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Tutorial 8: RAG
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In this tutorial, we’re building a Retrieval-Augmented 
Generation (RAG) system, powered by a ChromaDB vector 
database and a Large Language Model (Gemini).

For the Formaggio.me chatbot to truly earn its title as a cheese 
connoisseur, it needs to go beyond the basics, knowing rare and 
lesser-known cheeses, along with all the juicy details. Standard 
LLMs won’t have this specialized knowledge, so we’ve gathered a 
collection of books to build the RAG system.

And of course, the whole setup is containerized!

https://github.com/dlops-io/llm-rag

Formaggio.me
https://github.com/dlops-io/llm-rag


PROTOPAPAS

• Advanced RAG
• Naïve RAG - Recap

• Pre-Retrieval Optimization

• Retriever Optimization

• Post-Retrieval Optimization

• Self-RAG

• Corrective-RAG

• Agents

Outline

6



PROTOPAPAS

Naïve RAG - Recap
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Naïve RAG - Recap
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Augmentation 
& Generation

Indexing

Naïve RAG

Now, let’s look at the big picture.
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Indexing

Naïve RAG

Now, let’s look at the big picture.
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Indexing

Naïve RAG

Now, let’s look at the big picture.

Query

ResponseRetrieval

Documents

Pre-Retrieval Augmentation 
& Generation

Indexing

Pre-Retrieval

The Pre-Retrieval Phase deals with:

• Chunking the data
• Converting the chunks into 

embeddings
• Handling the embeddings
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Indexing

Naïve RAG

Now, let’s look at the big picture.

Query

ResponseRetrieval

Documents

Pre-Retrieval
Post-

Retrieval
Augmentation 
& Generation

Post-
Retrieval

The Post-Retrieval phase deals with 
polishing what was obtained from the 
retriever.
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Pre-Retrieval Optimization
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Pre-Retrieval Optimization

The pre-retrieval stage can be optimized in many ways.

We will be looking at 2 ways of doing so:

1. Indexing
2. Query Manipulation

16
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Pre-Retrieval Optimization - Indexing

I. Improve the chunking process

By default, we do character splitting for the chunks. For example, if we 
have a document that says:

Machine learning is a subset of artificial intelligence that focuses on building 
systems that learn from data. It is used in various applications such as 
recommendation engines, autonomous vehicles, and predictive analytics.

17
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Pre-Retrieval Optimization - Indexing

I. Improve the chunking process

Machine learning is a subset of artificial intelligence that focuses on building 
systems that learn from data. It is used in various applications such as 
recommendation engines, autonomous vehicles, and predictive analytics.

By using character splitting of chunk size 50, the chunks would be:

a. "Machine learning is a subset of artificial intelli”
b. "gence that focuses on building systems that lear”
c. "n from data. It is used in various applications ”
d. "such as recommendation engines, autonomous vehic"
e. "les, and predictive analytics."

Do you think this 
is a good chunk?

18
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Pre-Retrieval Optimization - Indexing

Let’s take another example

Model research paper

Now, if we do character splitting for chunks (chunk 
size=200), we get:

Chunk 1: 
Recent techniques in transfer learning for NLP Abstract: Transfer 
learning has become a crucial technique in NLP. This paper 
explores recent advancements, including fine-tuning pre-trained 
models like BERT and GPT-3, and dom

Chunk 2:
ain adaptation methods. Our experiments demonstrate 
significant improvements in performance across various NLP 
tasks. Methodology: We fine-tuned BERT and GPT-3 models on 
specific NLP tasks, adapting them to different do

….
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Model research paper

Pre-Retrieval Optimization - Indexing

Let’s take another example
Now, if we do character splitting for chunks (chunk 
size=200), we get:

Chunk 1: 
Recent techniques in transfer learning for NLP Abstract: Transfer 
learning has become a crucial technique in NLP. This paper 
explores recent advancements, including fine-tuning pre-trained 
models like BERT and GPT-3, and dom

Chunk 2:
ain adaptation methods. Our experiments demonstrate 
significant improvements in performance across various NLP 
tasks. Methodology: We fine-tuned BERT and GPT-3 models on 
specific NLP tasks, adapting them to different do

….
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Pre-Retrieval Optimization - Indexing

Let’s take another example

Model research paper

Now, if we do character splitting for chunks (chunk 
size=200), we get:

Chunk 1: 
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specific NLP tasks, adapting them to different do
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Pre-Retrieval Optimization - Indexing

Let’s take another example

Model research paper

The optimal way to do it would be:

Chunk 1: 
Advancements in Transfer Learning for NLP

Chunk 2: 
Abstract:
Transfer learning has become a crucial technique in NLP. This paper 
explores recent advancements, including fine-tuning pre-trained 
models like BERT and GPT-3, and domain adaptation methods. Our 
experiments demonstrate significant improvements in performance 
across various NLP tasks.

