
Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

From Attention to Self-Attention

Lecture 9: Self-Attention

Self [Attention]
-- Mac Miller (2018)

https://wellness.huhs.harvard.edu/alcohol-substance-use

basics@huhs.harvard.edu

https://wellness.huhs.harvard.edu/alcohol-substance-use
mailto:basics@huhs.harvard.edu

3

ANNOUNCEMENTS
• HW1 is being graded double-blind. Solutions are posted on Canvas -> Files

• HW2 is due next Tues, Oct 5 @ 11:59pm! Determine your mystery language.

• Research Proposals are due tonight, Sept 30 @ 11:59pm.

• If submitting w/ others, please see the updated Canvas instructions

4

RESEARCH PROJECTS
• Most research experiences/opportunities are “top-down”

• You’re all creative and fully capable.

• Allow yourselves to become comfortable with the unknown.

• It’s okay if your Phase 1 Proposals aren’t perfect ideas. The point is to gain

practice with the inquisition and overall process of executing your ideas.

• After Phase 1 we will filter projects, give feedback, help you find the optimal

project partners, offer TF support, etc

5

RESEARCH PROJECTS
• I’ll filter projects by rating them according to:

• researchy vs application

• how grounded/well-reasoned it is

• technical difficulty (there’s a sweet spot)

• feasibility (e.g., required compute power, data availability, metrics)

• interestingness / significance

RECAP: L8

6

• are a general-purpose encoder-

decoder architecture

• can be implemented with RNNs

(or Transformers even)

• Allow for n à m predictions

• Natural approach to Neural MT

• If implemented end-to-end can

be good but slow

Input layer

Hidden layer

ℎ!" ℎ#" ℎ$" ℎ%"

The brown dog ran

ENCODER RNN

ℎ!& ℎ#&

<s> chien brun a

DECODER RNN

couru

ℎ$& ℎ%& ℎ'&

Le

ℎ(&

"𝑦! "𝑦# "𝑦$ "𝑦% "𝑦' "𝑦(

seq2seq models

RECAP: L8

7

• Attention allows a decoder, at

each time step, to focus/use

different amounts of the

encoder’s hidden states

• The resulting context vector 𝑐! is

used, with the decoder’s current

hidden state ℎ!, to predict #𝑦!

Input layer

Hidden layer

ℎ!" ℎ#" ℎ$" ℎ%"

The brown dog ran

ENCODER RNN

ℎ!& ℎ#&

<s> chien brun a

DECODER RNN

couru

ℎ$& ℎ%& ℎ'&

Le

ℎ(&

"𝑦! "𝑦# "𝑦$ "𝑦% "𝑦' "𝑦(

seq2seq models 𝒄𝟓𝑫

𝒂𝟏𝟓 𝒂𝟐𝟓 𝒂𝟑𝟓 𝒂𝟒𝟓

RECAP: L8

8

• Converts text from a source language 𝑥 to a target language 𝑦

• SMT made huge progress but was brittle

• NMT (starting w/ LSTM-based seq2seq models) blew SMT out of the water

• Attention greatly helps LSTM-based seq2seq models

• Next: Transformer-based seq2seq models w/ Self-Attention and Attention

MT argmaxy𝑃 𝑥 𝑦 𝑃(𝑦)

seq2seq + Attention

Self-Attention

Outline

9

seq2seq + Attention

Self-Attention

Outline

10

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

Separate FFNN

ℎ!" ℎ!&

𝑒! 1.5

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

Separate FFNN

ℎ#" ℎ!&

𝑒# 0.9

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

Separate FFNN

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

ℎ$" ℎ!&

𝑒$ 0.2

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

Separate FFNN

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

ℎ%" ℎ!&

𝑒% −0.5

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

𝑒% −0.5

Attention (raw scores)

𝑒$ 0.2
𝑒# 0.9
𝑒! 1.5

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

𝑒% −0.5

Attention (raw scores)

𝑒$ 0.2
𝑒# 0.9
𝑒! 1.5

Attention (softmax’d)

𝑎'! =
exp(𝑒')

∑'(exp(𝑒!)<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

Q: How do we determine how much to pay attention to each of the encoder’s hidden layers?

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

A: Let’s base it on our decoder’s current hidden state (our current representation of meaning)
and all of the encoder’s hidden layers!

