
Pavlos Protopapas
SEAS/Harvard

AC215

Lecture 9: LLM-3 Finetuning

PROTOPAPAS

Outline

• Training Cycle – LLM
• Instruction-tuning

• Full Parameter
• PEFT

• LoRA
• QLoRA

PROTOPAPAS

Outline

• Training Cycle – LLM
• Instruction-tuning

• Full Parameter
• PEFT

• LoRA
• QLoRA

PROTOPAPAS

Training Cycle - LLM

Pre-Training

The training cycle for a LLM consists of 3 main stages:

Instruct Safety

5

PROTOPAPAS

Training Cycle - LLM

Pre-Training

Objective:
The goal of pre-training is to teach the model general
language understanding.

Process:
The model is trained on a massive dataset of text
from the internet and other sources.

Outcome:
A base model that has a general understanding of the
language.

6

This is what we’ve learned when
we talked about how GPT works

PROTOPAPAS

Training Cycle - LLM

Instruct

Objective:
The goal is to make the model useful for specific
tasks and improving its ability to follow instructions.

Process:
Fine-tuning the model on datasets that contain
instructions and the desired outputs.

Outcome:
A model that becomes better at interpreting and
following user instructions.

This also includes
RLHF.

7

PROTOPAPAS

Training Cycle - LLM

Safety

Objective:
The goal is to make sure that the model outputs are
safe and ethical.

Process:
Involves further fine-tuning. We use RLHF to provide
feedback on model outputs.

Outcome:
The model becomes safer reducing risk of biased
content.

It’s after this step that we get
models like ChatGPT, Claude etc

8

PROTOPAPAS

Training Cycle - LLM

In this lecture, we will be focusing on the Instruct stage of
fine-tuning.

Instruct Safety

So, fine-tuning takes place in 2 stages.

9

PROTOPAPAS

Training Cycle - LLM

There are 2 types of
fine-tuning that we

can do.
Instruct

Domain Specific
Finetuning

Task Specific
Finetuning

Summarization Classification Sentiment
Analysis

Medicine Finance Legal

10

PROTOPAPAS

Training Cycle - LLM

• A method of prompt
engineering where the model is
shown task demonstrations as
part of the prompt.

• No change in model
parameters.

Before we go deeper into fine-tuning there is another way of adapting LLMs for
specific task, which is called “In-context” learning.

• A process of training the LLM
on a labelled dataset specific
to a particular task.

• Change in model parameters.

In-context Learning Fine-tuning

Fine-tuning is a supervised process that leads to a new model, in contrast
with in-context learning, which is considered “ephemeral.”

11

PROTOPAPAS

Training Cycle - LLM

• A method of prompt
engineering where the model is
shown task demonstrations as
part of the prompt.

• No change in model
parameters.

Before we go deeper into fine-tuning there is another way of adapting LLMs for
specific task, which is called “In-context” learning.

• A process of training the LLM
on a labelled dataset
specific to a particular task.

• Change in model
parameters.

In-context Learning Fine-tuning

Fine-tuning is a supervised process that leads to a new model, in contrast
with in-context learning, which is considered “ephemeral.”

12

You may recall in-context
learning from previous lecture
with reference to prompting.

Let’s focus on fine-tuning and
how it makes our LLM better.

PROTOPAPAS

Outline

• Training Cycle – LLM
• Instruction-tuning

• Full Parameter
• PEFT

• LoRA
• QLoRA

PROTOPAPAS

Instruction-tuning (Full Parameter)

Fine-tuning very often means instruction fine-tuning.

15

An instruction dataset, comprising pairs of instructions, answers,
and sometimes context, is required for such fine-tuning.

PROTOPAPAS

Instruction-tuning (Full Parameter)

16

This is an example of what an instruction dataset looks like.

