
Harvard
AC295/CS287r/CSCI E-115B
Chris Tanner

The backbone of NLP

Lecture 3: Language Models

Today’s lecture is brought to you by Teddy.

Don’t forget to

start HW1 early!

3

ANNOUNCEMENTS

• Keep an eye on the HW1 Errata, posted on Ed.

• I’ll hold Office Hours today 2:30pm – 4:30pm

• Location: out back of SEC 1st floor, or SEC 3.301-3.303 if weather isn’t good

4

RECAP

• Default character-level representations aren’t useful

• Simple document-level representations can be useful but have weaknesses

• Context-insensitive (“the horse ate” = “ate the horse”)

• Curse of Dimensionality (vocab could be over 100k)

• Orthogonality: no concept of semantic similarity at the word-level

a t e
61 74 65

TFIDF = 𝑓𝑤! * 𝑙𝑜𝑔 (# docs in corpus
docs containing!!

)

Outline

Language Modelling: what and why?

Unigrams

Bigrams

Evaluation

Beyond count-based models

Outline

Language Modelling: what and why?

Unigrams

Bigrams

Evaluation

Beyond count-based models

7

Language Modelling

A Language Model represents the language used by a given entity
(e.g., a particular person, genre, or other well-defined class of text)

A Language Model represents the language used by a given entity
(e.g., a particular person, genre, or other well-defined class of text)

8

Language Modelling

A Language Model represents the language used by a given entity
(e.g., a particular person, genre, or other well-defined class of text)

9

Language Modelling

A Language Model estimates the probability of any sequence of words

10

FORMAL DEFINITION

Let 𝑿 = “Anqi was late for class”

P(𝑿) = 𝑃(“Anqi was late for class”)

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Language Modelling

Generate Text

11

Language Modelling

Generate Text

12

Language Modelling

Generate Text

13

Language Modelling

“Drug kingpin El Chapo testified that he gave MILLIONS to Pelosi,
Schiff & Killary. The Feds then closed the courtroom doors.”

14

Language Modelling

15

A Language Model is useful for:

Generating Text Classifying Text

• Auto-complete

• Speech-to-text

• Question-answering / chatbots

• Machine translation

• Summarization

• Authorship attribution

• Detecting spam vs not spam

• Grammar Correction

And much more!

Language Modelling

16

Scenario: assume we have a finite vocabulary 𝑉

𝑉 ∗ represents the infinite set of strings/sentences that we could
construct

e.g., 𝑉 ∗= {a, a dog, a frog, dog a, dog dog, frog dog, frog a dog, …}

Data: we have a training set of sentences x ∈ 𝑉 ∗

Problem: estimate a probability distribution:

*
&∈(

∗
𝑝 𝑥 = 1

𝑝 𝑡ℎ𝑒 = 10)"

𝑝 𝑤𝑎𝑡𝑒𝑟𝑓𝑎𝑙𝑙, 𝑡ℎ𝑒, 𝑖𝑐𝑒𝑐𝑟𝑒𝑎𝑚 = 3.2𝑥10)!*
𝑝 𝑡ℎ𝑒, 𝑠𝑢𝑛, 𝑜𝑘𝑎𝑦 = 2.5𝑥10)!#

Slide adapted from Luke Zettlemoyer @ UW 2018

Language Modelling

17

“Wreck a nice beach” vs “Recognize speech”

“I ate a cherry” vs “Eye eight uh Jerry!”

“What is the weather today?”

“What is the whether two day?”

“What is the whether too day?”

“What is the Wrether today?”

Motivation

18

How can we build a language model?

Language Modelling

Outline

Language Modelling: what and why?

Unigrams

Bigrams

Evaluation

Beyond count-based models

Outline

Language Modelling: what and why?

Unigrams

Bigrams

Evaluation

Beyond count-based models

21

Important Terminology

a word token is a specific occurrence of a word in a text

a word type refers to the general form of the word, defined by its
lexical representation

If our corpus were just “I ran and ran and ran”, you’d say we have:

- 6 word tokens [I, ran , and , ran , and , ran]

- 3 word types: {I, ran, and}

Language Modelling

22

Naive Approach: unigram model

𝑃 𝑤2, … , 𝑤3 =&
452

3

𝑝(𝑤𝑡)

Assumes each word is independent of all others.

