
Pavlos Protopapas
SEAS/Harvard

AC215

Lecture 8: LLM-2

PROTOPAPAS

• Advanced RAG

• Agents

Outline

4

PROTOPAPAS

Tutorial 8: RAG

5

In this tutorial, we’re building a Retrieval-Augmented
Generation (RAG) system, powered by a ChromaDB vector
database and a Large Language Model (Gemini).

For the Formaggio.me chatbot to truly earn its title as a cheese
connoisseur, it needs to go beyond the basics, knowing rare and
lesser-known cheeses, along with all the juicy details. Standard
LLMs won’t have this specialized knowledge, so we’ve gathered a
collection of books to build the RAG system.

And of course, the whole setup is containerized!

https://github.com/dlops-io/llm-rag

Formaggio.me
https://github.com/dlops-io/llm-rag

PROTOPAPAS

• Advanced RAG
• Naïve RAG - Recap

• Pre-Retrieval Optimization

• Retriever Optimization

• Post-Retrieval Optimization

• Self-RAG

• Corrective-RAG

• Agents

Outline

6

PROTOPAPAS

Naïve RAG - Recap

7

PROTOPAPAS
8

Naïve RAG - Recap

Knowledge Base

Use
r

Chunking
Documents

Embeddin
g

Model

User Query

Document
Embedding

Query and
embedded
Query

Vector Database

Prompt + query
+ context

LLM

LLM Response

Indexing

Retrieval

Augmentation
& Generation

1 2

3 4 5

6 8

PROTOPAPAS

Augmentation
& Generation

Indexing

Naïve RAG

Now, let’s look at the big picture.

Query

ResponseRetrieval

Documents

9

PROTOPAPAS

Indexing

Naïve RAG

Now, let’s look at the big picture.

Query

ResponseRetrieval

Documents

Pre-Retrieval Augmentation
& Generation

10

PROTOPAPAS

Indexing

Naïve RAG

Now, let’s look at the big picture.

Query

ResponseRetrieval

Documents

Pre-Retrieval Augmentation
& Generation

Indexing

Pre-Retrieval

The Pre-Retrieval Phase deals with:

• Chunking the data
• Converting the chunks into

embeddings
• Handling the embeddings

11

PROTOPAPAS

Indexing

Naïve RAG

Now, let’s look at the big picture.

Query

ResponseRetrieval

Documents

Pre-Retrieval
Post-

Retrieval
Augmentation
& Generation

12

PROTOPAPAS

Indexing

Naïve RAG

Now, let’s look at the big picture.

Query

ResponseRetrieval

Documents

Pre-Retrieval
Post-

Retrieval
Augmentation
& Generation

Post-
Retrieval

The Post-Retrieval phase deals with
polishing what was obtained from the
retriever.

13

PROTOPAPAS

Outline

• Naïve RAG - Recap
• Pre-Retrieval Optimization
• Retriever Optimization
• Post-Retrieval Optimization
• Self-RAG
• Corrective-RAG

14

PROTOPAPAS

Pre-Retrieval Optimization

15

PROTOPAPAS

Pre-Retrieval Optimization

The pre-retrieval stage can be optimized in many ways.

We will be looking at 2 ways of doing so:

1. Indexing
2. Query Manipulation

16

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

I. Improve the chunking process

By default, we do character splitting for the chunks. For example, if we
have a document that says:

Machine learning is a subset of artificial intelligence that focuses on building
systems that learn from data. It is used in various applications such as
recommendation engines, autonomous vehicles, and predictive analytics.

17

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

I. Improve the chunking process

Machine learning is a subset of artificial intelligence that focuses on building
systems that learn from data. It is used in various applications such as
recommendation engines, autonomous vehicles, and predictive analytics.

By using character splitting of chunk size 50, the chunks would be:

a. "Machine learning is a subset of artificial intelli”
b. "gence that focuses on building systems that lear”
c. "n from data. It is used in various applications ”
d. "such as recommendation engines, autonomous vehic"
e. "les, and predictive analytics."

Do you think this
is a good chunk?

18

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Let’s take another example

Model research paper

Now, if we do character splitting for chunks (chunk
size=200), we get:

Chunk 1:
Recent techniques in transfer learning for NLP Abstract: Transfer
learning has become a crucial technique in NLP. This paper
explores recent advancements, including fine-tuning pre-trained
models like BERT and GPT-3, and dom

Chunk 2:
ain adaptation methods. Our experiments demonstrate
significant improvements in performance across various NLP
tasks. Methodology: We fine-tuned BERT and GPT-3 models on
specific NLP tasks, adapting them to different do

….

19

PROTOPAPAS

Model research paper

Pre-Retrieval Optimization - Indexing

Let’s take another example
Now, if we do character splitting for chunks (chunk
size=200), we get:

Chunk 1:
Recent techniques in transfer learning for NLP Abstract: Transfer
learning has become a crucial technique in NLP. This paper
explores recent advancements, including fine-tuning pre-trained
models like BERT and GPT-3, and dom

Chunk 2:
ain adaptation methods. Our experiments demonstrate
significant improvements in performance across various NLP
tasks. Methodology: We fine-tuned BERT and GPT-3 models on
specific NLP tasks, adapting them to different do

….