Chunk 3:
Methodology:
We fine-tuned BERT and GPT-3 models on specific NLP tasks, adapting 
them to different domains. Domain adaptation involved additional pre-
training on domain-specific data. Our approach leverages the pre-
trained knowledge and adapts it to new tasks, achieving higher 
accuracy and efficiency.

….
This is called semantic 

chunking
22
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Pre-Retrieval Optimization - Indexing

Let’s take another example

Model research paper

The optimal way to do it would be:

Chunk 1: 
Advancements in Transfer Learning for NLP

Chunk 2: 
Abstract:
Transfer learning has become a crucial technique in NLP. This paper 
explores recent advancements, including fine-tuning pre-trained 
models like BERT and GPT-3, and domain adaptation methods. Our 
experiments demonstrate significant improvements in performance 
across various NLP tasks.

Chunk 3:
Methodology:
We fine-tuned BERT and GPT-3 models on specific NLP tasks, adapting 
them to different domains. Domain adaptation involved additional pre-
training on domain-specific data. Our approach leverages the pre-
trained knowledge and adapts it to new tasks, achieving higher 
accuracy and efficiency.

….
This is called semantic 

chunking
23
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Pre-Retrieval Optimization - Indexing

Semantic Chunking – Steps

1. Splitting: We split the document to sentences using separators(.,?,!).

2. Grouping: Select anchor sentences and choose how many sentences to 
consider at either side of the anchor (window size).

3. Similarity Check: Calculate the distance between the group of sentences 
(e.g.: cosine similarity).

4. Chunking: Chunk together the similar sentences.

Confused?
Let’s look at an 

example!

24
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Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence 

2
Sentence 

3
Sentence 

4
Sentence 

5
Sentence 

6

Anchor 1

Document
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Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence 

2
Sentence 

3
Sentence 

4
Sentence 

5
Sentence 

6

Anchor 1

1. Let’s suppose we choose the number of sentences at either side to be 1.
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Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence 

2
Sentence 

3
Sentence 

4
Sentence 

5
Sentence 

6

Anchor 1

1. Let’s suppose we choose the number of sentences at either side to be 1.
2. We calculate the cosine similarity of the sentences in the group. 

Group 1
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Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence 

2
Sentence 

3
Sentence 

4
Sentence 

5
Sentence 

6

Anchor 1

1. Let’s suppose we choose the number of sentences at either side to be 1.
2. We calculate the cosine similarity of the sentences in the group. 

Group 1 Cosine similarity = 
0.89
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Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence 

2
Sentence 

3
Sentence 

4
Sentence 

5
Sentence 

6

Anchor 1

1. Let’s suppose we choose the number of sentences at either side to be 1.
2. We calculate the cosine similarity of the sentences in the group. 
3. Since the cosine similarity here is high (Assuming our threshold is 0.8), we 

chunk together the sentences. 

Group 1 Cosine similarity = 
0.89
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Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence 

2
Sentence 

3
Sentence 

4
Sentence 

5
Sentence 

6

Anchor 1

1. Let’s suppose we choose the number of sentences at either side to be 1.
2. We calculate the cosine similarity of the sentences in the group. 
3. Since the cosine similarity here is high (Assuming our threshold is 0.8), we 

chunk together the sentences. 

Chunk 1
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Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence 

2
Sentence 

3
Sentence 

4
Sentence 

5
Sentence 

6

Chunk 1

1. We then move to Anchor 2.

Anchor 2
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Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence 

2
Sentence 

3
Sentence 

4
Sentence 

5
Sentence 

6

Chunk 1

1. We then move to Anchor 2.
2. Since window size=1, we group one sentence from the left and one from the 

right of the anchor.