Language Modelling

23

Naive Approach: unigram model

Assumes each word is independent of all others.

𝑃 𝑤2, … , 𝑤3 =&
452

3

𝑝(𝑤𝑡)

P(𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓) = P(𝒘𝟏), 𝑷(𝒘𝟐), 𝑷 𝒘𝟑 𝑷 𝒘𝟒 𝑷(𝒘𝟓)

Unigram Model

24

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Unigram Model

25

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

Unigram Model

26

P(w0) =
1!"(𝒅)
1!∗(𝒅)

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

𝑛5"(𝒅) = # of times word 𝒘𝒊 appears in 𝒅

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

𝑛5∗(𝒅) = 100,000

𝑛5∗(𝒅) = # of times any word 𝒘 appears in 𝒅

Unigram Model

27

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

P(Anqi) = !%
!77,777 = 0.00015

P(w0) =
1!"(𝒅)
1!∗(𝒅)

𝑛5"(𝒅) = # of times word 𝒘𝒊 appears in 𝒅

𝑛5∗(𝒅) = # of times any word 𝒘 appears in 𝒅

𝑛5∗(𝒅) = 100,000

Unigram Model

28

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

P(Anqi) = !%
!77,777 = 0.00015

P(was) = !,777
!77,777 = 0.01

P(w0) =
1!"(𝒅)
1!∗(𝒅)

𝑛5"(𝒅) = # of times word 𝒘𝒊 appears in 𝒅

𝑛5∗(𝒅) = # of times any word 𝒘 appears in 𝒅

𝑛5∗(𝒅) = 100,000

Unigram Model

29

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350

P(Anqi) = !%
!77,777 = 0.00015

P(was) = !,777
!77,777 = 0.01

P(w0) =
1!"(𝒅)
1!∗(𝒅)

𝑛5"(𝒅) = # of times word 𝒘𝒊 appears in 𝒅

𝑛5∗(𝒅) = # of times any word 𝒘 appears in 𝒅

𝑛5∗(𝒅) = 100,000

Unigram Model

30

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

P Anqi, was, late, for, class = P Anqi P was P late P for P class

Unigram Model

31

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

P Anqi, was, late, for, class = P Anqi P was P late P for P class

= 0.00015 ∗ 0.01 ∗ 0.004 ∗ 0.03 ∗ 0.0035

= 6.3 ∗ 10 − 13

Unigram Model

32

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

P Anqi, was, late, for, class = P Anqi P was P late P for P class

= 0.00015 ∗ 0.01 ∗ 0.004 ∗ 0.03 ∗ 0.0035

= 6.3 ∗ 10 − 13

This iterative approach is much more efficient than
dividing by all possible sequences of length 5

Unigram Model

33

P Anqi, was, late, for, class > P Anqi, was, late, for, asd[jkl;

P Anqi, was, late, for, the >? P Anqi, was, late, for, class

P Anqi, was, late, for, the <? P Anqi, was, late, for, class

34

UNIGRAM ISSUES?

?

35

1. Probabilities become too small

2. Out-of-vocabulary words <UNK>

UNIGRAM ISSUES?

3. Context doesn’t play a role at all

𝑃(“Anqi was late for class”) = 𝑃(“class for was late Anqi”)

Anqi was late for class the

Anqi was late for class the the

Anqi was late for class _____

4. Sequence generation: What’s the most likely next word?

36

UNIGRAM ISSUES?

Problem 1: Probabilities become too small

𝑃 𝑤2, … , 𝑤3 =&
452

3

𝑝(𝑤𝑡)

37

Solution:

UNIGRAM ISSUES?

log&
452

3

𝑝 𝑤𝑡 = -
452

3

log(𝑝 𝑤6)

log(10)!77) = −230.26even is manageable

Problem 1: Probabilities become too small

𝑃 𝑤2, … , 𝑤3 =&
452

3

𝑝(𝑤𝑡)

38

UNIGRAM ISSUES?