20

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Let’s take another example

Model research paper

Now, if we do character splitting for chunks (chunk
size=200), we get:

Chunk 1:
Recent techniques in transfer learning for NLP Abstract: Transfer
learning has become a crucial technique in NLP. This paper
explores recent advancements, including fine-tuning pre-trained
models like BERT and GPT-3, and dom

Chunk 2:
ain adaptation methods. Our experiments demonstrate
significant improvements in performance across various NLP
tasks. Methodology: We fine-tuned BERT and GPT-3 models on
specific NLP tasks, adapting them to different do

….

21

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Let’s take another example

Model research paper

The optimal way to do it would be:

Chunk 1:
Advancements in Transfer Learning for NLP

Chunk 2:
Abstract:
Transfer learning has become a crucial technique in NLP. This paper
explores recent advancements, including fine-tuning pre-trained
models like BERT and GPT-3, and domain adaptation methods. Our
experiments demonstrate significant improvements in performance
across various NLP tasks.

Chunk 3:
Methodology:
We fine-tuned BERT and GPT-3 models on specific NLP tasks, adapting
them to different domains. Domain adaptation involved additional pre-
training on domain-specific data. Our approach leverages the pre-
trained knowledge and adapts it to new tasks, achieving higher
accuracy and efficiency.

….
This is called semantic

chunking
22

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Let’s take another example

Model research paper

The optimal way to do it would be:

Chunk 1:
Advancements in Transfer Learning for NLP

Chunk 2:
Abstract:
Transfer learning has become a crucial technique in NLP. This paper
explores recent advancements, including fine-tuning pre-trained
models like BERT and GPT-3, and domain adaptation methods. Our
experiments demonstrate significant improvements in performance
across various NLP tasks.

Chunk 3:
Methodology:
We fine-tuned BERT and GPT-3 models on specific NLP tasks, adapting
them to different domains. Domain adaptation involved additional pre-
training on domain-specific data. Our approach leverages the pre-
trained knowledge and adapts it to new tasks, achieving higher
accuracy and efficiency.

….
This is called semantic

chunking
23

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Semantic Chunking – Steps

1. Splitting: We split the document to sentences using separators(.,?,!).

2. Grouping: Select anchor sentences and choose how many sentences to
consider at either side of the anchor (window size).

3. Similarity Check: Calculate the distance between the group of sentences
(e.g.: cosine similarity).

4. Chunking: Chunk together the similar sentences.

Confused?
Let’s look at an

example!

24

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence

2
Sentence

3
Sentence

4
Sentence

5
Sentence

6

Anchor 1

Document

25

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence

2
Sentence

3
Sentence

4
Sentence

5
Sentence

6

Anchor 1

1. Let’s suppose we choose the number of sentences at either side to be 1.

26

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence

2
Sentence

3
Sentence

4
Sentence

5
Sentence

6

Anchor 1

1. Let’s suppose we choose the number of sentences at either side to be 1.
2. We calculate the cosine similarity of the sentences in the group.

Group 1

27

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence

2
Sentence

3
Sentence

4
Sentence

5
Sentence

6

Anchor 1

1. Let’s suppose we choose the number of sentences at either side to be 1.
2. We calculate the cosine similarity of the sentences in the group.

Group 1 Cosine similarity =
0.89

28

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence

2
Sentence

3
Sentence

4
Sentence

5
Sentence

6

Anchor 1

1. Let’s suppose we choose the number of sentences at either side to be 1.
2. We calculate the cosine similarity of the sentences in the group.
3. Since the cosine similarity here is high (Assuming our threshold is 0.8), we

chunk together the sentences.

Group 1 Cosine similarity =
0.89

29

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence

2
Sentence

3
Sentence

4
Sentence

5
Sentence

6

Anchor 1

1. Let’s suppose we choose the number of sentences at either side to be 1.
2. We calculate the cosine similarity of the sentences in the group.
3. Since the cosine similarity here is high (Assuming our threshold is 0.8), we

chunk together the sentences.

Chunk 1

30

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence

2
Sentence

3
Sentence

4
Sentence

5
Sentence

6

Chunk 1

1. We then move to Anchor 2.

Anchor 2

31

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence

2
Sentence

3
Sentence

4
Sentence

5
Sentence

6

Chunk 1

1. We then move to Anchor 2.
2. Since window size=1, we group one sentence from the left and one from the

right of the anchor.

Anchor 2

Group 2

32

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence

2
Sentence

3
Sentence

4
Sentence

5
Sentence

6

Chunk 1

1. We then move to Anchor 2.
2. Since window size=1, we group one sentence from the left and one from the right

of the anchor.
3. We then calculate the similarity indices of the sentences in Group 2 with Anchor

2.
(Threshold=0.8)

Anchor 2

Group 2

33

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence
2

Sentence
3

Sentence
4

Sentence
5

Sentence
6

1. We then move to Anchor 2.
2. Since window size=1, we group one sentence from the left and one from the right

of the anchor.
3. We then calculate the similarity indices of the sentences in Group 2 with Anchor

2.
(Threshold=0.8)

Anchor 2

Group 2
Cosine similarity =
0.85

Cosine similarity =
0.68

Sentence 1

34

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence
2

Sentence
3

Sentence
4

Sentence
5

Sentence
6

Since,

cosine similarity of Sentence 2 & Anchor 2 > 0.8 and
cosine similarity of Sentence 3 & Anchor 2 < 0.8,

we chunk together Sentence 3 into Chunk 1.