𝑒% −0.5

Attention (raw scores)

𝑒$ 0.2
𝑒# 0.9
𝑒! 1.5

Attention (softmax’d)

𝑎"" = 0.51
𝑎#" = 0.28
𝑎$" = 0.14
𝑎$" = 0.07

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%" ℎ!&

Attention (softmax’d)

𝑎"" = 0.51
𝑎#" = 0.28
𝑎$" = 0.14
𝑎$" = 0.07

𝑎!! 𝑎#! 𝑎$! 𝑎%!

We multiply each encoder’s hidden layer

by its 𝑎!" attention weights to create a
context vector 𝑐"%

𝑐!&

<s>

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"

<s>

[ℎ!&; 𝑐!&]

𝑐!&

𝑎!! 𝑎#! 𝑎$! 𝑎%!

REMEMBER: each attention weight 𝑎!
& is based on the decoder’s current hidden state, too.

4𝑦!
Le

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"

<s>

[ℎ!&; 𝑐!&]

𝑐#&

𝑎!# 𝑎## 𝑎$# 𝑎%#

REMEMBER: each attention weight 𝑎!
& is based on the decoder’s current hidden state, too.

4𝑦!
Le

Le

[ℎ#&; 𝑐#&]

4𝑦#
chien

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"

<s>

[ℎ!&; 𝑐!&]

𝑐$&

𝑎!$ 𝑎#$ 𝑎$$ 𝑎%$

REMEMBER: each attention weight 𝑎!
& is based on the decoder’s current hidden state, too.

4𝑦!
Le

Le

[ℎ#&; 𝑐#&]

4𝑦#
chien

[ℎ$&; 𝑐$&]

4𝑦$
brun

chien

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"

<s>

[ℎ!&; 𝑐!&]

𝑐%&

𝑎!% 𝑎#% 𝑎$% 𝑎%%

REMEMBER: each attention weight 𝑎!
& is based on the decoder’s current hidden state, too.

4𝑦!
Le

Le

[ℎ#&; 𝑐#&]

4𝑦#
chien

[ℎ$&; 𝑐$&]

4𝑦$
brun

chien

[ℎ%&; 𝑐%&]

4𝑦%
a

brun

DECODER RNN

seq2seq + Attention

Input layer

Hidden layer

The brown dog ran

ENCODER RNN

ℎ!" ℎ#" ℎ$" ℎ%"

<s>

[ℎ!&; 𝑐!&]

𝑐)&

𝑎!) 𝑎#) 𝑎$) 𝑎%)

REMEMBER: each attention weight 𝑎!
& is based on the decoder’s current hidden state, too.

4𝑦!
Le

Le

[ℎ#&; 𝑐#&]

4𝑦#
chien

[ℎ$&; 𝑐$&]

4𝑦$
brun

chien

[ℎ%&; 𝑐%&]

4𝑦%
a

brun

[ℎ)&; 𝑐)&]

4𝑦%
couru

a

DECODER RNN

24Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

For convenience, here’s the Attention calculation summarized on 1 slide

25Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

For convenience, here’s the Attention calculation summarized on 1 slide

The Attention mechanism that produces

scores doesn’t have to be a FFNN like I

illustrated. It can be any function you wish.

26Photo credit: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html

Popular Attention Scoring functions:

seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the

contribution each encoding word

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015

https://arxiv.org/pdf/1409.0473.pdf

seq2seq + Attention

Attention:

• greatly improves seq2seq results

• allows us to visualize the

contribution each encoding word

gave for each decoder’s word

Image source: Fig 3 in Bahdanau et al., 2015

Takeaway:

Having a separate encoder and decoder
allows for n à m length predictions.

Attention is powerful; allows us to
conditionally weight our focus

https://arxiv.org/pdf/1409.0473.pdf

• seq2seq doesn’t have to use RNNs/LSTMs

• seq2seq doesn’t have to be used exclusively for NMT

• NMT doesn’t have to use seq2seq

(but it’s natural and the best we have for now)

CHECKPOINT

Constituency Parsing

Input: dogs chase cats

Output:

or a flattened representation

Constituency Parsing

Input: I shot an elephant in my pajamas

https://web.stanford.edu/~jurafsky/slp3/13.pdf

Output:

Results

https://aclanthology.org/2020.findings-emnlp.65.pdf

Image Captioning

Input: image

Output: generated text

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)

Image Captioning

Input: image

Output: generated text

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)

Image Captioning

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)

Image Captioning

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)

37

• LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)

• seq2seq+Attention was an even more revolutionary idea (Google
Translate used it)

• Attention allows us to place appropriate weight to the encoder’s
hidden states

• But:

SUMMARY

38

• LSTMs are sequential in nature (prohibits parallelization). Very wasteful.

