Lecture 4: Neural Language Models

An introduction with word2vec

Harvard AC295/CS287r/CSCI E-115B Chris Tanner

"It was all a dream, I used to read [word2vec] magazine; [skip-gram] and [CBOW] up in the limousine"

- Christopher Wallace

ANNOUNCEMENTS

- Keep an eye on the **HW1 Errata**, posted on Ed. HW1 is due in 1 week!
- We now have a **Slack** workspace, mostly for lively discussion and research work
- Ed is still our main forum for all official communication, questions you may have, and remote Quizzes.
- Office Hours change a little:
 - Mon @ 1pm 3pm Mon @ 1:30pm 3:30pm
 - Sat @ 10am 11am Sun @ 10am 11am

ANNOUNCEMENTS

Research Project:

- Add your ideas and name/info to **Research Brainstorming** spreadsheet
- Phase 1 is due Sept 30. Write a 1-page proposal for one of your ideas listed

on **Research Brainstorming**. Afterwards, we'll refine the list to ~25 projects

and determine teams.

• Phase 2 is due Oct 14. This will lock-in all 20 projects and teammates.

Default character-level representations aren't useful

RECAP: L2

- Simple **document-level** <u>representations</u> (e.g., BoW and TFIDF) can be useful but have weaknesses:
 - Context-insensitive ("the horse ate" = "ate the horse")
 - Curse of Dimensionality (vocab could be over 100k)
 - Orthogonality: no concept of semantic similarity at the word-level

RECAP: L3

- Language Modelling is a core NLP <u>task</u> and highly useful for many other tasks.
- **n-gram** models (count-based) can be surprisingly useful but have weaknesses:
 - Must handle OOV words (all LMs must do this)
 - Unsustainable approach to handling increasingly larger contexts
 - No semantic information is conveyed by the counts (e.g., vehicle vs car)
- **Perplexity** is the canonical evaluation metric for LMs

Bi-gram model with alpha-beta smoothing
$$P("w,w'") = \frac{n_{w,w'}(d) + \beta * P(w')}{n_{w,w*}(d) + \beta} , \text{ where } P(w') = \frac{n_{w'}(d) + \alpha}{n_{w*} + \alpha |V|}$$

Outline

Featurized, Linear Model

Bengio (2003)

Evaluation

Remaining challenges

Outline

Remaining Issues

1. More context while avoiding <u>sparsity</u>, <u>storage</u>, and <u>compute</u> issues

2. No semantic information conveyed by counts (e.g., vehicle vs car)

3. Cannot leverage non-consecutive patterns

Dr. West _____

Dr. Cornell West ____

Occurred 25 times

Occurred 3 times

4. Cannot capture combinatorial signals (i.e., non-linear prediction)

P(Chef cooked food)highP(Chef ate food)low

P(Customer cooked food) low

New goals!

low

P(Customer ate food) high

Instead of counts, let's move toward having **words** represented as <u>features</u>, where **#** features \ll **#** of words in vocab

We can develop a very simple linear model that calculates word probabilities

Specifically, let's have:

- 1 featurized representation for word w_{i-2}
- A <u>separate</u> representation for word w_{i-1}

Combine them w/ a bias, and predict the *next* word

Featurized Model

"passing a ____"
$$w_{i-2} \quad w_{i-1} \quad w_i$$

Featurized Model

"passing a ____"
$$w_{i-2} \quad w_{i-1} \quad w_i$$

Featurized Model "passing a _____" W_{i-2} W_{i-1} W_i These are the only 3 components of our model. Vx1 Vx1Vx1Vx1softmax 😑 ++_ bias 🔪 word probs raw scores Lookup table(w_{i-1}) Lookup table(w_{i-2})

passing

а

17

Vx1

Featurized Model How we do train a model to learn these 2 matrices, and the bias vector? Vx1 Vx1Vx1VxV ++bassing word props bias 📕 Lookup table(w_{i-2}) Lookup table(w_{i-1}) VxV passing а

Featurized Model

Train the model using gradient descent:

- Use our output probabilities
- Calculate the cross-entropy loss
- Use backprop to calculate gradients
- Update the 2 embedding matrices and bias via GD

What does it mean to "update" these Embedding matrices? How? Where are the weights?!

See chalkboard for details.

Unknown Words

- We still need to handle UNK words. Always.
- Language is always evolving
- Zipfian distribution
- Larger vocabularies require more memory and compute time

How can we handle UNK words in a neural model?