Anchor 2

Group 2
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Pre-Retrieval Optimization - Indexing

Sentence 1
Sentence 

2
Sentence 

3
Sentence 

4
Sentence 

5
Sentence 

6

Chunk 1

1. We then move to Anchor 2.
2. Since window size=1, we group one sentence from the left and one from the right 

of the anchor.
3. We then calculate the similarity indices of the sentences in Group 2 with Anchor 

2.
(Threshold=0.8)

Anchor 2

Group 2
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Pre-Retrieval Optimization - Indexing

Sentence 
2

Sentence 
3

Sentence 
4

Sentence 
5

Sentence 
6

1. We then move to Anchor 2.
2. Since window size=1, we group one sentence from the left and one from the right 

of the anchor.
3. We then calculate the similarity indices of the sentences in Group 2 with Anchor 

2.
(Threshold=0.8)

Anchor 2

Group 2
Cosine similarity = 
0.85

Cosine similarity = 
0.68

Sentence 1
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Pre-Retrieval Optimization - Indexing

Sentence 
2

Sentence 
3

Sentence 
4

Sentence 
5

Sentence 
6

Since,

cosine similarity of Sentence 2 & Anchor 2 > 0.8  and 
cosine similarity of Sentence 3 & Anchor 2 < 0.8, 

we chunk together Sentence 3 into Chunk 1.

Anchor 2

Group 2
Cosine similarity = 
0.85

Cosine similarity = 
0.68

Sentence 1
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Pre-Retrieval Optimization - Indexing

Sentence 
2

Sentence 
3

Sentence 
4

Sentence 
5

Sentence 
6

Since Chunk 1 is complete.

We now move on to make the 2nd Chunk.

The anchor moves on to Sentence 5 and the process continues till we reach 
the end of the sentence.

Anchor 3

Sentence 1

36

Chunk 1
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Pre-Retrieval Optimization – Query Manipulation
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Pre-Retrieval Optimization – Query Manipulation

2 problems can come up when it comes to queries provided by a user:

1. The query is ‘cluttered’.
This can be due to it being sprinkled with a lot of irrelevant information.

2. The query is ambiguous.
The query doesn’t have sufficient information.

38
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Pre-Retrieval Optimization – Query Manipulation

1. The query is ‘cluttered’ for our RAG system

We have an essay due tomorrow. We have to write about some animal. I 
love penguins. I could write bout them. But I could also write about 
dolphins. Are they animals? Maybe. Let’s do dolphins. Where do they 
live, for example?

Where do dolphins live?

Original Query

Rewritten query

The rewritten query 
is now concise and 

“to the point”.

39
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Pre-Retrieval Optimization – Query Manipulation

2.   The query is ambiguous for our RAG system.

"Was there significant turnover in the executive team?"

Original Query

Imagine a use case - we have created a RAG 
system on top of a Microsoft annual report.

Too broad a term. 
Directors? Senior 
Vice Presidents?

In what sense? 
Retirements? 
Promotions?

The query is too ‘narrow’ and 
lacks information.

40
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Pre-Retrieval Optimization – Query Manipulation

"Was there significant turnover in the executive team?"

Was there significant turnover in the executive team? Has there 
been a notable level of turnover among the executive leadership 
team recently? Specifically, I am interested in understanding 
whether multiple key positions within the executive team have 
experienced changes in leadership, including CEOs, CFOs, or other 
top executives, over the past year. Additionally, what factors 
contributed to these changes?

Original Query

Rewritten query

This query is completely made up by 
the LLM and has nothing to do with 

the Microsoft annual report

41
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Outline

• Naïve RAG - Recap
• Pre-Retrieval Optimization
• Retrieval Optimization
• Post-Retrieval Optimization
• Self-RAG
• Corrective-RAG
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Retrieval Optimization

43
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Retrieval Optimization – Hybrid Search

Instead of just using semantic search using vectors, we can also do some keyword matching.

For e.g. If we have the sentence:

The vector search may help us disambiguate the meaning of the word ‘bank’ while the 
keyword matching may help us find documents related to ‘Ignacio’.

Ignacio went to the bank of the river in the morning

Hybrid search in retrieval optimization combines different retrieval models to leverage 
the strengths of each and provide more relevant search results. 

44
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Retrieval Optimization – Hybrid Search

How do we do it?

Usually, we use two different retrievers, one for keyword search (BM25) and one for 
semantic matching (vector similarity).

BM25
A probabilistic retrieval model that ranks documents based on the frequency of query 
terms in the document.

The formula is based on TF-IDF. 

45To learn more about BM25: Click here

https://zilliz.com/learn/mastering-bm25-a-deep-dive-into-the-algorithm-and-application-in-milvus
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Retrieval Optimization – Hybrid Search

Let’s say we got the following 3 paragraphs:
 

Ignacio went to the riverbank early in the morning

In the morning, Ignacio went to the bank by 
the river to borrow some money 

Ignacio went to the river for swimming and 
splashing around. Afterwards, he lay on the 
riverbank, drying off in the sun.