Anchor 2

Group 2
Cosine similarity =
0.85

Cosine similarity =
0.68

Sentence 1

35

PROTOPAPAS

Pre-Retrieval Optimization - Indexing

Sentence
2

Sentence
3

Sentence
4

Sentence
5

Sentence
6

Since Chunk 1 is complete.

We now move on to make the 2nd Chunk.

The anchor moves on to Sentence 5 and the process continues till we reach
the end of the sentence.

Anchor 3

Sentence 1

36

Chunk 1

37

Pre-Retrieval Optimization – Query Manipulation

PROTOPAPAS

Pre-Retrieval Optimization – Query Manipulation

2 problems can come up when it comes to queries provided by a user:

1. The query is ‘cluttered’.
This can be due to it being sprinkled with a lot of irrelevant information.

2. The query is ambiguous.
The query doesn’t have sufficient information.

38

PROTOPAPAS

Pre-Retrieval Optimization – Query Manipulation

1. The query is ‘cluttered’ for our RAG system

We have an essay due tomorrow. We have to write about some animal. I
love penguins. I could write bout them. But I could also write about
dolphins. Are they animals? Maybe. Let’s do dolphins. Where do they
live, for example?

Where do dolphins live?

Original Query

Rewritten query

The rewritten query
is now concise and

“to the point”.

39

PROTOPAPAS

Pre-Retrieval Optimization – Query Manipulation

2. The query is ambiguous for our RAG system.

"Was there significant turnover in the executive team?"

Original Query

Imagine a use case - we have created a RAG
system on top of a Microsoft annual report.

Too broad a term.
Directors? Senior
Vice Presidents?

In what sense?
Retirements?
Promotions?

The query is too ‘narrow’ and
lacks information.

40

PROTOPAPAS

Pre-Retrieval Optimization – Query Manipulation

"Was there significant turnover in the executive team?"

Was there significant turnover in the executive team? Has there
been a notable level of turnover among the executive leadership
team recently? Specifically, I am interested in understanding
whether multiple key positions within the executive team have
experienced changes in leadership, including CEOs, CFOs, or other
top executives, over the past year. Additionally, what factors
contributed to these changes?

Original Query

Rewritten query

This query is completely made up by
the LLM and has nothing to do with

the Microsoft annual report

41

PROTOPAPAS

Outline

• Naïve RAG - Recap
• Pre-Retrieval Optimization
• Retrieval Optimization
• Post-Retrieval Optimization
• Self-RAG
• Corrective-RAG

42

PROTOPAPAS

Retrieval Optimization

43

PROTOPAPAS

Retrieval Optimization – Hybrid Search

Instead of just using semantic search using vectors, we can also do some keyword matching.

For e.g. If we have the sentence:

The vector search may help us disambiguate the meaning of the word ‘bank’ while the
keyword matching may help us find documents related to ‘Ignacio’.

Ignacio went to the bank of the river in the morning

Hybrid search in retrieval optimization combines different retrieval models to leverage
the strengths of each and provide more relevant search results.

44

PROTOPAPAS

Retrieval Optimization – Hybrid Search

How do we do it?

Usually, we use two different retrievers, one for keyword search (BM25) and one for
semantic matching (vector similarity).

BM25
A probabilistic retrieval model that ranks documents based on the frequency of query
terms in the document.

The formula is based on TF-IDF.

45To learn more about BM25: Click here

https://zilliz.com/learn/mastering-bm25-a-deep-dive-into-the-algorithm-and-application-in-milvus

PROTOPAPAS

Retrieval Optimization – Hybrid Search

Let’s say we got the following 3 paragraphs:

Ignacio went to the riverbank early in the morning

In the morning, Ignacio went to the bank by
the river to borrow some money

Ignacio went to the river for swimming and
splashing around. Afterwards, he lay on the
riverbank, drying off in the sun.

Paragraphs

Original Sentence:
Ignacio went to the bank of the river in the morning

The sentence is almost the
same as the original sentence

The bank in this sentence is
completely different to the
one in the original sentence!

It has words that relate to the
original sentence.

46

PROTOPAPAS

Retrieval Optimization – Hybrid Search

Let’s now look at the rankings given by the
algorithms.

Ignacio went to the riverbank early in the morning

In the morning, Ignacio went to the bank by
the river to borrow some money

Ignacio went to the river for swimming and
splashing around. Afterwards, he lay on the
riverbank, drying off in the sun.

BM25

1

2

3

Vector Search

1

2

3

Paragraphs

Original Sentence:
Ignacio went to the bank of the river in the morning

47

PROTOPAPAS

Retrieval Optimization – Hybrid Search

How do we combine the results?

We use one of the rank fusion techniques:

Reciprocal Rank Fusion (RRF) = σ𝑗=1
𝑛 𝑤𝑗 ∗

1

𝑘+𝑟(𝑑)

Where,
 n=number of rankings
 𝑟(𝑑) = rank of the document
 𝑤𝑗=weight of the ranking metric
 k=ranking constant

48

These are hyper-parameters

PROTOPAPAS

Retrieval Optimization – Hybrid Search

Ignacio went to the riverbank early in the morning

In the morning, Ignacio went to the bank by
the river to borrow some money

Ignacio went to the river for swimming and
splashing around. Afterwards, he lay on the
riverbank, drying off in the sun.