Common ways to amend the <u>data</u>:

- Frequency threshold (e.g., UNK <= 2)
- Remove bottom N%
- Represent each word as sub-words (e.g., byte-pair encodings)

Common neural <u>modelling</u> approaches:

• Add an UNK token to your vocabulary (just like for n-grams)

Very Important:

- Any given LM must be able to generate the test set (at least).
 Otherwise, it cannot be fairly evaluated (OOV problem).
- When comparing multiple LMs to each other, their vocabularies must be the same (e.g., words, sub-words, characters).

Remaining Issues

1. More context while avoiding <u>sparsity</u>, <u>storage</u>, and <u>compute</u> issues

2. No semantic information conveyed by counts (e.g., vehicle vs car)

3. Cannot leverage non-consecutive patterns

Dr. West _____

Dr. Cornell West _____

Occurred 25 times

Occurred 3 times

4. Cannot capture combinatorial signals (i.e., non-linear prediction)

P(Chef cooked food)highP(Chef ate food)low

P(Customer cooked food) low

New goals!

P(Customer ate food) high

We clearly need:

- dense representations (i.e., < |V|)
- leverage semantic information
- non-linear power

Neural models, here we come!

Outline

Outline

Featurized, Linear Model

Bengio (2003)

Evaluation

Remaining challenges

Non-linear power: using <u>non-linear</u> activation

functions can allow us to capture rich, combinatorial

attributes of language

Neural Network Motivation

Curse of dimensionality:

- Say our vocab |V| = 100,000
- Naively modelling the joint probability of 10 consecutive,

discrete random variables (e.g., words in a sentence) yields

 $100,000^{10} - 1 = 10^{50}$ free parameters.

• Word embeddings reduce the # of parameters and hopefully improve the model's ability to generalize

1.1 Fighting the Curse of Dimensionality with Distributed Representations

In a nutshell, the idea of the proposed approach can be summarized as follows:

- associate with each word in the vocabulary a distributed word feature vector (a realvalued vector in R^m),
- 2. express the joint *probability function* of word sequences in terms of the feature vectors of these words in the sequence, and
- 3. learn simultaneously the word feature vectors and the parameters of that probability function.

1.1 Fighting the Curse of Dimensionality with Distributed Representations

In a nutshell, the idea of the proposed approach can be summarized as follows:

- associate with each word in the vocabulary a distributed word feature vector (a realvalued vector in R^m),
- 2. express the joint *probability function* of word sequences in terms of the feature vectors of these words in the sequence, and
- 3. learn simultaneously the *word feature vectors* and the parameters of that *probability function*.

Simultaneously learn the representation and do the modelling!

Bengio (2003)

Simultaneously learn the representation and do the modelling!

- Each circle is a specific floating point scalar
- Words that are more <u>semantically similar</u> to one another will have embeddings that are proportionally similar, too

Bengio (2003)

 $y = b + Wx + U \tanh(d + Hx)$ $x = [C(w_{t-3}), C(w_{t-2}), C(w_{t-1})]$ $\theta = \{b, W, U, d, H, C\}$

 ${\mathcal X}$

Word embeddings: similar input words get similar vectors \boldsymbol{x}

Similar **contexts** get similar hidden states

Similar **output words** get similar rows in the output matrix **U**

Slide adapted from or inspired by Graham Neubig's CMU NLP 2021

(a) Perform forward computation for the word features layer:

$$x(k) \leftarrow C(w_{t-k}),$$

$$x = (x(1), x(2), \cdots, x(n-1))$$

(b) Perform forward computation for the hidden layer:
 o ← *d* + *Hx a* ← tanh(*o*)

FORWARD PASS (c) Perform forward computation for output units in the *i*-th block: $s_i \leftarrow 0$

Loop over j in the *i*-th block

i. $y_j \leftarrow b_j + a.U_j$ ii. If (direct connections) $y_j \leftarrow y_j + x.W_j$ iii. $p_j \leftarrow e^{y_j}$

iv. $s_i \leftarrow s_i + p_j$

- (d) Compute and share $S = \sum_i s_i$ among the processors. This can easily be achieved with an MPI Allreduce operation, which can efficiently compute and share this sum.
- (e) Normalize the probabilities:

Loop over *j* in the *i*-th block, $p_j \leftarrow p_j/S$.

(f) Update the log-likelihood. If w_t falls in the block of CPU i > 0, then CPU i sends p_{w_t} to CPU 0. CPU 0 computes $L = \log p_{w_t}$ and keeps track of the total log-likelihood.

BACKWARD PASS

BACKWARD/UPDATE PHASE, with learning rate ε .

