Lecture 9: Self-Attention

From Attention to Self-Attention

Harvard
AC295/CS287r/CSCI E-115B

Chris Tanner

Self [Attention]

-- Mac Miller (2018)
https://wellness.huhs.harvard.edu/alcohol-substance-use

ANNOUNCEMENTS

- HW1 is being graded double-blind. Solutions are posted on Canvas -> Files
- HW2 is due next Tues, Oct 5 @ 11:59pm! Determine your mystery language.
- Research Proposals are due tonight, Sept 30 @ 11:59pm.
- If submitting w/ others, please see the updated Canvas instructions

RESEARCH PROJECTS

- Most research experiences/opportunities are "top-down"
- You're all creative and fully capable.
- Allow yourselves to become comfortable with the unknown.
- It's okay if your Phase 1 Proposals aren't perfect ideas. The point is to gain practice with the inquisition and overall process of executing your ideas.
- After Phase 1 we will filter projects, give feedback, help you find the optimal project partners, offer TF support, etc

RESEARCH PROJECTS

- I'll filter projects by rating them according to:
- researchy vs application
- how grounded/well-reasoned it is
- technical difficulty (there's a sweet spot)
- feasibility (e.g., required compute power, data availability, metrics)
- interestingness / significance

RECAP: L8

seq2seq models

- are a general-purpose encoderdecoder architecture
- can be implemented with RNNs (or Transformers even)
- Allow for $\mathrm{n} \rightarrow$ m predictions

Hidden layer

Input layer

ENCODER RNN

- Natural approach to Neural MT
- If implemented end-to-end can be good but slow

RECAP: L8

seq2seq models

- Attention allows a decoder, at each time step, to focus/use different amounts of the encoder's hidden states
- The resulting context vector c_{i} is used, with the decoder's current hidden state h_{i}, to predict \hat{y}_{i}

RECAP: L8

MT $\operatorname{argmax}_{\mathrm{y}} P(x \mid y) P(y)$

- Converts text from a source language x to a target language y
- SMT made huge progress but was brittle
- NMT (starting w/ LSTM-based seq2seq models) blew SMT out of the water
- Attention greatly helps LSTM-based seq2seq models
- Next: Transformer-based seq2seq models w/ Self-Attention and Attention

Outline

seq2seq + Attention
Self-Attention

Outline

seq2seq + Attention

Self-Attention

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

Attention (raw scores)

$\begin{array}{ll}e_{1} & 1.5\end{array}$
$\begin{array}{ll}e_{2} & 0.9\end{array}$
$e_{3} \quad 0.2$
$e_{4}-0.5$

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

We multiply each encoder's hidden layer by its a_{i}^{1} attention weights to create a context vector c_{1}^{D}

DECODER RNN
Attention (softmax'd)

$$
\begin{aligned}
a_{1}^{1} & =0.51 \\
a_{2}^{1} & =0.28 \\
a_{3}^{1} & =0.14 \\
a_{3}^{1} & =0.07
\end{aligned}
$$

seq2seq + Attention

REMEMBER: each attention weight a_{i}^{j} is based on the decoder's current hidden state, too.

seq2seq + Attention

REMEMBER: each attention weight a_{i}^{j} is based on the decoder's current hidden state, too.

seq2seq + Attention

REMEMBER: each attention weight a_{i}^{j} is based on the decoder's current hidden state, too.

seq2seq + Attention

REMEMBER: each attention weight a_{i}^{j} is based on the decoder's current hidden state, too.

seq2seq + Attention

REMEMBER: each attention weight a_{i}^{j} is based on the decoder's current hidden state, too.

For convenience, here's the Attention calculation summarized on 1 slide

Attention output

$$
\oint_{\text {(weighted }}^{\text {sum })}
$$

Attention weights $\quad a_{k}^{(t)}=\frac{\exp \left(\operatorname{score}\left(h_{t}, s_{k}\right)\right)}{\sum_{i=1}^{m} \exp \left(\operatorname{score}\left(h_{t}, s_{i}\right)\right)}, \mathrm{k}=1 . . \mathrm{m}$
(softmax)
"attention weight for source token k at decoder step t "

Attention scores

$$
\begin{aligned}
& \operatorname{score}\left(h_{t}, s_{k}\right), \mathrm{k}=1 . . \mathrm{m} \\
& \text { "How relevant is source token } k \text { for target step } t \text { ?" }
\end{aligned}
$$

Attention input

$$
\begin{aligned}
& s_{1}, s_{2}, \ldots, s_{m} \\
& \text { all encoder states }
\end{aligned}
$$

h_{t}
one decoder state

For convenience, here's the Attention calculation summarized on 1 slide

The Attention mechanism that produces scores doesn't have to be a FFNN like I
illustrated. It can be any function you wish.