BM25

1

2

3

Vector Search

1

2

3

Paragraphs
Reciprocal

Rank Fusion
(RRF)

0.5* Τ1
2 + 0.5∗ Τ1

1 = 0.75

0.5* Τ1
1 + 0.5∗ Τ1

3 = 0.67

0.5* Τ1
3 + 0.5∗ Τ1

2 = 0.42

We take the k to be 0
and 𝑤𝑗=0.5

How do we combine the results?

49

PROTOPAPAS

Outline

• Naïve RAG - Recap
• Pre-retrieval Optimization
• Retrieval Optimization
• Post-Retrieval Optimization
• Self-RAG
• Corrective-RAG

50

PROTOPAPAS

Post-Retrieval Optimization

51

PROTOPAPAS

Post-Retrieval – Re-ranking

All chunks

Vector
database

Let us go back to the bigger picture. Consider we have all the chunks stored in our vector
database.

52

PROTOPAPAS

Post-Retrieval – Re-ranking

Vector
database

User Query:

“….. …. …… …
….?”

We get an incoming user
query.

All chunks

53

PROTOPAPAS

Post-Retrieval – Re-ranking

Vector
database

User Query:

“….. …. …… …
….?”

top_K=25 The retriever, returns the top_K
similar chunks.

True relevant records

All chunks

54

PROTOPAPAS

Post-Retrieval – Re-ranking

Vector
database

User Query:

“….. …. …… …
….?”

top_k=25 The retriever, returns the top_k
similar chunks.

True relevant records

All chunks

55

PROTOPAPAS

Post-Retrieval – Re-ranking

Vector
database

User Query:

“….. …. …… …
….?”

top_k=25 A simple score like cosine
similarity might miss key details

in comparing the query to the
context. This could result in

inaccurate ranking.

True relevant records

All chunks

56

PROTOPAPAS

Post-Retrieval – Re-ranking

Vector
database

User Query:

“….. …. …… …
….?”

top_k=25 A simple score like cosine
similarity might miss key details

in comparing the query to the
context. This could result in

inaccurate ranking.

True relevant records

All chunks

57

PROTOPAPAS

Post-Retrieval – Re-ranking

Vector
database

User Query:

“….. …. …… …
….?”

top_k=25

True relevant records

All chunks

We use a ‘re-ranker’.

Re-ranker

58

PROTOPAPAS

Post-Retrieval – Re-ranking

The answer to that question is:

A question that may pop up in your mind is:

Why don’t we just re-rank from the
very beginning instead of retrieving

and then re-ranking?

Re-rankers are slow, and
retrievers are fast, so we need

to use both!

• We used encoders (retrievers) to compress all the records into vectors.

• Bi-encoders have no context on the query because we create these vectors before
user query time.

Let us see why!

59

It is also referred to as
bi-encoders because one is

used for encoding the query
and the other for

document/chunks.

PROTOPAPAS

Post-Retrieval – Re-ranking

Document A Document B

BERT BERT

Vector A Vector B

The bi-encoder provides us with the vectors stored in
the vector database.

Fig: Encoder

60

PROTOPAPAS

Post-Retrieval – Re-ranking

• We thus frontload all the heavy computations when we create the initial vectors.

• Thus, when a user sends a query, we have the vectors ready. All we need to do is:
• Run bi-encoder once to create query vector.

• Compare query vector to document vectors with cosine similarity.

The main drawback to this is information loss which is mitigated to some extent when we use a
re-ranker.

We use a cross-encoders as a re-ranker.

This is the main reason why retrieving is faster.

61

PROTOPAPAS

Post-Retrieval – Re-ranking

Document A
(knowledge)

Document B (query)

BERT

Similarity Score

Can you guess why reranking is slower compared to retrieving?

Fig: Cross-encoder

62

This is like next-
sentence

prediction and
using the CLS

token

PROTOPAPAS

Post-Retrieval – Re-ranking

• Unlike the naïve retrieval, the cross-encoder does not use a simple formula to compare
vectors, mitigating information loss.

• We feed the document and query vectors into the cross-encoder, run it and output a single
similarity score.

This leads to better results than retrieving.

The main drawback to this is, it takes time.

Thus, retrieving and reranking mitigates each
other’s drawbacks (information loss and time).

63

PROTOPAPAS

Thus, retrieving and reranking mitigates each
other’s drawbacks (information loss and time).

64

PROTOPAPAS

Outline

• Naïve RAG - Recap
• Pre-retrieval Optimization
• Retrieval Optimization
• Post-Retrieval Optimization
• Self-RAG
• Corrective-RAG

65

PROTOPAPAS

Self-RAG

66

PROTOPAPAS

Self-RAG

Limitations of Advanced RAG:

1. Doesn’t guarantee the relevancy of the chunk to the query.

2. No guarantee that the response from LLM using the k-chunks are
related to the chunks themselves (hallucinations).

3. Doesn’t consider the possibilities where retrieval may not be
necessary.

67

PROTOPAPAS

Self-RAG - Intuition

Let’s take a scenario where you’re taking an open book exam. How
would you go about it?

A) For familiar topics, answer quickly; for unfamiliar ones, refer to the
book, find relevant parts and then answer.

B) For every topic, refer to the book, find relevant section and write the
answer.

68

PROTOPAPAS

Self-RAG - Intuition

Let’s take a scenario where you’re taking an open book exam. How
would you go about it?

A) For familiar topics, answer quickly; for unfamiliar ones, refer to the
book, find relevant parts and then answer.