Paragraphs

Original Sentence:
Ignacio went to the bank of the river in the morning

The sentence is almost the 
same as the original sentence

The bank in this sentence is 
completely different to the 
one in  the original sentence!

It has words that relate to the 
original sentence.

46
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Retrieval Optimization – Hybrid Search

Let’s now look at the rankings given by the
algorithms.

Ignacio went to the riverbank early in the morning

In the morning, Ignacio went to the bank by 
the river to borrow some money 

Ignacio went to the river for swimming and 
splashing around. Afterwards, he lay on the 
riverbank, drying off in the sun.

BM25

1

2

3

Vector Search

1

2

3

Paragraphs

Original Sentence:
Ignacio went to the bank of the river in the morning

47
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Retrieval Optimization – Hybrid Search

How do we combine the results?

We use one of the rank fusion techniques:

Reciprocal Rank Fusion (RRF) = σ𝑗=1
𝑛 𝑤𝑗 ∗

1

𝑘+𝑟(𝑑)

Where,
  n=number of rankings
  𝑟(𝑑) = rank of the document
  𝑤𝑗=weight of the ranking metric
  k=ranking constant

48

These are hyper-parameters



PROTOPAPAS

Retrieval Optimization – Hybrid Search

Ignacio went to the riverbank early in the morning

In the morning, Ignacio went to the bank by 
the river to borrow some money 

Ignacio went to the river for swimming and 
splashing around. Afterwards, he lay on the 
riverbank, drying off in the sun.

BM25

1

2

3

Vector Search

1

2

3

Paragraphs
Reciprocal 

Rank Fusion 
(RRF)

0.5* Τ1
2 + 0.5∗ Τ1

1 = 0.75

0.5* Τ1
1 + 0.5∗ Τ1

3 = 0.67

0.5* Τ1
3 + 0.5∗ Τ1

2 = 0.42

We take the k to be 0 
and 𝑤𝑗=0.5

How do we combine the results?
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Outline

• Naïve RAG - Recap
• Pre-retrieval Optimization
• Retrieval Optimization
• Post-Retrieval Optimization
• Self-RAG
• Corrective-RAG
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Post-Retrieval Optimization
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Post-Retrieval – Re-ranking

All chunks 

Vector
database

Let us go back to the bigger picture. Consider we have all the chunks stored in our vector 
database.

52
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Post-Retrieval – Re-ranking

Vector
database

User Query: 

“….. …. …… … 
….?”

We get an incoming user 
query.

All chunks 
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Post-Retrieval – Re-ranking

Vector
database

User Query: 

“….. …. …… … 
….?”

top_K=25 The retriever, returns the top_K 
similar chunks.

True relevant records

All chunks 
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Post-Retrieval – Re-ranking

Vector
database

User Query: 

“….. …. …… … 
….?”

top_k=25 The retriever, returns the top_k 
similar chunks.

True relevant records

All chunks 
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Post-Retrieval – Re-ranking

Vector
database

User Query: 

“….. …. …… … 
….?”

top_k=25 A simple score like cosine 
similarity might miss key details 

in comparing the query to the 
context. This could result in 

inaccurate ranking.

True relevant records

All chunks 
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Post-Retrieval – Re-ranking

Vector
database

User Query: 

“….. …. …… … 
….?”

top_k=25 A simple score like cosine 
similarity might miss key details 

in comparing the query to the 
context. This could result in 

inaccurate ranking.

True relevant records

All chunks 
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Post-Retrieval – Re-ranking

Vector
database

User Query: 

“….. …. …… … 
….?”

top_k=25

True relevant records

All chunks 

We use a ‘re-ranker’.

Re-ranker

58
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Post-Retrieval – Re-ranking

The answer to that question is:

A question that may pop up in your mind is:

Why don’t we just re-rank from the 
very beginning instead of retrieving 

and then re-ranking?

Re-rankers are slow, and 
retrievers are fast, so we need 

to use both!

• We used encoders (retrievers) to compress all the records into vectors.

• Bi-encoders have no context on the query because we create these vectors before 
user query time.

Let us see why!

59

It is also referred to as 
bi-encoders because one is 

used for encoding the query 
and the other for 

document/chunks.
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Post-Retrieval – Re-ranking

Document A Document B

BERT BERT

Vector A Vector B

The bi-encoder provides us with the vectors stored in 
the vector database.