Attention scores $\quad \operatorname{score}\left(h_{t}, s_{k}\right), \mathrm{k}=1 . . \mathrm{m}$
"How relevant is source token k for target step t ?"

Attention input

Popular Attention Scoring functions:

Dot-product

$\operatorname{score}\left(h_{t}, s_{k}\right)=h_{t}^{T} s_{k} \quad \operatorname{score}\left(h_{t}, s_{k}\right)=h_{t}^{T} W s_{k}$

Multi-Layer Perceptron

$\operatorname{score}\left(h_{t}, s_{k}\right)=w_{2}^{T} \cdot \tanh \left(W_{1}\left[h_{t}, s_{k}\right]\right)$

seq2seq + Attention

Attention:

- greatly improves seq2seq results
- allows us to visualize the contribution each encoding word gave for each decoder's word

CHECKPOINT

- seq2seq doesn't have to use RNNs/LSTMs
- seq2seq doesn't have to be used exclusively for NMT
- NMT doesn't have to use seq2seq
(but it's natural and the best we have for now)

Constituency Parsing

Input: dogs chase cats

Output:

or a flattened representation
$\left.\left(\mathrm{S}(\mathrm{NP} \text { dogs })_{\mathrm{NP}}(\mathrm{VP} \text { chase (NP cats })_{\mathrm{NP}}\right)_{\mathrm{VP}}\right)_{\mathrm{S}}$

Constituency Parsing

Input: I shot an elephant in my pajamas

Output:

Figure 13.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which Captain Spaulding did the shooting in his pajamas.

Model	English			Chinese		
	LR	LP	F1	LR	LP	F1
Shen et al. (2018)	92.0	91.7	91.8	86.6	86.4	86.5
Fried and Klein (2018)	-	-	92.2	-	-	87.0
Teng and Zhang (2018)	92.2	92.5	92.4	86.6	88.0	87.3
Vaswani et al. (2017)	-	-	92.7	-	-	-
Dyer et al. (2016)	-	-	93.3	-	-	84.6
Kuncoro et al. (2017)	-	-	93.6	-	-	-
Charniak et al. (2016)	-	-	93.8	-	-	-
Liu and Zhang (2017b)	91.3	92.1	91.7	85.9	85.2	85.5
Liu and Zhang (2017a)	-	-	94.2	-	-	86.1
Suzuki et al. (2018)	-	-	94.32	-	-	-
Takase et al. (2018)	-	-	94.47	-	-	-
Fried et al. (2017)	-	-	94.66	-	-	-
Kitaev and Klein (2018)	94.85	95.40	95.13	-	-	-
Kitaev et al. (2018)	95.51	96.03	95.77	91.55	91.96	91.75
Zhou and Zhao (2019)	95.70	95.98	95.84	$\mathbf{9 2 . 0 3}$	92.33	92.18
(BERT)						
Zhou and Zhao (2019)	96.21	96.46	96.33	-	-	-
(XLNet)						
Our work	$\mathbf{9 6 . 2 4}$	$\mathbf{9 6 . 5 3}$	$\mathbf{9 6 . 3 8}$	91.85	$\mathbf{9 3 . 4 5}$	$\mathbf{9 2 . 6 4}$

Table 3: Constituency Parsing on PTB \& CTB test sets.

Image Captioning

Input: image

Output: generated text

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

[^0]
Image Captioning

Input: image
Output: generated text

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

Image Captioning

A large white bird standing in a forest.

A woman holding a clock in her hand.

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A woman is sitting at a table with a large pizza.

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

SUMMARY

- LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)
- seq2seq+Attention was an even more revolutionary idea (Google Translate used it)
- Attention allows us to place appropriate weight to the encoder's hidden states
- But:

SUMMARY

- LSTMs are sequential in nature (prohibits parallelization). Very wasteful.
- No explicit modelling of long- and short- range dependencies
- Language is naturally hierarchical (can we do better than Stacked LSTMs?)
- Can we apply the concept of Attention to improve our representations? (i.e., contextualized representations)

Outline

seq2seq + Attention

Self-Attention

Outline

seq2seq + Attention
Self-Attention

Goals

- Each word in a sequence to be transformed into a rich, abstract representation (context embedding) based on the weighted sums of the other words in the same sequence (akin to deep CNN layers)
- Inspired by Attention, we want each word to determine, "how much should I be influenced by each of my neighbors"
- Want positionality

Self-Attention

Self-Attention

Self-Attention's goal is to create great representations, z_{i}, of the input

z_{1} will be based on a weighted contribution of $x_{1}, x_{2}, x_{3}, x_{4}$

Self-Attention

Output
representation

Input vectors
great representations, z_{i}, of the input

Self-Attention

Self-Attention

Step 1: Our Self-Attention Head has just 3 weight matrices W_{q}, W_{k}, W_{v} in total. These same 3 weight matrices are multiplied by each x_{i} to create all vectors:

$$
\begin{aligned}
\mathrm{q}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{q}} \mathrm{x}_{\mathrm{i}} \\
\mathrm{k}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{k}} \mathrm{x}_{\mathrm{i}} \\
\mathrm{v}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{v}} \mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