B) For every topic, refer to the book, find relevant section and write the
answer.

69

PROTOPAPAS

Self-RAG - Intuition

Let’s take a scenario where you’re taking an open book exam. How
would you go about it?

A) For familiar topics, answer quickly; for unfamiliar ones, refer to the
book, find relevant parts and then answer.

B) For every topic, refer to the book, find relevant section and write the
answer.

But why?

70

PROTOPAPAS

Self-RAG - Intuition

Referring to the book even when it is not needed can lead to:

1. Slower response rate.

2. More confusion and mistakes.

3. Introduction of irrelevant or erroneous information, while scouring
through the book.

Similarly, there may be times when it’s not required for the RAG to
retrieve documents from the vector database.

So, how do we fix this problem?

71

PROTOPAPAS

Self-RAG - Intuition

Referring to the book even when it is not needed can lead to:

1. Slower response rate.

2. More confusion and mistakes.

3. Introduction of irrelevant or erroneous information, whilst scouring
through the book.

Similarly, there may be times when it’s not required for the RAG to
retrieve documents from the vector database.

So, how do we fix this problem?

Self-RAG

72

PROTOPAPAS

Self-RAG - Introduction

• Self-RAG is a “new” framework that controls the retrieval and
generation process via reflection tokens.

• There are 2 types of reflection tokens:

• Retrieve token: To evaluate the utility of retrieval.

• Critique token: To evaluate the documents that have been retrieved.

73

PROTOPAPAS

Self-RAG – Retrieve token

• The retrieve token is generated by the Self-RAG to evaluate the utility of
retrieval.

• It has 3 possible outputs.

Yes

No

Continue

Retrieval is required.

No retrieval required.

Continuation of retrieval.

This is an output that is
generated only after a

retrieval has taken place
already.

74

PROTOPAPAS

Self-RAG – Critique token

• The critique token is generated by the Self-RAG to evaluate the documents
that have been retrieved.

• It can be further subdivided into 3 types of tokens:

• ISREL: Determines if the retrieved document provides useful information to solve the
 query.

• ISSUP: Determines if the output generated is supported by the retrieved document.

• ISUSE: Determines if the output generated is useful to the query.

Let’s look at an example to clarify these concepts!

A hallucination
check

75

Useful basically
means: Does it

answer the query?

PROTOPAPAS

Self-RAG – Example

Query: Write an essay about summer vacation?

My best summer vacation is when my family and I went on a road trip
along…

Retrieve

Asai et al.

The retrieve token has
returned a ‘No’, hence no

retrieval is required.

Let’s look at a query where the model already knows how to answer

Now, let’s look at a case where the model may not have all the facts to answer the question.

No

76

This is a fine-tuned LLM
to answer this type of

questions as well.

https://arxiv.org/pdf/2310.11511

PROTOPAPAS

 11 out of 50
state names come from
persons

Self-RAG - Example

Query: How did US states get their names?

US states got their names from a variety of
sources

Retrieve

1 2 3 Retrieve Chunks

Query + 1

ISREL
ISSUP

Asai et al.

The response created here
is supported by the chunk

(No hallucination).

ISSREL returned ‘Yes’
which means the chunk

is relevant.

Yes

Yes

Yes

Let’s look at the other 2 chunks.

77

https://arxiv.org/pdf/2310.11511

PROTOPAPAS

 11 out of 50
state names come from
persons

Self-RAG - Example

Query: How did US states get their names?

US states got their names from a variety of
sources

Retrieve

1 2 3 Retrieve Chunks

Query + 1

ISREL
ISSUP

Asai et al.

Yes

Yes

Yes

Query + 2

 Texas
was a part of Mexico from
1821 to 1836

ISREL
No

Query + 3

 California’s
name has its origins in a 16th
century novel Las Sergas de
Esplandian.

ISREL

ISSUP

Yes

Partially

78

https://arxiv.org/pdf/2310.11511

PROTOPAPAS

 11 out of 50
state names come from
persons

Self-RAG - Example

Query: How did US states get their names?

US states got their names from a variety of
sources

Retrieve

1 2 3 Retrieve Chunks

Query + 1

ISREL
ISSUP

Asai et al.

Yes

Yes

Yes

Query + 2

 Texas
was a part of Mexico from
1821 to 1836

ISREL
No

Query + 3

 California’s
name has its origins in a 16th
century novel Las Sergas de
Esplandian.

ISREL

ISSUP

Yes

Partially

ISREL returned ‘No’, hence
the response is discarded.

No need to check ISSUP

79

https://arxiv.org/pdf/2310.11511

PROTOPAPAS

 11 out of 50
state names come from
persons

Self-RAG - Example

Query: How did US states get their names?

US states got their names from a variety of
sources

Retrieve

1 2 3 Retrieve Chunks

Query + 1

ISREL
ISSUP

Asai et al.

Yes

Yes

Yes

Query + 2

 Texas
was a part of Mexico from
1821 to 1836

ISREL
No

Query + 3

 California’s
name has its origins in a 16th
century novel Las Sergas de
Esplandian.

ISREL

ISSUP

Yes

Partially

The response is partially
supported by the chunk.

Now we take the best out of the 3
generated responses.

We use the ISUSE token to do so.

80

https://arxiv.org/pdf/2310.11511

PROTOPAPAS

Self-RAG - Example

Asai et al.