𝑝(“𝐶𝑂𝑉𝐼𝐷19”) = 0

Problem 2: Out-of-vocabulary words <UNK>

39

UNIGRAM ISSUES?

Problem 2: Out-of-vocabulary words <UNK>

Solution: Smoothing

(give every word’s count some inflation)

P(w) = 7! 𝒅
7!∗

𝑝(“𝐶𝑂𝑉𝐼𝐷19”) = 0

40

UNIGRAM ISSUES?

Problem 2: Out-of-vocabulary words <UNK>

Solution: Smoothing

(give every word’s count some inflation)

P(w) = 7! 𝒅 9:
7!∗9:|<|

P(“Anqi”) = 2=9:
2>>,>>> 9 :|<|

P("COVID19”) = >9:
2>>,>>> 9 :|<|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

𝑝(“𝐶𝑂𝑉𝐼𝐷19”) = 0

41

UNIGRAM ISSUES?

Problem 2: Out-of-vocabulary words <UNK>

Solution: Smoothing

(give every word’s count some inflation)

P(w) = 7! 𝒅 9:
7!∗9:|<|

P(Anqi) = 2=9:
2>>,>>> 9 :|<|

P(COVID19) = >9:
2>>,>>> 9 :|<|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

𝑝(𝐶𝑂𝑉𝐼𝐷19) = 0

Two important notes:

1. Generally, 𝛼 values are small (e.g., 0.5 – 2)

2. When a word w isn’t found within the

training corpus 𝒅 you should replace it with

<UNK> (or *U*)

42

UNIGRAM ISSUES?

Problems 3 and 4: Context doesn’t play a role at all

𝑃(“Anqi was late for class”) = 𝑃(“class for was late Anqi”)

Question: How can we factor in context?

43

UNIGRAM ISSUES?

Easiest Approach:

Instead of words being completely independent,
condition each word on its immediate predecessor

Outline

Language Modelling: what and why?

Unigrams

Bigrams

Evaluation

Beyond count-based models

Outline

Language Modelling: what and why?

Unigrams

Bigrams

Evaluation

Beyond count-based models

46

Bigram LM

Look at pairs of consecutive words

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

47

Bigram LM

probability

Let 𝑿 = “Anqi was late for class”

P(𝑿) = 𝑃(was|Anqi)

Look at pairs of consecutive words

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

48

probability

Let 𝑿 = “Anqi was late for class”

P(𝑿) = 𝑃(was|Anqi)𝑃(late|was)

Look at pairs of consecutive words

Bigram LM

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

49

Bigram LM

Let 𝑿 = “Anqi was late for class”
probability

P(𝑿) = 𝑃(was|Anqi)𝑃(late|was)𝑃(for|late)

Look at pairs of consecutive words

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

50

Bigram LM

Let 𝑿 = “Anqi was late for class”
probability

P(𝑿) = 𝑃(was|Anqi)𝑃(late|was)𝑃(for|late)𝑃(class|for)

Look at pairs of consecutive words

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

51

Bigram LM

Alternative Approach: bigram model

Look at pairs of consecutive words

Let 𝑿 = “Anqi was late for class”
probability

P(𝑿) = 𝑃(was|Anqi)𝑃(late|was)𝑃(for|late)𝑃(class|for)

P(class | fo r) = co u n t(for class)
co u n t(for)

You calculate each of these probabilities
by simply counting the occurrences

𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

52

Bigram Model

P w9|𝑤 = P ”w,w9” = 1!,!% (𝒅)
1!,!∗ (𝒅)

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

𝑛5,59 (𝒅) = # of times words 𝒘 and 𝒘′ appear together as a bigram in 𝒅

𝑛5,5∗(𝒅) = # of times word 𝒘 is the first token of a bigram in 𝒅

53

Bigram Model

Let 𝑿 = “Anqi was late for class”
𝑤! 𝑤" 𝑤# 𝑤$ 𝑤%

𝑛5,59 (𝒅) = # of times words 𝒘 and 𝒘′ appear together as a bigram in 𝒅

Let’s say our corpus 𝒅 has 100,000 words

word # occurrences
Anqi 15

was 1,000

late 400

for 3,000

class 350
P(class|for) = P(for, class) = !"

