Lecture 7: seq2seq + Attention

Sequence Generation

Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

教

 \qquad
\qquad

\author{

ScHoolboy Q

 \title{

}
 ［seq2seq］＋Attention（2019）
 ［seq2seq］＋Attention（2019）
 ［seq2seq］＋Attention（2019）
 }
\rightarrow

－
？

都

星
$-\quad$
$-$
$\rightarrow-$
-2

ANNOUNCEMENTS

- HW2 is out! Determine your mystery language.
- Research Proposals are due in 7 days, Sept 30.
- Office Hours:
- Today, my OH will be pushed back: 3:30pm - 5:30pm
- Please reserve your coding questions for the TFs and/or EdStem, as I hold office hours solo, and debugging code can easily bottleneck the queue.
- Saturday @ 9am, l'll host \& record a review session. Submit questions on Ed's Sway

RECAP: L5

- RNNs help capture more context while avoiding sparsity, storage, and compute issues!
- The hidden layer is what we care about. It represents the word's "meaning".
- Often suffers from vanishing/exploding gradients

RECAP: L6

- Gradient Clipping may help all NNs
- LSTMs (1997) are usually much better than vanilla RNNs
- Captures long-range dependencies

- Doesn't suffer as much w/ its gradients

Emilia told her project partner Alan about \qquad latest idea.

He tends to stress out and put too much pressure on himself

RECAP: L6

RECAP: L6

Outline

Long Short-Term Memory (LSTMs)

Bi-LSTM and ELMo
seq2seq
seq2seq + Attention

Outline

Long Short-Term Memory (LSTMs)
Bi-LSTM and ELMo
seq2seq
seq2seq + Attention

LSTMs

They've been around for a while, but essentially unused until 2014!

Juergen Schmidhuber

The Swiss AI Lab, IDSIA, University of Lugano
Verified email at idsia.ch - Homepage
computer science artificial intelligence reinforcement learning neural networks physics

S Hochreiter, J Schmidhuber
Neural computation 9 (8), 1735-1780

Figure 1: Architecture of memory cell c_{j} (the box) and its gate units $i n_{j}$, out ${ }_{j}$. The self-recurrent connection (with weight 1.0) indicates feedback with a delay of 1 time step. It builds the bas is of the "constant error carrousel" CEC. The gate units open and close access to CEC. See text and appendix A. 1 for details.

Why gate units? To avoid input weight conflicts, $i n_{j}$ controls the error flow to memory cell c_{j} 's input connections $w_{c_{j} i}$. To circumvent c_{j} 's output weight conflicts, out ${ }_{j}$ controls the error flow from unit j 's output connections. In other words, the net can use $i n_{j}$ to decide when to keep or override information in memory cell c_{j}, and $o u t_{j}$ to decide when to access memory cell c_{j} and when to prevent other units from being perturbed by c_{j} (see Figure 1).

Sequential Modelling

IMPORTANT

If your goal isn't to predict the next item in a sequence, you could instead perform classification or regression task using the learned, hidden representations.

Sequential Modelling

Language Modelling

1-to-1 tagging/classification

Sequential Modelling

Language Modelling
1-to-1 tagging/classification

Sequential Modelling

Regression
Binary classification
Multi-class classification

Many-to-1 classification

Sequential Modelling

Many-to-1 classification

Sentiment score
0000
\uparrow
Output layer
000000000000000

Hidden layer

Input layer

Types of Prediction

input
output
Regression I love hiking! 0.9
Binary Classification I love hiking! Positive or negative
Multi-class Classification I love hiking! Very positive, positive, neutral, negative, or very negative
Structured Prediction
I love hiking!
PRP VBP NN(difficult scenario when your output hasexponential/infinite \# of possibilities)

Types of Prediction (an independent axis)

Unconditioned Prediction: predict some single variable. P(X)
Example: language modelling. $\mathrm{X}=$ "I like hiking!"