Fig: Encoder
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Post-Retrieval – Re-ranking

• We thus frontload all the heavy computations when we create the initial vectors.

• Thus, when a user sends a query, we have the vectors ready. All we need to do is:
• Run bi-encoder once to create query vector.

• Compare query vector to document vectors with cosine similarity.

The main drawback to this is information loss which is mitigated to some extent when we use a 
re-ranker.

We use a cross-encoders as a re-ranker.

This is the main reason why retrieving is faster.

61
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Post-Retrieval – Re-ranking

Document A 
(knowledge)

Document B (query)

BERT

Similarity Score

Can you guess why reranking is slower compared to retrieving?

Fig: Cross-encoder

62

This is like next-
sentence 

prediction and 
using the CLS 

token



PROTOPAPAS

Post-Retrieval – Re-ranking

• Unlike the naïve retrieval, the cross-encoder does not use a simple formula to compare 
vectors, mitigating information loss.

• We feed the document and query vectors into the cross-encoder, run it and output a single 
similarity score.

This leads to better results than retrieving.

The main drawback to this is, it takes time.

Thus, retrieving and reranking mitigates each 
other’s drawbacks (information loss and time).
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Thus, retrieving and reranking mitigates each 
other’s drawbacks (information loss and time).
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Outline

• Naïve RAG - Recap
• Pre-retrieval Optimization
• Retrieval Optimization
• Post-Retrieval Optimization
• Self-RAG
• Corrective-RAG

65



PROTOPAPAS

Self-RAG

66
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Self-RAG

Limitations of Advanced RAG:

1. Doesn’t guarantee the relevancy of the chunk to the query.

2. No guarantee that the response from LLM using the k-chunks are 
related to the chunks themselves (hallucinations).

3. Doesn’t consider the possibilities where retrieval may not be 
necessary.
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Self-RAG - Intuition

Let’s take a scenario where you’re taking an open book exam. How 
would you go about it?

A) For familiar topics, answer quickly; for unfamiliar ones, refer to the 
book, find relevant parts and then answer.

B) For every topic, refer to the book, find relevant section and write the 
answer.

68
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Self-RAG - Intuition

Let’s take a scenario where you’re taking an open book exam. How 
would you go about it?

A) For familiar topics, answer quickly; for unfamiliar ones, refer to the 
book, find relevant parts and then answer.

B) For every topic, refer to the book, find relevant section and write the 
answer.
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Self-RAG - Intuition

Let’s take a scenario where you’re taking an open book exam. How 
would you go about it?

A) For familiar topics, answer quickly; for unfamiliar ones, refer to the 
book, find relevant parts and then answer.

B) For every topic, refer to the book, find relevant section and write the 
answer.

But why?

70
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Self-RAG - Intuition

Referring to the book even when it is not needed can lead to:

1. Slower response rate.

2. More confusion and mistakes.

3. Introduction of irrelevant or erroneous information, while scouring 
through the book.

Similarly, there may be times when it’s not required for the RAG to 
retrieve documents from the vector database.

So, how do we fix this problem?

71
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Self-RAG - Intuition

Referring to the book even when it is not needed can lead to:

1. Slower response rate.

2. More confusion and mistakes.

3. Introduction of irrelevant or erroneous information, whilst scouring 
through the book.

Similarly, there may be times when it’s not required for the RAG to 
retrieve documents from the vector database.

So, how do we fix this problem?

Self-RAG
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Self-RAG - Introduction

• Self-RAG is a “new” framework that controls the retrieval and 
generation process via reflection tokens.

• There are 2 types of reflection tokens:

• Retrieve token: To evaluate the utility of retrieval.

• Critique token:  To evaluate the documents that have been retrieved.
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Self-RAG – Retrieve token

• The retrieve token is generated by the Self-RAG to evaluate the utility of 
retrieval.

• It has 3 possible outputs.

Yes

No

Continue

Retrieval is required.

No retrieval required.

Continuation of retrieval.

This is an output that is 
generated only after a 

retrieval has taken place 
already.
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Self-RAG – Critique token

• The critique token is generated by the Self-RAG to evaluate the documents 
that have been retrieved.

• It can be further subdivided into 3 types of tokens:

• ISREL: Determines if the retrieved document provides useful information to solve the 
   query.

• ISSUP: Determines if the output generated is supported by the retrieved document.

• ISUSE: Determines if the output generated is useful to the query.

Let’s look at an example to clarify these concepts!

A hallucination 
check

75

Useful basically 
means: Does it 

answer the query?
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Self-RAG – Example

Query: Write an essay about summer vacation?