- (a) Perform backward gradient computation for output units in the *i*-th block: clear gradient vectors $\frac{\partial L}{\partial a}$ and $\frac{\partial L}{\partial x}$. Loop over *j* in the *i*-th block
 - i. $\frac{\partial L}{\partial y_j} \leftarrow 1_{j==w_t} p_j$ ii. $b_j \leftarrow b_j + \varepsilon \frac{\partial L}{\partial y_j}$ If (direct connections) $\frac{\partial L}{\partial x} \leftarrow \frac{\partial L}{\partial x} + \frac{\partial L}{\partial y_j} W_j$ $\frac{\partial L}{\partial a} \leftarrow \frac{\partial L}{\partial a} + \frac{\partial L}{\partial y_j} U_j$ If (direct connections) $W_j \leftarrow W_j + \varepsilon \frac{\partial L}{\partial y_j} x$ $U_j \leftarrow U_j + \varepsilon \frac{\partial L}{\partial y_j} a$
- (b) Sum and share $\frac{\partial L}{\partial x}$ and $\frac{\partial L}{\partial a}$ across processors. This can easily be achieved with an MPI Allreduce operation.
- (c) Back-propagate through and update hidden layer weights:

Loop over k between 1 and h,

 $\begin{array}{l} \frac{\partial L}{\partial o_k} \leftarrow (1 - a_k^2) \frac{\partial L}{\partial a_k} \\ \frac{\partial L}{\partial x} \leftarrow \frac{\partial L}{\partial x} + H' \frac{\partial L}{\partial o} \\ d \leftarrow d + \varepsilon \frac{\partial L}{\partial o} \\ H \leftarrow H + \varepsilon \frac{\partial L}{\partial o} x' \end{array}$

(d) Update word feature vectors for the input words: Loop over k between 1 and n-1 $C(w_{t-k}) \leftarrow C(w_{t-k}) + \varepsilon \frac{\partial L}{\partial x(k)}$ where $\frac{\partial L}{\partial x(k)}$ is the k-th block (of length m) of the vector $\frac{\partial L}{\partial x}$.

Train the model using gradient descent:

- Use our output probabilities
- Calculate the cross-entropy loss
- Use backprop to calculate gradients
- Update all weight matrices and bias via GD

SAME AS WE DO FOR ALL OF OUR NEURAL NETS

Benaio	(2003)
Dengio	

RESULTS

	n	С	h	m	direct	mix	train.	valid.	test.
MLP1	5		50	60	yes	no	182	284	268
MLP2	5		50	60	yes	yes		275	257
MLP3	5		0	60	yes	no	201	327	310
MLP4	5		0	60	yes	yes		286	272
MLP5	5		50	30	yes	no	209	296	279
MLP6	5		50	30	yes	yes		273	259
MLP7	3		50	30	yes	no	210	309	293
MLP8	3		50	30	yes	yes		284	270
MLP9	5		100	30	no	no	175	280	276
MLP10	5		100	30	no	yes		265	252
Del. Int.	3						31	352	336
Kneser-Ney back-off	3							334	323
Kneser-Ney back-off	4							332	321
Kneser-Ney back-off	5							332	321
class-based back-off	3	150						348	334
class-based back-off	3	200						354	340
class-based back-off	3	500						326	312
class-based back-off	3	1000						335	319
class-based back-off	3	2000						343	326
class-based back-off	4	500						327	312
class-based back-off	5	500					e	327	312

1. More context while avoiding <u>sparsity</u>, <u>storage</u>, and <u>compute</u> issues

2. No semantic information conveyed by counts (e.g., vehicle vs car)

3. Cannot leverage non-consecutive patterns

Dr. West _____

Dr. Cornell West _____

Occurred 25 times

Occurred 3 times

4. Cannot capture combinatorial signals (i.e., non-linear prediction)

P(Chef cooked food) high P(Chef ate food) low

P(Customer cooked food) low

New goals!

P(Customer ate food) high

Slide adapted from or inspired by Graham Neubig's CMU NLP 2021

This was not the first neural language model, but it was the first, highly compelling model with great results (e.g., beating n-grams)

The softmax output layer is annoyingly slow

Outline

Featurized, Linear Model

Bengio (2003)

Evaluation

Remaining challenges

Outline

Featurized, Linear Model

Bengio (2003)

word2vec (2013)

Evaluation

Remaining challenges

Distributional: meaning is represented by the contexts in which its used

"Distributional statements can cover all of the material of a language without requiring support from other types of information"

-- Zellig Harris. *Distributional Structure*. (1954)

"You shall know a word by the company it keeps"

-- John Rupert Firth. A Synopsis of Linguistics Theory. (1957)

I bought a _____

Good morning, _____

I got my _____

I bought a _____ from the bakery

Good morning, _____. Rise and shine!