Conditioned Prediction: predict the probability of an output variable, given the input. $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$

Example: text classification. $Y=$ positive. $X=$ "I like hiking!"

Types of Prediction (an independent axis)

Unconditioned Prediction: predict some single variable. P(X) Ex Janguage modelling. $X=$ "I like hiking!"
(un)conditioned is referring to if you're entire model is predicated upon some particular input.
given the mout. P(TIA)
Example: text classification. $Y=$ positive. $X=$ "I like hiking!"

Types of Prediction (an independent axis)

Unconditioned Prediction predict some single variable. P(X)
Example: language modelling. $\mathrm{X}=$ "I like hiking!"

Types of Unconditional Prediction

$$
\begin{aligned}
& \text { Left-to-right Markov Chain (order n-1) } \\
& P(X)=\prod_{i=1}^{|X|} P\left(x_{i} \mid x_{i-n+1}, \ldots, x_{i-1}\right)
\end{aligned}
$$

Left-to-right Autoregressive Prediction

$$
P(X)=\prod_{i=1}^{|X|} P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

Types of Unconditional Prediction

$$
\begin{aligned}
& \text { Bidirectional Prediction } \\
& P(X) \neq \prod_{i=1}^{|X|} P\left(x_{i} \mid x_{\neq i}\right) \\
& i=1 \quad \text { (e.g. masked language model) }
\end{aligned}
$$

Formally, a language model estimates the probability of a sequence, so this is illegal. It cheats in a manner that we call them masked language models (not proper prob. dist and they don't estimate sequences)

Types of Conditional Prediction

Many-to-1 classification

$$
P(y \mid X)
$$

Many-to-many classification

Non-autoregressive Conditioned Prediction

$$
P(Y \mid X)=\prod_{i=1}^{|Y|} P\left(y_{i} \mid X\right)
$$

(e.g. sequence labeling, non-autoregressive MT)

Autoregressive Conditioned Prediction
$P(Y \mid X)=\prod_{i=1}^{|Y|} P\left(y_{i} \mid X, y_{1}, \ldots, y_{i-1}\right)$
(e.g. seq2seq model)

Source $X \quad$ Target Y

This concludes the foundation in sequential representation.

Most state-of-the-art advances are based on those core RNN/LSTM ideas. But, with tens of thousands of researchers and hackers exploring deep learning, there are many tweaks that haven proven useful.
(aka this is where things get crazy.)

Outline

Long Short-Term Memory (LSTMs)
Bi-LSTM and ELMo
seq2seq
seq2seq + Attention

Outline

Long Short-Term Memory (LSTMs)
Bi-LSTM and ELMo
seq2seq
seq2seq + Attention

RNN Extensions: Bi-directional LSTMs

RNNs/LSTMs use the left-to-right context and sequentially process data.

If you have full access to the data at testing time, why not make use of the flow of information from right-to-left, also?

RNN Extensions: Bi-directional LSTMs

For brevity, let's use the follow schematic to represent an RNN

Hidden layer

Input layer

RNN Extensions: Bi-directional LSTMs

For brevity, let's use the follow schematic to represent an RNN

RNN Extensions: Bi-directional LSTMs

Concatenate the hidden layers

Hidden layer

Input layer

RNN Extensions: Bi-directional LSTMs

RNN Extensions: Bi-directional LSTMs

BI-LSTM STRENGTHS?

- Usually performs at least as well as uni-directional RNNs/LSTMs

BI-LSTM ISSUES?

- Slower to train
- Only possible if access to full data is allowed

Type of Unconditional Prediction

Hidden layers provide an abstraction (holds "meaning").

Stacking hidden layers provides increased abstractions.

Hidden layer \#1

Input layer

RNN Extensions: Stacked LSTMs

Hidden layer \#2

Hidden layer \#1

Input layer

x_{1}

Hidden layers provide an abstraction (holds "meaning").