My best summer vacation is when my family and I went on a road trip 
along…

Retrieve

Asai et al.

The retrieve token has 
returned a ‘No’, hence no 

retrieval is required.

Let’s look at a query where the model already knows how to answer

Now, let’s look at a case where the model may not have all the facts to answer the question.

No

76

This is a fine-tuned LLM 
to answer this type of 

questions as well. 

https://arxiv.org/pdf/2310.11511
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  11 out of 50 
state names come from 
persons

Self-RAG - Example

Query: How did US states get their names?

US states got their names from a variety of 
sources

Retrieve

1 2 3 Retrieve Chunks

Query  + 1

ISREL
ISSUP

Asai et al.

The response created here 
is supported by the chunk 

(No hallucination).

ISSREL returned ‘Yes’ 
which means the chunk 

is relevant.

Yes

Yes

Yes

Let’s look at the other 2 chunks.

77

https://arxiv.org/pdf/2310.11511
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  11 out of 50 
state names come from 
persons

Self-RAG - Example

Query: How did US states get their names?

US states got their names from a variety of 
sources

Retrieve

1 2 3 Retrieve Chunks

Query  + 1

ISREL
ISSUP

Asai et al.

Yes

Yes

Yes

Query  + 2

       Texas 
was a part of Mexico from 
1821 to 1836

ISREL
No

Query  + 3

  California’s 
name has its origins in a 16th 
century novel Las Sergas de 
Esplandian.

ISREL

ISSUP

Yes

Partially
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PROTOPAPAS

  11 out of 50 
state names come from 
persons

Self-RAG - Example

Query: How did US states get their names?

US states got their names from a variety of 
sources

Retrieve

1 2 3 Retrieve Chunks

Query  + 1

ISREL
ISSUP

Asai et al.

Yes

Yes

Yes

Query  + 2

       Texas 
was a part of Mexico from 
1821 to 1836

ISREL
No

Query  + 3

  California’s 
name has its origins in a 16th 
century novel Las Sergas de 
Esplandian.

ISREL

ISSUP

Yes

Partially

ISREL returned ‘No’, hence 
the response is discarded. 

No need to check ISSUP
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PROTOPAPAS

  11 out of 50 
state names come from 
persons

Self-RAG - Example

Query: How did US states get their names?

US states got their names from a variety of 
sources

Retrieve

1 2 3 Retrieve Chunks

Query  + 1

ISREL
ISSUP

Asai et al.

Yes

Yes

Yes

Query  + 2

       Texas 
was a part of Mexico from 
1821 to 1836

ISREL
No

Query  + 3

  California’s 
name has its origins in a 16th 
century novel Las Sergas de 
Esplandian.

ISREL

ISSUP

Yes

Partially

The response is partially 
supported by the chunk.

Now we take the best out of the 3 
generated responses.

We use the ISUSE token to do so.
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Self-RAG - Example

Asai et al.

11 out of 50 state names come 
from persons

Texas was a part of 
Mexico from 1821 to 
1836

California’s name has its 
origins in a 16th century 
novel Las Sergas de 
Esplandian.

Response 1 Response 2 Response 3

The ISUSE token returns a rating of 1-5,
Where 5 is the highest rating and 1 is the lowest.

ISUSE ISUSE ISUSE

5 1 3

81

https://arxiv.org/pdf/2310.11511


PROTOPAPAS

Self-RAG - Example

Asai et al.

11 out of 50 state names come 
from persons

Response 1

The Self-RAG now checks if the created response is 
good enough or if more retrieval is required.

New 
Response

US states got their names from a variety of 
Sources. 11 out of 50 state names come 
from persons.

We now have a response that can be returned by the 
LLM.

But how does Self-RAG check?
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Self-RAG - Example

Asai et al.

11 out of 50 state names come 
from persons

Response 1

The Self-RAG now checks if the created response is 
good enough or if more retrieval is required.

New 
Response

US states got their names from a variety of 
Sources. 11 out of 50 state names come 
from persons.

We now have a response that can be returned by the 
LLM.

But how does Self-RAG check?

The RETRIEVE token is used!
If it returns ‘Continue’, we 
retrieve some more chunks.  
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11 out of 50 state names 
come

 from persons

Self-RAG - Example

Query: How did US states get their names?

US states got their names 
from a variety of sources

Current Response

Retrieve

Final 
Response

N
o

US states got their names from a variety of sources. 11 out of 50 state names come from persons. 26 
states are named after Native Americans, including Utah.

