encoder #3

r3 r4r1



The brown dog ran
x1 x2 x3 x4

Transformer Encoder

r2

Encoder #1

Encoder #2

Encoder #3

r3 r4r1

=



The original Transformer model was intended for 
Machine Translation, so it had Decoders, too



Outline

43

Self-Attention

Transformer Encoder

Transformer Decoder

BERT
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Self-Attention

Transformer Encoder

Transformer Decoder

BERT



<s> El perro marrón
x1 x2 x3 x4

Masked Self-attention Head

Decoder

Transformer Decoder
r2 r3

FFNN

r4r1

+ x Residual Connections   +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C z4A z4B z4C

=



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Transformer Encoders 
produce contextualized 
embeddings of each word

Encoder #1

Encoder #2

Encoder #8

Transformer Decoders 
generate new sequences 
of text

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 Transformer Decoders are 
identical to the Encoders, 
except they have an 
additional Attention Head
in between the Self-
Attention and FFNN
layers.

This additional Attention 
Head focuses on parts of 
the encoder’s 
representations.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The query vector for a 
Transformer Decoder’s 
Attention Head (not Self-
Attention Head) is from 
the output of the previous 
decoder layer.

However, the key and 
value vectors are from the 
Transformer Encoders’ 
outputs.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The query, key, and value
vectors for a Transformer
Decoder’s Self-Attention 
Head (not Attention 
Head) are all from the 
output of the previous 
decoder layer.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE



Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The Transformer
Decoders have positional 
embeddings, too, just like 
the Encoders.

Critically, each position is 
only allowed to attend to 
the previous indices. This 
masked Attention 
preserves it as being an 
auto-regressive LM.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer IMPORTANT



https://jalammar.github.io/illustrated-transformer/
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https://jalammar.github.io/illustrated-transformer/



Attention is All you Need (2017) https://arxiv.org/pdf/1706.03762.pdf



Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs



n = sequence length

d = length of representation (vector)

Q: Is the complexity of self-attention good?



Important: when learning dependencies b/w words, you don’t want 
long paths. Shorter is better.

Self-attention connects all positions with a constant # of sequentially 
executed operations, whereas RNNs require 𝑂(𝑛).

https://arxiv.org/pdf/1706.03762.pdf



Machine Translation results: state-of-the-art (at the time)

:



Machine Translation results: state-of-the-art (at the time)

You can train to translate from Language A to Language B.

Then train it to translate from Language B. to Language C.

Then, without training, it can translate from Language A to 

Language C



• What if we don’t want to decode/translate?

• Just want to perform a particular task (e.g., classification)

• Want even more robust, flexible, rich representation!

• Want positionality to play a more explicit role, while not 

being restricted to a particular form (e.g., CNNs)
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Self-Attention

Transformer Encoder

Transformer Decoder

BERT
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Self-Attention

Transformer Encoder

Transformer Decoder

BERT



Bidirectional Encoder Representations from Transformers

BERT
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Bidirectional Encoder Representations from Transformers

BERT

Like Bidirectional LSTMs, let’s look in both directions
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Bidirectional Encoder Representations from Transformers

BERT

Let’s only use Transformer Encoders, no Decoders
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Bidirectional Encoder Representations from Transformers

BERT

It’s a language model that builds rich representations

66



<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
1. Predict the Masked word (a la CBOW)

15% of all input words are randomly masked.

• 80% become [MASK]

• 10% become revert back

• 10% become are deliberately corrupted 
as wrong words

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03
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<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
2. Two sentences are fed in at a time. 
Predict the if the second sentence of 
input truly follows the first one or not.

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03

68



BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

Every two sentences are separated 
by a <SEP> token.

50% of the time, the 2nd sentence is a 
randomly selected sentence from the 
corpus.

50% of the time, it truly follows the 
first sentence in the corpus.

69



BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

NOTE: BERT also embeds the inputs 

by their WordPiece embeddings.

WordPiece is a sub-word tokenization 

learns to merge and use characters 

based on which pairs maximize the 

likelihood of the training data if 

added to the vocab.

70



BERT

Picture: https://jalammar.github.io/illustrated-bert/

One could extract the contextualized embeddings
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BERT

Picture: https://jalammar.github.io/illustrated-bert/

Later layers have the best contextualized embeddings

72



BERT
BERT yields state-of-the-art (SOTA) results on many tasks

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf
73



BERT (a Transformer variant)

The brown dog

x1 x2 x3

Encoder #1

Encoder #8

r2 r3r1 r4

ran

x4

Typically, one uses BERT’s awesome 

embeddings to fine-tune toward a 

different NLP task (this is called 

Sequential Transfer Learning)

yTakeaway
BERT is incredible for learning 
contextualized embeddings of words 
and using transfer learning for other 
tasks (e.g., classification).

Can’t generate new sentences though, 
due to no decoders.
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