#,777

𝑛5,5∗(𝒅) = # of times word 𝒘 is the first token of a bigram in 𝒅

𝑛5∗(𝒅) = 100,000

P w9|𝑤 = P ”w,w9” = 1!,!% (𝒅)
1!,!∗ (𝒅)

54

BIGRAM ISSUES?

?

55

1. Out-of-vocabulary bigrams are 0 à kills the overall probability

2. Could always benefit from more context but sparsity is an issue
(e.g., rarely seen 5-grams)

BIGRAM ISSUES?

3. Storage becomes a problem as we increase the window size

4. No semantic information conveyed by counts (e.g., vehicle vs car)

56

BIGRAM ISSUES?

Problem 1: Out-of-vocabulary bigrams

𝑃 w,w@ = 7!,!$ (𝒅)
7!,!∗ (𝒅)

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

Our current bigram probabilities: How we smoothed unigrams:

Q: What should we do?

𝑃(w) = 7! 𝒅 9:
7!∗9:|<|

57

BIGRAM ISSUES?

Problem 1: Out-of-vocabulary bigrams

Imagine our current string 𝑥 includes “COVID19 harms ribofliptonik …”

In our training corpus 𝑑, we’ve never seen:

“COVID19 harms” or “harms ribofliptonik”

But we’ve seen the unigram “harms”, which provides useful information:

58

BIGRAM ISSUES?

Problem 1: Out-of-vocabulary bigrams

Solution: unigram-backoff for smoothing

𝑃 ”w,w@” =
7!,!$ 𝒅 9 D∗F(G$)

7!,!∗ 𝒅 9 D

𝑃(w′) = 7!$ 𝒅 9:
7!∗9:|<|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

59

BIGRAM ISSUES?

Problem 1: Out-of-vocabulary bigrams

Solution: unigram-backoff for smoothing

𝑃 w,w@ =
7!,!$ 𝒅 9 D∗F(G$)

7!,!∗ 𝒅 9 D

𝑃(w′) = 7!$ 𝒅 9:
7!∗9:|<|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

Our model is properly parameterized with 𝜶 and 𝜷.

So, instead of calculating the probability of text, we are

actually interested in fixing the parameters at particular

values and determining the likelihood of the data.

60

BIGRAM ISSUES?

For a fixed 𝜶 and 𝜷:

𝜃 ”w,w@” =
7!,!$ 𝒅 9 D∗H(G$)

7!,!∗ 𝒅 9 D

𝜃(w′) = 7!$ 𝒅 9:
7!∗9:|<|

|𝑉| = the # of unique words types in vocabulary
(including an extra 1 for <UNK>)

61

IMPORTANT:

It is common to pad sentences with <S> tokens on each side, which
serve as boundary markers. This helps LMs learn the transitions
between sentences.

Let 𝑿 = “I ate. Did you?”
𝑤! 𝑤" 𝑤# 𝑤$

𝑿 = “<S> I ate <S> Did you? <S>”
𝑤! 𝑤"𝑤# 𝑤$ 𝑤%

à
𝑤; 𝑤<

62

Generation

• We can also use these LMs to generate text

• Generate the very first token manually by making it be <S>

• Then, generate the next token by sampling from the probability

distribution of possible next tokens (the set of possible next

tokens sums to 1)

• When you generate be <S> again, that represents the end of

the current sentence

63

Example of Bigram generation

• Force a <S> as the first token

• Of the bigrams that start with <S>, probabilistically pick one

based on their likelihoods

• Let’s say the chosen bigram was <S>_The

• Repeat the process, but now condition on “The”. So, perhaps

the next select Bigram is “The_dog”

• The sentence is complete when you generate a bigram whose

second half is <S>

Imagine more context

65

Language Modelling

Better Approach: n-gram model

Let’s factor in context (in practice, a window of size n)

𝑃 𝑥2, … , 𝑥3 =&
452

3

𝑝 𝑥4 𝑥4I2, … , 𝑥2)

66

Language Modelling

Better Approach: n-gram model

The likelihood of any event
occurring hinges upon all
prior events occurring

𝑃 𝑥2, … , 𝑥3 =&
452

3

𝑝 𝑥4 𝑥4I2, … , 𝑥2)

67

Language Modelling

Better Approach: n-gram model

The likelihood of any event
occurring hinges upon all
prior events occurring

𝑃 𝑥2, … , 𝑥3 =&
452

3

𝑝 𝑥4 𝑥4I2, … , 𝑥2)

This compounds for all
subsequent events, too

Outline

Language Modelling: what and why?