Retrieve

Repeat

ContinueNew generated Response
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Self-RAG

Type Input Ouput Definition

Retrieve (Query) or (Query, 
retrieved chunk, and 
previous segments – if 
any)

{yes, no, continue} Decided if to use the 
retriever

IsREL Query, Retrieved Chunk {relevant, irrelevant} If chunk proves useful 
information to solve 
query

IsSUP Query, Retrieved Chunk, 
Current Output

{fully supported, partially 
supported, no support}

If current segment is 
supported by the chunk

IsUSE Query, Current Output {5, 4, 3, 2, 1} If current output is a 
useful response to the 
query
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Outline

• Naïve RAG - Recap
• Pre-retrieval Optimization
• Retrieval Optimization
• Post-Retrieval Optimization
• Self-RAG
• Corrective-RAG
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Corrective-RAG

87
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Corrective-RAG

When reading a book, we often come across information which is 
insufficient or ambiguous. 

So, what do we do then?

That’s exactly what our next variant of RAG does! 

Solution: We refer to the internet for additional details.
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Corrective-RAG

Let’s suppose these are the chunks/documents we got after 
we retrieve and re-rank:

Chunk 1

Chunk 2

Chunk n

Query

Retrieval Evaluator A separate LLM which 
evaluates each 

chunk for relevance 
with the query.
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Corrective-RAG

Let’s suppose these are the chunks/documents we got after 
we retrieve and re-rank:

Chunk 1

Chunk 2

Chunk n

Query

Retrieval Evaluator

Correct

Ambiguous

Incorrect

These are the 3 possible 
outputs that are given by 
the evaluator
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Corrective-RAG

Correct

Ambiguous

Incorrect

The 3 outputs are given based on 2 thresholds which are set beforehand.
1. Upper Threshold
2. Lower Threshold

Upper 
Threshold

Lower 
Threshold

If at least one of the retrieved 
documents passes the upper 

relevancy threshold.

If all the retrieved documents are 
below the lower relevancy threshold

If all the retrieved documents are 
between the 2 thresholds.
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Corrective-RAG

Correct

Ambiguous

Incorrect

Correct:

This is when the chunks are relevant to the query provided.

In this case, we do knowledge refinement.

Relevant 
Chunk 1

Relevant 
Chunk 2

Strip 1

Strip 2

Strip k

Each strip 
consist of a few 

sentences
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Corrective-RAG

Correct

Ambiguous

Incorrect

Correct:

This is when the chunk is relevant to the query provided.

In this case, we do knowledge refinement.

Relevant 
Chunk 1

Relevant 
Chunk 2

Strip 1

Strip 2

Strip k

Retrieval Evaluator

Strip 1

Strip n

Extracted 
Strips

Relevant Strips

Final 
context

Query

Aka internal 
knowledge
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Corrective-RAG

Correct

Ambiguous

Incorrect

Incorrect:

This is when no retrieved chunk is relevant to the query.

In this case, we search the web to provide answers.

What is 
Pavlos 
Protopapas’ 
occupation?

Query
Rewritten 
websearch 
query

Pavlos 
protopapas, 
occupation

LLM

Knowledge 
Refinement

Result 1

Result 2

Result k

Web 
Search 
Result

Websearch
Final 
Context

Aka external 
knowledge
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Corrective-RAG

Correct

Ambiguous

Incorrect

Ambiguous:

This is when the retrieved chunks aren’t correct or incorrect

In this case, we combine both the internal and external 
knowledge to create our final context

Partially 
Relevant 
Chunk 1

Partially 
Relevant 
Chunk 2

Knowledge 
Refinement

Internal 
Knowledge

Web-search

Knowledge 
Refinement

External 
Knowledge

Concatenate Final Context
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Corrective-RAG

• Corrective RAG is plug and play and can be combined with naive 
RAG, advanced RAG, and even Self-RAG.