• No explicit modelling of long- and short- range dependencies

• Language is naturally hierarchical

(can we do better than Stacked LSTMs?)

• Can we apply the concept of Attention to improve our representations?

(i.e., contextualized representations)

SUMMARY

Ashish Vaswani (2019)

Outline

39

seq2seq + Attention

Self-Attention

Outline

40

seq2seq + Attention

Self-Attention

Goals

• Each word in a sequence to be transformed into a rich, abstract

representation (context embedding) based on the weighted sums of

the other words in the same sequence (akin to deep CNN layers)

• Inspired by Attention, we want each word to determine, “how much

should I be influenced by each of my neighbors”

• Want positionality

Self-Attention

Input vectors

The brown dog ran

z1

Output
representation

z2 z3 z4

??????

x1 x2 x3 x4

Self-Attention’s goal is to create

great representations, zi, of the input

Self-Attention

The brown dog ran

z1

Output
representation

z1 will be based on a weighted

contribution of x1, x2, x3, x4

x1 x2 x3 x4

Input vectors

Self-Attention’s goal is to create

great representations, zi, of the input

𝑎!! 𝑎#! 𝑎$! 𝑎%!

Self-Attention

The brown dog ran

z1

Output
representation

z1 will be based on a weighted

contribution of x1, x2, x3, x4

x1 x2 x3 x4

Input vectors

Self-Attention’s goal is to create

great representations, zi, of the input

𝑎!! 𝑎#! 𝑎$! 𝑎%!

𝒂𝒊𝟏 is “just” a weight. More is

happening under the hood, but

it’s effectively weighting

versions of x1, x2, x3, x4

Self-Attention

The brown dog ran

z1

Output
representation

x1 x2 x3 x4

Input vectors

𝑎!! 𝑎#! 𝑎$! 𝑎%!

Under the hood, each xi has

3 small, associated vectors.

For example, x1 has:

• Query qi

• Key ki

• Value vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

Under the hood, each xi has 3
small, associated vectors. For
example, x1 has:
• Query q1

• Key k1

• Value v1

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 1: Our Self-Attention Head has just 3 weight
matrices Wq, Wk, Wv in total. These same 3 weight
matrices are multiplied by each xi to create all vectors:

qi = wq xi
ki = wk xi
vi = wv xi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 2: For word x1, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘!) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .87
a2 = 𝝈(𝒔𝟐/𝟖)= .12

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q1⋅k1 = 112

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q1⋅k2 = 96

s3 = q1⋅k3 = 16

s4 = q1⋅k4 = 8

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘!) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .87
a2 = 𝝈(𝒔𝟐/𝟖)= .12

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0 Instead of these ai values directly
weighting our original xi word vectors,
they directly weight our vi vectors.

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z1 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 4: Let’s weight our vi vectors and simply sum them up!

= 0.87⋅v1 + 0.12⋅v2 + 0.01⋅v3 + 0⋅v4

z1

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!
z2

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z3 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!

z3

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z4 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 5: We repeat this for all other words, yielding us with great, new zi representations!
z4

Let’s illustrate another example:

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

z2

Remember, we use the same 3 weight matrices

Wq, Wk, Wv as we did for computing z1.

This gives us q2, k2, v2

Self-Attention

The brown dog ran
x1 x2 x3 x4

Under the hood, each xi has 3
small, associated vectors. For
example, x1 has:
• Query q1

• Key k1

• Value v1

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 1: Our Self-Attention Head l has just 3 weight
matrices Wq, Wk, Wv in total. These same 3 weight
matrices are multiplied by each xi to create all vectors:

qi = wq xi
ki = wk xi
vi = wv xi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how
much attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘!) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .08
a2 = 𝝈(𝒔𝟐/𝟖)= .91

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑒𝑛(𝑘!) and softmax it

a1 = 𝝈(𝒔𝟏/𝟖)= .08
a2 = 𝝈(𝒔𝟐/𝟖)= .91

a3 = 𝝈(𝒔𝟑/𝟖)= .01

a4 = 𝝈(𝒔𝟒/𝟖)= 0 Instead of these ai values directly
weighting our original xi word vectors,
they directly weight our vi vectors.

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 4: Let’s weight our vi vectors and simply sum them up!

= 0.08⋅v1 + 0.91⋅v2 + 0.01⋅v3 + 0⋅v4

z2

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head

z4z3z2z1

Self-attention Head

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head
z4z3z2z1 Takeaway:

Self-Attention is powerful; allows us to
create great, context-aware
representations