Unigrams

Bigrams

Evaluation

Beyond count-based models

Outline

Language Modelling: what and why?

Unigrams

Bigrams

Evaluation

Beyond count-based models

70

Evaluation

N-gram models seem useful, but how can we measure
how good they are?

Can we just use the likelihood values?

71

Almost!

The likelihood values aren’t adjusted for the length of sequences,
so we would need to normalize by the sequence lengths.

𝐻 𝐶=>?= =
1
𝑁
*
@A!

1

log2(𝑝 𝑤@)

Evaluation

72

Perplexity

The best language model is one that
best predicts an unseen test set

Perplexity, denoted as 𝑃𝑃, is the inverse probability of the test set,
normalized by the number of words.

𝑃𝑃 𝑤2, … , 𝑤J = 𝑝 𝑤2, 𝑤K, … , 𝑤J I2/J

=
% 1
𝑝 𝑤2, 𝑤K, … , 𝑤J

73

Perplexity

Perplexity is also equivalent to the exponentiated, per-word cross-entropy

𝑃𝑃 𝑤2, … , 𝑤J = 𝑝 𝑤2, 𝑤K, … , 𝑤J I2/J

=
% 1
𝑝 𝑤2, 𝑤K, … , 𝑤J

= 2IM, where l = 2
J
∑6527 log2(𝑝 𝑤6)

74

Perplexity

Very related to entropy, perplexity measures the uncertainty of the
model for a particular dataset. So, very high perplexity scores
correspond to having tons of uncertainty (which is bad).

Entropy represents the average number of bits needed to
represent each word.

Perplexity represents the branching factor needed to predict each
next word. That is, the more branches (aka bits) at each step, the
more uncertainty there is, meaning the worse the model.

75

Perplexity

Good models tend to have perplexity scores around 40-100 on

large, popular corpora.

If our model assumed a uniform distribution of words, then our

perplexity score would be:

𝑉 = the # of unique word types

76

Perplexity

Example: let our corpus 𝑋 have only 3 unique words: {the, dog, ran} but our

particular text has a length of 𝑁.

= % 1
1
3

J =
% 3J = 3

𝑃𝑃 𝑤2, … , 𝑤J = 𝑝 𝑤2, 𝑤K, … , 𝑤J I2/J

=
% 1
𝑝 𝑤2, 𝑤K, … , 𝑤J

77

Perplexity

More generally, if we have 𝑀 unique words for a sequence of

length 𝑁.

𝑃𝑃 𝑋 = % 1
1
𝑀

J =
% 𝑀J = 𝑀

78

Perplexity

Example perplexity scores: when trained on a corpus of 38 million

words and tested on 1.5 million words:

model perplexity

unigram 962

bigram 170

trigram 109

79

Evaluation

Very Important:

• Any given LM must be able to generate the test set (at least).

Otherwise, it cannot be fairly evaluated (OOV problem).

• When comparing multiple LMs to each other, their vocabularies

must be the same (e.g., words, sub-words, characters).

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

Outline

Language Modelling: what and why?

Unigrams

Bigrams

Evaluation

Beyond count-based models

Outline

Language Modelling: what and why?

Unigrams

Bigrams

Evaluation

Beyond count-based models

Remaining Issues

1. More context while avoiding sparsity, storage, and compute issues

2. No semantic information conveyed by counts (e.g., vehicle vs car)

3. Cannot leverage non-consecutive patterns

4. Cannot capture combinatorial signals (i.e., non-linear prediction)

Dr. Cornell West ____Dr. West ____

Occurred 25 times Occurred 3 times

P(Chef cooked food) P(Customer cooked food)

P(Customer ate food)P(Chef ate food)

New goals!