• When we combine corrective RAG with self-RAG, we get
Self-CRAG, which is the state of the art currently.
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• Recap: BERT + GPT

• InstructGPT (ChatGPT)

• Prompt Engineering and Langchain

• RAG

• Advanced RAG

• Agents

Outline
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LLM Applications

98

30th November 2022

AprilMarch

2023

February

ChatLLaMA

OpenAssistant

Open Source 
Chatbot

Microsoft

Jarvis

Task Based 
Automated 

GPT / Agents

LLaMA GUI

Anthropic’s answer 
to ChatGPT (with 

large context 
windows)

AI-chatbot-
powered research 

and conversational 
search engine 

Let’s look at some of the LLM 
applications using Agentic Workflow 

(Agents)
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LLM Applications
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30th November 2022

AprilMarch

2023

February

ChatLLaMA

OpenAssistant

Open Source 
Chatbot

Microsoft

Jarvis

Task Based 
Automated 

GPT / Agents

LLaMA GUI

Anthropic’s answer 
to ChatGPT (with 

large context 
windows)

AI-chatbot-
powered research 

and conversational 
search engine 
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LLM Applications
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30th November 2022

AprilMarch

2023

February

ChatLLaMA

OpenAssistant

Open Source 
Chatbot

Microsoft

Jarvis

Task Based 
Automated 

GPT / Agents

LLaMA GUI

Anthropic’s answer 
to ChatGPT (with 

large context 
windows)

AI-chatbot-
powered research 

and conversational 
search engine 

Here we define ‘LLM Applications’ as any 
interface that makes accessing LLMs 

easier. Sometimes also called ‘LLM tools’
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How do we define an ‘Agent’/Agentic Workflow?

101

“While there isn’t a widely accepted definition for LLM-powered agents, they can 
be described as a system that can use an LLM to reason through a problem, 
create a plan to solve the problem, and execute the plan with the help of a set of 
tools.” 

Source: Nvidia

https://developer.nvidia.com/blog/introduction-to-llm-agents/
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Agentic Workflow

102

• In other words, an agentic workflow is any multi-step process that iteratively 
instructs large language models to complete complex tasks.

Task

LLM

Tools Environment

Agent

Reasoning

Result

Action
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Agentic Workflow

103

• In other words, an agentic workflow is any multi-step process that iteratively 
instructs large language models to complete complex tasks.

Source: DeepLearningAI

https://www.deeplearning.ai/the-batch/how-agents-can-improve-llm-performance/
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Agentic Workflow

104

• For ex., instead of a single prompt asking for insights from a .csv, with a 
workflow can allow us to guide a model to ‘act like a data scientist’ and work 
iteratively: 

Streamlined Data Analysis Example:
1. Initial Review: Briefly assess the dataset's structure and main components.
2. Hypothesize: Formulate initial theories based on quick observations.
3. Query Data: Execute targeted data explorations, like filtering or aggregations.
4. Draft Analysis: Create a basic analysis report.

5. Review: Check the draft for logical flaws or missed insights.
6. Refine: Update the analysis, correcting or enhancing findings.
7. Finalize Report: Produce the detailed, final version of the analysis.
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Agentic Workflow: Design Patterns

105

• According to Andrew Ng, these frameworks can prove useful to build such 
workflows: 

Reflection: The LLM examines its own work to come up with ways to improve it.

Tool Use: The LLM is given tools such as web search, code execution, or any 
other function to help it gather information, take action, or process data.

Planning: The LLM comes up with, and executes, a multistep plan to achieve a 
goal (for example, writing an outline for an essay, then doing online research, 
then writing a draft, and so on).

Multi-agent collaboration: More than one AI agent work together, splitting up 
tasks and discussing and debating ideas, to come up with better solutions 
than a single agent would.
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Tutorial 9: Cheese newsletter generation 

106

In this demo, we’ll create a newsletter for 
Formaggio.me, highlighting the best cheese 
sales around the Boston area!

But here’s the twist: we won’t be manually 
searching the web, summarizing deals, or 
crafting the newsletter ourselves. Instead, 
we’ll let an agent handle the heavy lifting for 
us—searching, curating, and delivering the 
perfect newsletter automatically.

https://colab.research.google.com/drive/1UVn3L6
KQgsrVLnLRaMVbpV3VJr_i5MLW?usp=sharing

https://colab.research.google.com/drive/1UVn3L6KQgsrVLnLRaMVbpV3VJr_i5MLW?usp=sharing
https://colab.research.google.com/drive/1UVn3L6KQgsrVLnLRaMVbpV3VJr_i5MLW?usp=sharing
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Tutorial 10: RAG with Agent Flow

107

https://github.com/dlops-io/llm-rag?tab=readme-ov-file#agents

In this section we will implement and use an AI Agent 
(Cheese Expert Agent) to perform question answering. AI 
agents are designed to perform specific tasks, answer 
questions, and automate processes for users. We will build a 
cheese agent which can perform the following tasks:

•Answer a question from a specific book given an author 
name
•Answer a question from any book  

https://github.com/dlops-io/llm-rag?tab=readme-ov-file
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