I got my _____ license last week

Two approaches:

- 1. Continuous Bag-of-Words (CBOW)
- 2. Skip-gram w/ negative sampling

Step 1: Iterate through your entire corpus, with sliding context windows of size N and step size 1

Step 2: Using all **2N** context words, <u>except the center word</u>, try to predict the center word.

Step 3: Calculate your loss and update parameters (like always)

word2vec: CBOW

CBOW

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

word2vec: CBOW

y = U * sum(Hx)

 $\mathbf{x} = [w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2}]$

- N = # total context words D = embedding size
- V = # word types

INPUT PROJECTION OUTPUT w(t-2) w(t-1) SUM y w(t) U V x 1 Р D Х w(t+1) D x 1 w(t+2) X $\boldsymbol{\chi}$ V X CBOW

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

word2vec: CBOW

• Linear projection layer

• Non-linear output layer (softmax)

• Training in batches helps a lot

Step 1: Iterate through your entire corpus, with sliding context windows of size N and step size 1

Step 2: Using the masked center word, try to predict all 2N center words.

Step 3: Calculate your loss and update parameters (like always)

INPUT PROJECTION OUTPUT

word2vec: skip-gram

Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

In practice, this softmax is painfully slow.

Instead, flip the modelling to be pairs of words:

e.g., (center word, context word_i)

It would learn to always predict 1. So, probabilistically sample negative examples based on their frequencies

word2vec: results

- Smaller window sizes yield embeddings such that high similarity scores indicates that the words are *interchangeable*
- Larger window sizes (e.g., 15+) yield embeddings such that high similarity is more indicative of *relatedness* of the words.

- Words that appear in the same contexts are forced to gravitate toward having the same embeddings as one another
- Imagine two words, w_1 and w_2 , that never appear together, but they each, individually have the <u>exact same contexts</u> with *other* words. w_1 and w_2 will have ~identical embeddings!
- "The" appears the most. What do you imagine its embedding is like?

word2vec results

60

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-Syntactic Word Relationship test set.

Type of relationship	Word Pair 1		Word Pair 2		
Common capital city	Athens Greece		Oslo	Norway	
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe	
Currency	Angola	kwanza	Iran	rial	
City-in-state	Chicago	Illinois	Stockton	California	
Man-Woman	brother	sister	grandson	granddaughter	
Adjective to adverb	apparent	apparently	rapid	rapidly	
Opposite	possibly	impossibly	ethical	unethical	
Comparative	great	greater	tough	tougher	
Superlative	easy	easiest	lucky	luckiest	
Present Participle	think	thinking	read	reading	
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian	
Past tense	walking	walked	swimming	swam	
Plural nouns	mouse	mice	dollar	dollars	
Plural verbs	work	works	speak	speaks	

Table 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skipgram model trained on 783M words with 300 dimensionality).

Relationship	Example 1 Example 2		Example 3	
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee	
big - bigger	small: larger	cold: colder	quick: quicker	
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii	
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter	
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan	
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium	
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack	
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone	
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs	
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza	

word2vec results

Incredible finding!!

king – man + woman ~= queen

Disclaimer: As a heads-up, <u>no models</u> create embeddings such that the dimensions actually correspond to <u>linguistic or real-world phenomenon</u>.

The embeddings are often really great and useful, but no single embedding (in the absence of others) is interpretable. Outline

Featurized, Linear Model

Bengio (2003)

word2vec (2013)

Evaluation

Remaining challenges

Outline

Featurized, Linear Model

Bengio (2003)

Evaluation

Remaining challenges

Evaluation

We cheated by looking ahead, so it's unfair to measure perplexity against n-gram or other auto-regressive LM

Intrinsic evaluation:

- Word similarity tasks
- Word analogy tasks

Extrinsic evaluation:

• Apply to downstream tasks (e.g., Natural language inference, entailment, question answering, information retrieval)

Evaluation

Word Similarity

SimLex-999

word1	word2	SimLex999
absence	presence	0.4
absorb	learn	5.48
absorb	possess	5
absorb	withdraw	2.97
abundance	plenty	8.97
accept	reject	0.83
accept	acknowled	6.88
accept	believe	6.75
accept	deny	1.75
accept	forgive	3.73

Slide adapted from or inspired by Sam Bowman's NYU NLP 2021

Word Analogy

vector('king') - vector('man') + vector('woman') \approx vector('queen') vector('Paris') - vector('France') + vector('Italy') \approx vector('Rome')

Outline

Featurized, Linear Model

Bengio (2003)

Evaluation

Remaining challenges

Outline

Featurized, Linear Model

Bengio (2003)

Evaluation

Remaining Challenges

- Still can't handle long-range dependencies.
- Each decision is independent of the previous!
- Having a small, fixed window that repeats is a bit forced and awkward