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021
82

Featurized Model

83

Instead of counts, let’s move toward having words represented as features

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

We can develop a very simple linear model that calculates word probabilities

features ≪ # of words in vocab

Featurized Model

84

”passing a _____”

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

𝑤@)" 𝑤@)! 𝑤@

passing a

Vx1

+ + =

Vx1 Vx1 Vx1

bias raw scores

softmax =

Vx1

word probs

Lookup tablei-1(𝑤"#$) Lookup tablei-2(𝑤"#%)

quiz
ball
car
kidney
..
..

Vx1

Featurized Model

85

”passing a _____”

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

passing a

bias raw scores word probs

Lookup tablei-1(𝑤"#$) Lookup tablei-2(𝑤"#%)

quiz
ball
car
kidney
..
..

𝑤@)" 𝑤@)! 𝑤@

Vx1

+ + =

Vx1 Vx1 Vx1

softmax =

Vx1

𝑤@)" 𝑤@)! 𝑤@

Vx1

+ + =

Vx1
Vx1 Vx1

softmax =

A “lookup table” is trivial.

It simply converts each unique word to an index 𝑖 ∈ 𝑉,
where 𝑉 is the size of our vocabulary.

We often work with the one-hot version of it, 𝑥:

Vx1

𝑥

Featurized Model

86

”passing a _____”

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

passing a

bias raw scores word probs

Lookup tablei-1(𝑤"#$) Lookup tablei-2(𝑤"#%)

quiz
ball
car
kidney
..
..

𝑤@)" 𝑤@)! 𝑤@

Vx1

+ + =

Vx1 Vx1 Vx1

softmax =

Vx1

𝑤@)" 𝑤@)! 𝑤@

Vx1

+ + =

Vx1
Vx1 Vx1

softmax =

Vx1

words

vector
size N

Embedding/ feature matrix 𝝂 is an “input word matrix”. The 𝑖=D column
of 𝝂 corresponds to each unique word 𝑤𝑖

Can retrieve Embedding 𝑣 via:
- Slicing the index, or
- Matrix multiply

𝑣𝑖 = 𝝂𝑥𝑖

Featurized Model

87

”passing a _____”

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021

passing a

bias raw scores word probs

Lookup tablei-1(𝑤"#$) Lookup tablei-2(𝑤"#%)

quiz
ball
car
kidney
..
..

𝑤@)" 𝑤@)! 𝑤@

Vx1

+ + =

Vx1 Vx1 Vx1

softmax =

Vx1

𝑤@)" 𝑤@)! 𝑤@

Vx1

+ + =

Vx1
Vx1 Vx1

softmax =

Vx1

words

vector
size N

Embedding/ feature matrix 𝝂 is an “input word matrix”. The 𝑖=D column
of 𝝂 corresponds to each unique word 𝑤𝑖

𝑣𝑖 = 𝝂𝑥𝑖

Vx1NxVNx1 = ∗

Can retrieve Embedding 𝑣 via:
- Slicing the index, or
- Matrix multiply

Featurized Model

88

Train the model using gradient descent:

• Use our output probabilities

• Calculate the cross-entropy loss

• Use backprop to calculate gradients

• Update the 2 look-up table weights and bias via GD

Unknown Words

89

• We still need to handle UNK words. Always.

• Language is always evolving

• Zipfian distribution

• Larger vocabularies require more memory and compute time

How can we handle UNK words in a neural model?

Unknown Words

90

• Common ways:

• Frequency threshold (e.g., UNK <= 2)

• Remove bottom N%

Remaining Issues

1. More context while avoiding sparsity, storage, and compute issues

2. No semantic information conveyed by counts (e.g., vehicle vs car)

3. Cannot leverage non-consecutive patterns

4. Cannot capture combinatorial signals (i.e., non-linear prediction)

Dr. Cornell West ____Dr. West ____

Occurred 25 times Occurred 3 times

P(Chef cooked food) P(Customer cooked food)

P(Customer ate food)P(Chef ate food)

New goals!

Slide adapted from or inspired by Graham Neubig’s CMU NLP 2021
91

92

UP NEXT

We clearly need:

• denser representations, not |V|

• semantic information

• non-linear power

Neural models, here we come!