Stacking hidden layers provides increased abstractions.

RNN Extensions: Stacked LSTMs

Hidden layers provide an abstraction (holds "meaning").

Stacking hidden layers provides increased abstractions.

ELMo: Stacked Bi-directional LSTMs

General Idea:

- Goal is to get highly rich, contextualized embeddings (word tokens)
- Use both directions of context (bi-directional), with increasing abstractions (stacked)
- Linearly combine all abstract representations (hidden layers) and optimize w.r.t. a particular task (e.g., sentiment classification)

ELMo: Stacked Bi-directional LSTMs

| | Forward Language Model |
| :--- | :--- | :--- |
| LSTM | |
| Layer \#2 | |
| LSTM | |
| Layer \#1 | |

Embedding of "stick" in "Let's stick to" - Step \#2

1- Concatenate hidden layers Forward Language Model

2- Multiply each vector by a weight based on the task

3- Sum the (now weighted) vectors

stick

ELMo embedding of "stick" for this task in this context
Illustration: http://jalammar.github.io/illustrated-bert/

ELMo: Stacked Bi-directional LSTMs

TASK	PREVIOUS SOTA		OUR BASELINE BASELINE	ELMO + INCREASE (ABSOLUTE/ RELATIVE)	
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	$4.7 / 24.9 \%$
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	$0.7 / 5.8 \%$
SRL	He et al. (2017)	81.7	81.4	84.6	$3.2 / 17.2 \%$
Coref	Lee et al. (2017)	67.2	67.2	70.4	$3.2 / 9.8 \%$
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	$2.06 / 21 \%$
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	$3.3 / 6.8 \%$

ELMo: Stacked Bi-directional LSTMs

Model	\mathbf{F}_{1}
WordNet 1st Sense Baseline	65.9
Raganato et al. (2017a)	69.9
Iacobacci et al. (2016)	$\mathbf{7 0 . 1}$
CoVe, First Layer	59.4
CoVe, Second Layer	64.7
biLM, First layer	67.4
biLM, Second layer	69.0

Table 5: All-words fine grained WSD F_{1}. For CoVe and the biLM, we report scores for both the first and second layer biLSTMs.

Model	Acc.
Collobert et al. (2011)	97.3
Ma and Hovy (2016)	97.6
Ling et al. (2015)	$\mathbf{9 7 . 8}$
CoVe, First Layer	93.3
CoVe, Second Layer	92.8
biLM, First Layer	97.3
biLM, Second Layer	96.8

Table 6: Test set POS tagging accuracies for PTB. For CoVe and the biLM, we report scores for both the first and second layer biLSTMs.

The higher layer seems to learn semantics while the lower layer probably captured syntactic features

ELMo: Stacked Bi-directional LSTMs

- ELMo yielded incredibly good contextualized embeddings, which yielded SOTA results when applied to many NLP tasks.
- Main ELMo takeaway: given enough training data, having tons of explicit connections between your vectors is useful (system can determine how to best use context)

RECAP

- Language Modelling may help us for other tasks
- LSTMs do a great job of capturing "meaning", which can be used for almost every task
- Given a sequence of N words, we can produce 1 output
- Given a sequence of N words, we can produce N outputs

RECAP

- Language Modelling may help us for other tasks
- LSTMs do a great job of capturing "meaning", which can be used for almost every task
- Given a sequence of N words, we can produce 1 output
- Given a sequence of N words, we can produce N outputs
- What if we wish to have M outputs?