11 out of 50 state names come
from persons

Texas was a part of
Mexico from 1821 to
1836

California’s name has its
origins in a 16th century
novel Las Sergas de
Esplandian.

Response 1 Response 2 Response 3

The ISUSE token returns a rating of 1-5,
Where 5 is the highest rating and 1 is the lowest.

ISUSE ISUSE ISUSE

5 1 3

81

https://arxiv.org/pdf/2310.11511

PROTOPAPAS

Self-RAG - Example

Asai et al.

11 out of 50 state names come
from persons

Response 1

The Self-RAG now checks if the created response is
good enough or if more retrieval is required.

New
Response

US states got their names from a variety of
Sources. 11 out of 50 state names come
from persons.

We now have a response that can be returned by the
LLM.

But how does Self-RAG check?

82

https://arxiv.org/pdf/2310.11511

PROTOPAPAS

Self-RAG - Example

Asai et al.

11 out of 50 state names come
from persons

Response 1

The Self-RAG now checks if the created response is
good enough or if more retrieval is required.

New
Response

US states got their names from a variety of
Sources. 11 out of 50 state names come
from persons.

We now have a response that can be returned by the
LLM.

But how does Self-RAG check?

The RETRIEVE token is used!
If it returns ‘Continue’, we
retrieve some more chunks.

83

https://arxiv.org/pdf/2310.11511

PROTOPAPAS

11 out of 50 state names
come

 from persons

Self-RAG - Example

Query: How did US states get their names?

US states got their names
from a variety of sources

Current Response

Retrieve

Final
Response

N
o

US states got their names from a variety of sources. 11 out of 50 state names come from persons. 26
states are named after Native Americans, including Utah.

Retrieve

Repeat

ContinueNew generated Response

84

PROTOPAPAS

Self-RAG

Type Input Ouput Definition

Retrieve (Query) or (Query,
retrieved chunk, and
previous segments – if
any)

{yes, no, continue} Decided if to use the
retriever

IsREL Query, Retrieved Chunk {relevant, irrelevant} If chunk proves useful
information to solve
query

IsSUP Query, Retrieved Chunk,
Current Output

{fully supported, partially
supported, no support}

If current segment is
supported by the chunk

IsUSE Query, Current Output {5, 4, 3, 2, 1} If current output is a
useful response to the
query

85

PROTOPAPAS

Outline

• Naïve RAG - Recap
• Pre-retrieval Optimization
• Retrieval Optimization
• Post-Retrieval Optimization
• Self-RAG
• Corrective-RAG

86

PROTOPAPAS

Corrective-RAG

87

PROTOPAPAS

Corrective-RAG

When reading a book, we often come across information which is
insufficient or ambiguous.

So, what do we do then?

That’s exactly what our next variant of RAG does!

Solution: We refer to the internet for additional details.

88

PROTOPAPAS

Corrective-RAG

Let’s suppose these are the chunks/documents we got after
we retrieve and re-rank:

Chunk 1

Chunk 2

Chunk n

Query

Retrieval Evaluator A separate LLM which
evaluates each

chunk for relevance
with the query.

89

PROTOPAPAS

Corrective-RAG

Let’s suppose these are the chunks/documents we got after
we retrieve and re-rank:

Chunk 1

Chunk 2

Chunk n

Query

Retrieval Evaluator

Correct

Ambiguous

Incorrect

These are the 3 possible
outputs that are given by
the evaluator

90

PROTOPAPAS

Corrective-RAG

Correct

Ambiguous

Incorrect

The 3 outputs are given based on 2 thresholds which are set beforehand.
1. Upper Threshold
2. Lower Threshold

Upper
Threshold

Lower
Threshold

If at least one of the retrieved
documents passes the upper

relevancy threshold.

If all the retrieved documents are
below the lower relevancy threshold

If all the retrieved documents are
between the 2 thresholds.

91

PROTOPAPAS

Corrective-RAG

Correct

Ambiguous

Incorrect

Correct:

This is when the chunks are relevant to the query provided.

In this case, we do knowledge refinement.

Relevant
Chunk 1

Relevant
Chunk 2

Strip 1

Strip 2

Strip k

Each strip
consist of a few

sentences

92

PROTOPAPAS

Corrective-RAG

Correct

Ambiguous

Incorrect

Correct:

This is when the chunk is relevant to the query provided.

In this case, we do knowledge refinement.

Relevant
Chunk 1

Relevant
Chunk 2

Strip 1

Strip 2

Strip k

Retrieval Evaluator

Strip 1

Strip n

Extracted
Strips

Relevant Strips

Final
context

Query

Aka internal
knowledge

93

PROTOPAPAS

Corrective-RAG

Correct

Ambiguous

Incorrect

Incorrect:

This is when no retrieved chunk is relevant to the query.

In this case, we search the web to provide answers.

What is
Pavlos
Protopapas’
occupation?

Query
Rewritten
websearch
query

Pavlos
protopapas,
occupation

LLM

Knowledge
Refinement

Result 1

Result 2

Result k

Web
Search
Result

Websearch
Final
Context

Aka external
knowledge

94

PROTOPAPAS

Corrective-RAG

Correct

Ambiguous

Incorrect

Ambiguous:

This is when the retrieved chunks aren’t correct or incorrect

In this case, we combine both the internal and external
knowledge to create our final context

Partially
Relevant
Chunk 1

Partially
Relevant
Chunk 2

Knowledge
Refinement

Internal
Knowledge

Web-search

Knowledge
Refinement

External
Knowledge

Concatenate Final Context

95

PROTOPAPAS

Corrective-RAG

• Corrective RAG is plug and play and can be combined with naive
RAG, advanced RAG, and even Self-RAG.