Instruction Context Output

Suggest a good restaurant Los Angeles, CA
In Los Angeles, CA, I suggest
Rossoblu Italian Restaurant

Rewrite the sentence with
more descriptive words

The game is fun
The game is exhilarating

and enjoyable

Calculate the area of the
triangle

Base: 5cm; Height: 6cm
The area of the triangle is

15 𝑐𝑚2

Source: Alpaca-GPT4 dataset

https://wandb.ai/capecape/alpaca_ft/reports/How-to-Fine-Tune-an-LLM-Part-1-Preparing-a-Dataset-for-Instruction-Tuning--Vmlldzo1NTcxNzE2

PROTOPAPAS

Instruction-tuning (Full Parameter)

Task-specific fine-tuning:
This particular process involves training the model on a smaller,
task-specific dataset.

For e.g.: Summarize this, translate that, etc

17

This allows the model to learn the nuances, and specialized
vocabulary relavant to the task.

PROTOPAPAS

Instruction-tuning (Full Parameter)

For e.g., if you train a model
specifically for question answering:

18

Notice, how it answers requests,
starting with ‘Sure…’.

PROTOPAPAS

Instruction-tuning (Full Parameter)

This is opposed to how language models are trained (next word
prediction), according to which the answer should just included the
haiku directly.

For e.g., if you train a model
specifically for question answering:

19

Notice, how it answers requests,
starting with ‘Sure…’.

PROTOPAPAS

Instruction-tuning (Full Parameter)

We have to be careful while doing task-specific finetuning to avoid
catastrophic forgetting.

Catastrophic forgetting refers to the phenomenon where a model
loses its ability to perform previously learned tasks when it is being
fine-tuned on new tasks.

The key idea of catastrophic forgetting is that as the model learns
new tasks, it may overwrite what it previously learned, leading to a
loss in performance on earlier tasks.

20

PROTOPAPAS

Instruction-tuning (Full Parameter)

To mitigate the problem of catastrophic forgetting, we need to do
multi-task finetuning.

This requires a lot of data, and training resources.

21

PROTOPAPAS

Instruction-tuning (Full Parameter)

• We need to update all the parameters while finetuning.
• For a 7B model, we need to update 7 billion weights. For a 13 billion

model, we need to update 13 billion weights.

• Storing and updating these weights require a lot of GPU memory.

22

 Fun Fact: Did you know, training GPT-4 involved ~25,000
A100 GPUs over ~90-100 days, costing OpenAI nearly $100
million!

PROTOPAPAS

Instruction-tuning (Full Parameter)

23

 Fun Fact: Did you know, training GPT-4 involved ~25,000
A100 GPUs over ~90-100 days, costing OpenAI nearly $100
million!

PROTOPAPAS

Instruction-tuning (Full Parameter)

Let’s take a fine-tuning example now.

Say we want to finetune a 10 billion parameter model. Let’s see how
that looks in memory.

24

Assuming, we’re working with FP16 (half precision), which takes
approximately 2 bytes per parameter.

PROTOPAPAS

Instruction-tuning (Full Parameter)

Assuming, we’re working with FP16 (half precision), which takes
approximately 2 bytes per parameter.

10B parameter model

Parameters(FP16) 20GB

Gradient(FP16) 20GB

Optimizer
States(FP32)

Momentum
Variance

120GB

In general,
these states
need more
precision.

25

We use the
Adam

Optimizer.

PROTOPAPAS

Instruction-tuning (Full Parameter)

Assuming, we’re working with FP16 (half precision), which takes
approximately 2 bytes per parameter.

4090
GPU

24GB

4090
GPU

24GB

4090
GPU

24GB

4090
GPU

24GB

4090
GPU

24GB

4090
GPU

24GB

4090
GPU

24GB

This model needs
at least 7 top-of-the-
line consumer-grade

GPU’s to finetune.
26

10B parameter model

Parameters(FP16) 20GB

Gradient(FP16) 20GB

Optimizer
States(FP32)

Momentum
Variance

120GB

PROTOPAPAS

Instruction-tuning (Full Parameter)

This makes full parameter finetuning inaccessible to normal folks
like us.