We want to produce a variable-length output (e.g., $n \rightarrow m$ predictions)

Outline

Long Short-Term Memory (LSTMs)
Bi-LSTM and ELMo
seq2seq
seq2seq + Attention

Outline

Long Short-Term Memory (LSTMs)
Bi-LSTM and ELMo
seq2seq
seq2seq + Attention

Sequence-to-Sequence (seq2seq)

- If our input is a sentence in Language A, and we wish to translate it to Language B, it is clearly sub-optimal to translate word by word (like our current models are suited to do).
- Instead, let a sequence of tokens be the unit that we ultimately wish to work with (a sequence of length N may emit a sequences of length M)
- seq2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder

Sequence-to-Sequence (seq2seq)

ENCODER RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

ENCODER RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

The final hidden state of the encoder RNN is the initial state of the decoder RNN

Sequence-to-Sequence (seq2seq)

Sequence-to-Sequence (seq2seq)

Sequence-to-Sequence (seq2seq)

Sequence-to-Sequence (seq2seq)

See any issues with this traditional seq2seq paradigm?

Sequence-to-Sequence (seq2seq)

Sequence-to-Sequence (seq2seq)

It's crazy that the entire "meaning" of the $1^{\text {st }}$ sequence is expected to be packed into this one embedding, and that the encoder then never interacts $w /$ the decoder again. Hands free.

Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to a distribution of all of the encoder's hidden states?

Sequence-to-Sequence (seq2seq)

Instead, what if the decoder, at each step, pays attention to a distribution of all of the encoder's hidden states?

Intuition: when we (humans) translate a sentence, we don't just consume the original sentence, reflect on the meaning of the last word, then regurgitate in a new language; we continuously think back at the original sentence while focusing on different parts.

Attention

The concept of attention within cognitive neuroscience and psychology dates back to the 1800s. [William James, 1890].

Nadaray-Watson kernel regression proposed in 1964. It locally weighted its predictions.

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

Attention (raw scores)

$\begin{array}{ll}e_{1} & 1.5\end{array}$
$\begin{array}{ll}e_{2} & 0.9\end{array}$
$e_{3} \quad 0.2$
$e_{4}-0.5$

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

seq2seq + Attention

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?
A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

We multiply each encoder's hidden layer by its a_{i}^{1} attention weights to create a context vector c_{1}^{D}

DECODER RNN
Attention (softmax'd)

$$
\begin{aligned}
a_{1}^{1} & =0.51 \\
a_{2}^{1} & =0.28 \\
a_{3}^{1} & =0.14 \\
a_{3}^{1} & =0.07
\end{aligned}
$$

seq2seq + Attention

REMEMBER: each attention weight a_{i}^{j} is based on the decoder's current hidden state, too.

seq2seq + Attention

REMEMBER: each attention weight a_{i}^{j} is based on the decoder's current hidden state, too.

seq2seq + Attention

REMEMBER: each attention weight a_{i}^{j} is based on the decoder's current hidden state, too.

seq2seq + Attention

REMEMBER: each attention weight a_{i}^{j} is based on the decoder's current hidden state, too.

seq2seq + Attention

REMEMBER: each attention weight a_{i}^{j} is based on the decoder's current hidden state, too.

For convenience, here's the Attention calculation summarized on 1 slide

Attention output

$$
\oint_{\text {(weighted }}^{\text {sum })}
$$

Attention weights $\quad a_{k}^{(t)}=\frac{\exp \left(\operatorname{score}\left(h_{t}, s_{k}\right)\right)}{\sum_{i=1}^{m} \exp \left(\operatorname{score}\left(h_{t}, s_{i}\right)\right)}, \mathrm{k}=1 . . \mathrm{m}$
(softmax)
"attention weight for source token k at decoder step t "

Attention scores

$$
\begin{aligned}
& \operatorname{score}\left(h_{t}, s_{k}\right), \mathrm{k}=1 . . \mathrm{m} \\
& \text { "How relevant is source token } k \text { for target step } t \text { ?" }
\end{aligned}
$$

Attention input

$$
\begin{aligned}
& s_{1}, s_{2}, \ldots, s_{m} \\
& \text { all encoder states }
\end{aligned}
$$

h_{t}
one decoder state

For convenience, here's the Attention calculation summarized on 1 slide

The Attention mechanism that produces scores doesn't have to be a FFNN like I
illustrated. It can be any function you wish.