Under the hood, each x_{i} has 3 small, associated vectors. For example, x_{1} has:

- Query q_{1}
- Key k 1_{1}
- Value \mathbf{v}_{1}

Self-Attention

Step 2: For word x_{1}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}
$s_{1}=q_{1} \cdot k_{1}=112$

Self-Attention

Step 2: For word x_{1}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}

$$
\begin{aligned}
& s_{2}=q_{1} \cdot k_{2}=96 \\
& s_{1}=q_{1} \cdot k_{1}=112
\end{aligned}
$$

Self-Attention

Step 2: For word x_{1}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}

$$
\begin{aligned}
& s_{3}=q_{1} \cdot k_{3}=16 \\
& s_{2}=q_{1} \cdot k_{2}=96 \\
& s_{1}=q_{1} \cdot k_{1}=112
\end{aligned}
$$

Self-Attention

Step 2: For word x_{1}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}

$$
\begin{aligned}
& s_{4}=q_{1} \cdot k_{4}=8 \\
& s_{3}=q_{1} \cdot k_{3}=16 \\
& s_{2}=q_{1} \cdot k_{2}=96 \\
& s_{1}=q_{1} \cdot k_{1}=112
\end{aligned}
$$

Self-Attention

Step 3: Our scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$ don't sum to 1 . Let's divide by $\sqrt{l e n}\left(k_{i}\right)$ and softmax it

$$
\begin{array}{ll}
\mathrm{s}_{4}=\mathrm{q}_{1} \cdot \mathrm{k}_{4}=8 & \mathrm{a}_{4}=\sigma\left(s_{4} / 8\right)=0 \\
\mathrm{~s}_{3}=\mathrm{q}_{1} \cdot \mathrm{k}_{3}=16 & \mathrm{a}_{3}=\sigma\left(s_{3} / 8\right)=.01 \\
\mathrm{~s}_{2}=\mathrm{q}_{1} \cdot \mathrm{k}_{2}=96 & \mathrm{a}_{2}=\boldsymbol{\sigma}\left(s_{2} / 8\right)=.12 \\
\mathrm{~s}_{1}=\mathrm{q}_{1} \cdot \mathrm{k}_{1}=112 & \mathrm{a}_{1}=\sigma\left(s_{1} / 8\right)=.87
\end{array}
$$

The

X_{1}

Self-Attention

Step 3: Our scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$ don't sum to 1 . Let's divide by $\sqrt{l e n}\left(k_{i}\right)$ and softmax it

$$
\begin{array}{ll}
\mathrm{s}_{4}=\mathrm{q}_{1} \cdot \mathrm{k}_{4}=8 & \mathrm{a}_{4}=\sigma\left(s_{4} / 8\right)=0 \\
\mathrm{~s}_{3}=\mathrm{q}_{1} \cdot \mathrm{k}_{3}=16 & \mathrm{a}_{3}=\sigma\left(s_{3} / 8\right)=.01 \\
\mathrm{~s}_{2}=\mathrm{q}_{1} \cdot \mathrm{k}_{2}=96 & \mathrm{a}_{2}=\boldsymbol{\sigma}\left(s_{2} / 8\right)=.12 \\
\mathrm{~s}_{1}=\mathrm{q}_{1} \cdot \mathrm{k}_{1}=112 & \mathrm{a}_{1}=\sigma\left(s_{1} / 8\right)=.87
\end{array}
$$

The

Self-Attention

Step 4: Let's weight our v_{i} vectors and simply sum them up!

$$
\begin{aligned}
z_{1} & =a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4} \\
& =0.87 \cdot v_{1}+0.12 \cdot v_{2}+0.01 \cdot v_{3}+0 \cdot v_{4}
\end{aligned}
$$

Self-Attention

Step 5: We repeat this for all other words, yielding us with great, new z_{i} representations!

$$
z_{2}=a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4}
$$

Self-Attention

Step 5: We repeat this for all other words, yielding us with great, new z_{i} representations!

$$
z_{3}=a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4}
$$

X_{4}

Self-Attention

Step 5: We repeat this for all other words, yielding us with great, new z_{i} representations!

$$
z_{4}=a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4}
$$

Let's illustrate another example:

$$
z_{2}=a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4}
$$

Remember, we use the same 3 weight matrices
$W_{\mathrm{q}}, W_{\mathrm{k}}, \mathrm{W}_{\mathrm{v}}$ as we did for computing z_{1}.
This gives us $\mathrm{q}_{2}, \mathrm{k}_{2}, \mathrm{v}_{\mathbf{2}}$