So, what can we
do?

27

PROTOPAPAS

Outline

• Training Cycle – LLM
• Instruction-tuning

• Full Parameter
• PEFT

• LoRA
• QLoRA

PROTOPAPAS

Instruction-tuning (PEFT)

PEFT stands for Parameter Efficient Finetuning.

Unlike full parameter finetuning, PEFT preserves the vast majority of
the model’s original weights.

There are majorly three methods to do PEFT.
1. Additive
2. Selective
3. Reparameterization

29

PROTOPAPAS

Instruction-tuning (PEFT)

31
Source: paper “Scaling Down to Scale Up”

(arxiv.org)

Add trainable layers or
parameters to model

Add new trainable
layers to the

architecture called
‘Adapters’

Focuses on
manipulating the input

(not the same as
prompt engineering)

Subsets the
parameters to

finetune

Reparametrize model
weights using a new

representation

https://arxiv.org/pdf/2303.15647
https://arxiv.org/pdf/2303.15647

PROTOPAPAS

Instruction-tuning (PEFT)
There are a lot of techniques. We’re interested in LoRA, which is one of

the most popular.

33

Source: paper “Scaling Down to Scale Up”
(arxiv.org)

https://arxiv.org/pdf/2303.15647
https://arxiv.org/pdf/2303.15647

PROTOPAPAS

Outline

• Training Cycle – LLM
• Instruction-tuning

• Full Parameter
• PEFT

• LoRA
• QLoRA

PROTOPAPAS

LoRA - Intuition

LoRA revolves around the idea that any matrix W ∈ 𝑅𝑚×𝑛 can
be decomposed into 𝐖 = 𝑩𝑨 where 𝐵 ∈ 𝑅𝑚×𝑟 and A ∈ 𝑅𝑟×𝑛

= ×

𝑊 𝐵 𝐴

Rank 1

37

PROTOPAPAS

LoRA - Intuition

LoRA revolves around the idea that any matrix W ∈ 𝑅𝑚×𝑛 can
be decomposed into 𝐖 = 𝑩𝑨 where 𝐵 ∈ 𝑅𝑚×𝑟 and A ∈ 𝑅𝑟×𝑛

= ×

𝑊 𝐵 𝐴

38

25
elements

10
elements

PROTOPAPAS

LoRA - Intuition

We can even increase the rank to get better performance.

= ×

𝑊 𝐵 𝐴

39

25
elements

10
elements

PROTOPAPAS

LoRA - Working

Now, we use the same concept of matrix decomposition
while finetuning an LLM.

𝑊0 + Δ𝑊 = 𝑊0 +
𝛼

𝑟
𝐵𝐴

Remember, we are decomposing the update matix (Δ𝑊), and
not the original weights 𝑊0.

Initial
LLM

Weights

Update
matrix

Decomposed
matrices

Scaling
parameter

40

Rank of
𝐵𝐴

PROTOPAPAS

LoRA - Working

𝑊0 + Δ𝑊 = 𝑊0 +
𝛼

𝑟
𝐵𝐴

We initialize B using a zero matrix, and A using a normal
distribution.

Now, let’s look at this diagrammatically.

42

PROTOPAPAS

LoRA - Working

44

Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

A = 𝛮(0, 𝜎2)

𝑟

𝐵 = 0

ℎ

Notice how the reparameterization (LoRA) runs parallel to the
original model.

PROTOPAPAS

LoRA - Working

45

Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

ℎ

Notice how the reparameterization (LoRA) runs parallel to the
original model.

Backward
Pass

During the
backward pass, we
don’t use the pre-
trained weights and
the gradients only
flow through the
adapters.