Attention scores $\quad \operatorname{score}\left(h_{t}, s_{k}\right), \mathrm{k}=1 . . \mathrm{m}$
"How relevant is source token k for target step t ?"

Popular Attention Scoring functions:

Dot-product

$\operatorname{score}\left(h_{t}, s_{k}\right)=h_{t}^{T} s_{k} \quad \operatorname{score}\left(h_{t}, s_{k}\right)=h_{t}^{T} W s_{k}$

Multi-Layer Perceptron

$\operatorname{score}\left(h_{t}, s_{k}\right)=w_{2}^{T} \cdot \tanh \left(W_{1}\left[h_{t}, s_{k}\right]\right)$

seq2seq + Attention

Attention:

- greatly improves seq2seq results
- allows us to visualize the contribution each encoding word gave for each decoder's word

Constituency Parsing

Input: dogs chase cats

Output:

or a flattened representation
$\left.\left(\mathrm{S}(\mathrm{NP} \text { dogs })_{\mathrm{NP}}(\mathrm{VP} \text { chase (NP cats })_{\mathrm{NP}}\right)_{\mathrm{VP}}\right)_{\mathrm{S}}$

Constituency Parsing

Input: I shot an elephant in my pajamas

Output:

Figure 13.2 Two parse trees for an ambiguous sentence. The parse on the left corresponds to the humorous reading in which the elephant is in the pajamas, the parse on the right corresponds to the reading in which Captain Spaulding did the shooting in his pajamas.

Model	English			Chinese		
	LR	LP	F1	LR	LP	F1
Shen et al. (2018)	92.0	91.7	91.8	86.6	86.4	86.5
Fried and Klein (2018)	-	-	92.2	-	-	87.0
Teng and Zhang (2018)	92.2	92.5	92.4	86.6	88.0	87.3
Vaswani et al. (2017)	-	-	92.7	-	-	-
Dyer et al. (2016)	-	-	93.3	-	-	84.6
Kuncoro et al. (2017)	-	-	93.6	-	-	-
Charniak et al. (2016)	-	-	93.8	-	-	-
Liu and Zhang (2017b)	91.3	92.1	91.7	85.9	85.2	85.5
Liu and Zhang (2017a)	-	-	94.2	-	-	86.1
Suzuki et al. (2018)	-	-	94.32	-	-	-
Takase et al. (2018)	-	-	94.47	-	-	-
Fried et al. (2017)	-	-	94.66	-	-	-
Kitaev and Klein (2018)	94.85	95.40	95.13	-	-	-
Kitaev et al. (2018)	95.51	96.03	95.77	91.55	91.96	91.75
Zhou and Zhao (2019)	95.70	95.98	95.84	$\mathbf{9 2 . 0 3}$	92.33	92.18
(BERT)						
Zhou and Zhao (2019)	96.21	96.46	96.33	-	-	-
(XLNet)						
Our work	$\mathbf{9 6 . 2 4}$	$\mathbf{9 6 . 5 3}$	$\mathbf{9 6 . 3 8}$	91.85	$\mathbf{9 3 . 4 5}$	$\mathbf{9 2 . 6 4}$

Table 3: Constituency Parsing on PTB \& CTB test sets.

Image Captioning

Input: image

Output: generated text

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

[^0]
Image Captioning

Input: image
Output: generated text

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

Figure 3. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

Image Captioning

A large white bird standing in a forest.

A woman holding a clock in her hand.

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A woman is sitting at a table with a large pizza.

Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

SUMMARY

- LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)
- seq2seq+Attention was an even more revolutionary idea (Google Translate used it)
- Attention allows us to place appropriate weight to the encoder's hidden states
- But, LSTMs require us to iteratively scan each word and wait until we're at the end before we can do anything

BACKUP

[^0]: Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. Xu et al. CVPR (2016)