Self-Attention

Step 1: Our Self-Attention Head I has just 3 weight matrices W_{q}, W_{k}, W_{v} in total. These same 3 weight matrices are multiplied by each x_{i} to create all vectors:

$$
\begin{aligned}
\mathrm{q}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{q}} \mathrm{x}_{\mathrm{i}} \\
\mathrm{k}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{k}} \mathrm{x}_{\mathrm{i}} \\
\mathrm{v}_{\mathrm{i}} & =\mathrm{w}_{\mathrm{v}} \mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

Under the hood, each x_{i} has 3 small, associated vectors. For example, x_{1} has:

- Query q_{1}
- Key k 1_{1}
- Value \mathbf{v}_{1}

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}
$s_{1}=q_{2} \cdot k_{1}=92$

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}

$$
\begin{aligned}
& s_{2}=q_{2} \cdot k_{2}=124 \\
& s_{1}=q_{2} \cdot k_{1}=92
\end{aligned}
$$

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}
$s_{3}=q_{2} \cdot k_{3}=22$
$s_{2}=q_{2} \cdot k_{2}=124$
$s_{1}=q_{2} \cdot k_{1}=92$

Self-Attention

Step 2: For word x_{2}, let's calculate the scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$, which represent how much attention to pay to each respective "word" v_{i}
$\mathrm{s}_{4}=\mathrm{q}_{2} \cdot \mathrm{k}_{4}=8$
$\mathrm{s}_{3}=\mathrm{q}_{2} \cdot \mathrm{k}_{3}=22$
$\mathrm{s}_{2}=\mathrm{q}_{2} \cdot \mathrm{k}_{2}=124$
$\mathrm{s}_{1}=\mathrm{q}_{2} \cdot \mathrm{k}_{1}=92$

Self-Attention

Step 3: Our scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$ don't sum to 1 . Let's divide by $\sqrt{l e n}\left(k_{i}\right)$ and softmax it

$$
\begin{array}{ll}
\mathrm{s}_{4}=\mathrm{q}_{2} \cdot \mathrm{k}_{4}=8 & \mathrm{a}_{4}=\sigma\left(s_{4} / 8\right)=0 \\
\mathrm{~s}_{3}=\mathrm{q}_{2} \cdot \mathrm{k}_{3}=22 & \mathrm{a}_{3}=\sigma\left(s_{3} / 8\right)=.01 \\
\mathrm{~s}_{2}=\mathrm{q}_{2} \cdot \mathrm{k}_{2}=124 & \mathrm{a}_{2}=\boldsymbol{\sigma}\left(s_{2} / 8\right)=.91 \\
\mathrm{~s}_{1}=\mathrm{q}_{2} \cdot \mathrm{k}_{1}=92 & \mathrm{a}_{1}=\boldsymbol{\sigma}\left(s_{1} / 8\right)=.08
\end{array}
$$

Self-Attention

Step 3: Our scores $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$ don't sum to 1 . Let's divide by $\sqrt{l e n}\left(k_{i}\right)$ and softmax it

$$
\begin{array}{ll}
\mathrm{s}_{4}=\mathrm{q}_{2} \cdot \mathrm{k}_{4}=8 & \mathrm{a}_{4}=\sigma\left(s_{4} / 8\right)=0 \\
\mathrm{~s}_{3}=\mathrm{q}_{2} \cdot \mathrm{k}_{3}=22 & \mathrm{a}_{3}=\boldsymbol{\sigma}\left(s_{3} / 8\right)=.01 \\
\mathrm{~s}_{2}=\mathrm{q}_{2} \cdot \mathrm{k}_{2}=124 & \mathrm{a}_{2}=\boldsymbol{\sigma}\left(s_{2} / 8\right)=.91 \\
\mathrm{~s}_{1}=\mathrm{q}_{2} \cdot \mathrm{k}_{1}=92 & \mathrm{a}_{1}=\boldsymbol{\sigma}\left(s_{1} / 8\right)=.08
\end{array}
$$

Instead of these a_{i} values directly weighting our original x_{i} word vectors, they directly weight our v_{i} vectors.

Self-Attention

Step 4: Let's weight our v_{i} vectors and simply sum them up!

$$
\begin{aligned}
z_{2} & =a_{1} \cdot v_{1}+a_{2} \cdot v_{2}+a_{3} \cdot v_{3}+a_{4} \cdot v_{4} \\
& =0.08 \cdot v_{1}+0.91 \cdot v_{2}+0.01 \cdot v_{3}+0 \cdot v_{4}
\end{aligned}
$$

Self-Attention

Tada! Now we have great, new representations z_{i} via a self-attention head

[^0]: Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)