• When we combine corrective RAG with self-RAG, we get
Self-CRAG, which is the state of the art currently.

96

PROTOPAPAS

• Recap: BERT + GPT

• InstructGPT (ChatGPT)

• Prompt Engineering and Langchain

• RAG

• Advanced RAG

• Agents

Outline

97

PROTOPAPAS

LLM Applications

98

30th November 2022

AprilMarch

2023

February

ChatLLaMA

OpenAssistant

Open Source
Chatbot

Microsoft

Jarvis

Task Based
Automated

GPT / Agents

LLaMA GUI

Anthropic’s answer
to ChatGPT (with

large context
windows)

AI-chatbot-
powered research

and conversational
search engine

Let’s look at some of the LLM
applications using Agentic Workflow

(Agents)

PROTOPAPAS

LLM Applications

99

30th November 2022

AprilMarch

2023

February

ChatLLaMA

OpenAssistant

Open Source
Chatbot

Microsoft

Jarvis

Task Based
Automated

GPT / Agents

LLaMA GUI

Anthropic’s answer
to ChatGPT (with

large context
windows)

AI-chatbot-
powered research

and conversational
search engine

PROTOPAPAS

LLM Applications

100

30th November 2022

AprilMarch

2023

February

ChatLLaMA

OpenAssistant

Open Source
Chatbot

Microsoft

Jarvis

Task Based
Automated

GPT / Agents

LLaMA GUI

Anthropic’s answer
to ChatGPT (with

large context
windows)

AI-chatbot-
powered research

and conversational
search engine

Here we define ‘LLM Applications’ as any
interface that makes accessing LLMs

easier. Sometimes also called ‘LLM tools’

PROTOPAPAS

How do we define an ‘Agent’/Agentic Workflow?

101

“While there isn’t a widely accepted definition for LLM-powered agents, they can
be described as a system that can use an LLM to reason through a problem,
create a plan to solve the problem, and execute the plan with the help of a set of
tools.”

Source: Nvidia

https://developer.nvidia.com/blog/introduction-to-llm-agents/

PROTOPAPAS

Agentic Workflow

102

• In other words, an agentic workflow is any multi-step process that iteratively
instructs large language models to complete complex tasks.

Task

LLM

Tools Environment

Agent

Reasoning

Result

Action

PROTOPAPAS

Agentic Workflow

103

• In other words, an agentic workflow is any multi-step process that iteratively
instructs large language models to complete complex tasks.

Source: DeepLearningAI

https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/

PROTOPAPAS

Agentic Workflow

104

• For ex., instead of a single prompt asking for insights from a .csv, with a
workflow can allow us to guide a model to ‘act like a data scientist’ and work
iteratively:

Streamlined Data Analysis Example:
1. Initial Review: Briefly assess the dataset's structure and main components.
2. Hypothesize: Formulate initial theories based on quick observations.
3. Query Data: Execute targeted data explorations, like filtering or aggregations.
4. Draft Analysis: Create a basic analysis report.

5. Review: Check the draft for logical flaws or missed insights.
6. Refine: Update the analysis, correcting or enhancing findings.
7. Finalize Report: Produce the detailed, final version of the analysis.

PROTOPAPAS

Agentic Workflow: Design Patterns

105

• According to Andrew Ng, these frameworks can prove useful to build such
workflows:

Reflection: The LLM examines its own work to come up with ways to improve it.

Tool Use: The LLM is given tools such as web search, code execution, or any
other function to help it gather information, take action, or process data.

Planning: The LLM comes up with, and executes, a multistep plan to achieve a
goal (for example, writing an outline for an essay, then doing online research,
then writing a draft, and so on).

Multi-agent collaboration: More than one AI agent work together, splitting up
tasks and discussing and debating ideas, to come up with better solutions
than a single agent would.

PROTOPAPAS

Tutorial 9: Cheese newsletter generation

106

In this demo, we’ll create a newsletter for
Formaggio.me, highlighting the best cheese
sales around the Boston area!

But here’s the twist: we won’t be manually
searching the web, summarizing deals, or
crafting the newsletter ourselves. Instead,
we’ll let an agent handle the heavy lifting for
us—searching, curating, and delivering the
perfect newsletter automatically.

https://colab.research.google.com/drive/1UVn3L6
KQgsrVLnLRaMVbpV3VJr_i5MLW?usp=sharing

https://colab.research.google.com/drive/1UVn3L6KQgsrVLnLRaMVbpV3VJr_i5MLW?usp=sharing
https://colab.research.google.com/drive/1UVn3L6KQgsrVLnLRaMVbpV3VJr_i5MLW?usp=sharing

PROTOPAPAS

Tutorial 10: RAG with Agent Flow

107

https://github.com/dlops-io/llm-rag?tab=readme-ov-file#agents

In this section we will implement and use an AI Agent
(Cheese Expert Agent) to perform question answering. AI
agents are designed to perform specific tasks, answer
questions, and automate processes for users. We will build a
cheese agent which can perform the following tasks:

•Answer a question from a specific book given an author
name
•Answer a question from any book

https://github.com/dlops-io/llm-rag?tab=readme-ov-file

PROTOPAPAS 108

	Slide 3: Lecture 8: LLM-2
	Slide 4: Outline
	Slide 5: Tutorial 8: RAG
	Slide 6: Outline
	Slide 7: Naïve RAG - Recap
	Slide 8: Naïve RAG - Recap
	Slide 9: Naïve RAG
	Slide 10: Naïve RAG
	Slide 11: Naïve RAG
	Slide 12: Naïve RAG
	Slide 13: Naïve RAG
	Slide 14: Outline
	Slide 15: Pre-Retrieval Optimization
	Slide 16: Pre-Retrieval Optimization
	Slide 17: Pre-Retrieval Optimization - Indexing
	Slide 18: Pre-Retrieval Optimization - Indexing
	Slide 19: Pre-Retrieval Optimization - Indexing
	Slide 20: Pre-Retrieval Optimization - Indexing
	Slide 21: Pre-Retrieval Optimization - Indexing
	Slide 22: Pre-Retrieval Optimization - Indexing
	Slide 23: Pre-Retrieval Optimization - Indexing
	Slide 24: Pre-Retrieval Optimization - Indexing
	Slide 25: Pre-Retrieval Optimization - Indexing
	Slide 26: Pre-Retrieval Optimization - Indexing
	Slide 27: Pre-Retrieval Optimization - Indexing
	Slide 28: Pre-Retrieval Optimization - Indexing
	Slide 29: Pre-Retrieval Optimization - Indexing
	Slide 30: Pre-Retrieval Optimization - Indexing
	Slide 31: Pre-Retrieval Optimization - Indexing
	Slide 32: Pre-Retrieval Optimization - Indexing
	Slide 33: Pre-Retrieval Optimization - Indexing
	Slide 34: Pre-Retrieval Optimization - Indexing
	Slide 35: Pre-Retrieval Optimization - Indexing
	Slide 36: Pre-Retrieval Optimization - Indexing
	Slide 37
	Slide 38: Pre-Retrieval Optimization – Query Manipulation
	Slide 39: Pre-Retrieval Optimization – Query Manipulation
	Slide 40: Pre-Retrieval Optimization – Query Manipulation
	Slide 41: Pre-Retrieval Optimization – Query Manipulation
	Slide 42: Outline
	Slide 43: Retrieval Optimization
	Slide 44: Retrieval Optimization – Hybrid Search
	Slide 45: Retrieval Optimization – Hybrid Search
	Slide 46: Retrieval Optimization – Hybrid Search
	Slide 47: Retrieval Optimization – Hybrid Search
	Slide 48: Retrieval Optimization – Hybrid Search
	Slide 49: Retrieval Optimization – Hybrid Search
	Slide 50: Outline
	Slide 51: Post-Retrieval Optimization
	Slide 52: Post-Retrieval – Re-ranking
	Slide 53: Post-Retrieval – Re-ranking
	Slide 54: Post-Retrieval – Re-ranking
	Slide 55: Post-Retrieval – Re-ranking
	Slide 56: Post-Retrieval – Re-ranking
	Slide 57: Post-Retrieval – Re-ranking
	Slide 58: Post-Retrieval – Re-ranking
	Slide 59: Post-Retrieval – Re-ranking
	Slide 60: Post-Retrieval – Re-ranking
	Slide 61: Post-Retrieval – Re-ranking
	Slide 62: Post-Retrieval – Re-ranking
	Slide 63: Post-Retrieval – Re-ranking
	Slide 64
	Slide 65: Outline
	Slide 66: Self-RAG
	Slide 67: Self-RAG
	Slide 68: Self-RAG - Intuition
	Slide 69: Self-RAG - Intuition
	Slide 70: Self-RAG - Intuition
	Slide 71: Self-RAG - Intuition
	Slide 72: Self-RAG - Intuition
	Slide 73: Self-RAG - Introduction
	Slide 74: Self-RAG – Retrieve token
	Slide 75: Self-RAG – Critique token
	Slide 76: Self-RAG – Example
	Slide 77: Self-RAG - Example
	Slide 78: Self-RAG - Example
	Slide 79: Self-RAG - Example
	Slide 80: Self-RAG - Example
	Slide 81: Self-RAG - Example
	Slide 82: Self-RAG - Example
	Slide 83: Self-RAG - Example
	Slide 84: Self-RAG - Example
	Slide 85: Self-RAG
	Slide 86: Outline
	Slide 87: Corrective-RAG
	Slide 88: Corrective-RAG
	Slide 89: Corrective-RAG
	Slide 90: Corrective-RAG
	Slide 91: Corrective-RAG
	Slide 92: Corrective-RAG
	Slide 93: Corrective-RAG
	Slide 94: Corrective-RAG
	Slide 95: Corrective-RAG
	Slide 96: Corrective-RAG
	Slide 97: Outline
	Slide 98: LLM Applications
	Slide 99: LLM Applications
	Slide 100: LLM Applications
	Slide 101: How do we define an ‘Agent’/Agentic Workflow?
	Slide 102: Agentic Workflow
	Slide 103: Agentic Workflow
	Slide 104: Agentic Workflow
	Slide 105: Agentic Workflow: Design Patterns
	Slide 106: Tutorial 9: Cheese newsletter generation
	Slide 107: Tutorial 10: RAG with Agent Flow
	Slide 108