A = 𝛮(0, 𝜎2)

𝑟

𝐵 = 0

PROTOPAPAS

LoRA - Working

46

Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

ℎ

Notice how the reparameterization (LoRA) runs parallel to the
original model.

At inference time,
the update matrix

can be merged with
the original model
weights to make

the process
efficient.

A = 𝛮(0, 𝜎2)

𝑟

𝐵 = 0

PROTOPAPAS

LoRA - Intuition

48

Let’s explore the scale at which LoRA can help reduce
the number of parameters needed to achieve

comparable performance!

PROTOPAPAS

LoRA - Intuition

Number of trainable parameters

Rank Model 7B Model 13B Model 70B Model 180B

1 167K 228K 529K 849K

2 334k 456k 1M 2M

8 1M 2M 4M 7M

16 3M 4M 8M 14M

512 86M 117M 270M 434M

1024 171M 233M 542M 869M

8192 1.4B 1.8B 4.3B 7B

Full 7B 13B 70B 180B

49

PROTOPAPAS

LoRA - Intuition

Number of trainable parameters

Rank Model 7B Model 13B Model 70B Model 180B

1 167K 228K 529K 849K

2 334K 456K 1M 2M

8 1M 2M 4M 7M

16 3M 4M 8M 14M

512 86M 117M 270M 434M

1024 171M 233M 542M 869M

8192 1.4B 1.8B 4.3B 7B

Full 7B 13B 70B 180B

50

PROTOPAPAS

LoRA - Intuition

Number of trainable parameters

Rank Model 7B Model 13B Model 70B Model 180B

1 167K 228K 529K 849K

2 334K 456K 1M 2M

8 1M 2M 4M 7M

16 3M 4M 8M 14M

512 86M 117M 270M 434M

1024 171M 233M 542M 869M

8192 1.4B 1.8B 4.3B 7B

Full 7B 13B 70B 180B

51

PROTOPAPAS

LoRA - Intuition

Number of trainable parameters

Rank Model 7B Model 13B Model 70B Model 180B

1 167K 228K 529K 849K

2 334K 456K 1M 2M

8 1M 2M 4M 7M

16 3M 4M 8M 14M

512 86M 117M 270M 434M

1024 171M 233M 542M 869M

8192 1.4B 1.8B 4.3B 7B

Full 7B 13B 70B 180B

 This is a generalization considering an LLM of one layer. LLMs are made up of multiple layers.

52

PROTOPAPAS

LoRA - Advantages

Compared to full parameter finetuning, LoRA has the following
advantages:

1. Much faster
2. Finetuning can be achieved using less GPU memory
3. Cost efficient
4. Less prone to “catastrophic forgetting” since the original model

weights are kept the same.

53

PROTOPAPAS

LoRA – Isn’t it enough?

Optimizer
State
(FP32)

Base Model
(FP16)

10B → 160GB

Full Parameter
Fine Tuning

54

PROTOPAPAS

LoRA – Isn’t it enough?

Optimizer
State
(FP32)

Base Model
(FP16)

10B → 160GB

Full Parameter
Fine Tuning

55

PROTOPAPAS

LoRA – Isn’t it enough?

Optimizer
State
(FP32)

Base Model
(FP16)

10B → 160GB

Full Parameter
Fine Tuning

A
Optimizer
State
(FP32)

Base Model
(FP16)

10B → ~40GB

LoRA

A

B

B
LoRA
Adapter
(FP16)

56

PROTOPAPAS

LoRA – Isn’t it enough?

Optimizer
State
(FP32)

Base Model
(FP16)

Full Parameter
Fine Tuning

Optimizer
State
(FP32)

Base Model
(FP16)

LoRA

A

A

B

B
LoRA
Adapter
(FP16)

57

10B → 160GB 10B → ~40GB

This will be frozen.
So, no optimization,
but the parameters

still needs to be
stored in memory
for forward pass

PROTOPAPAS

LoRA – Isn’t it enough?

As we can see below, LoRA’s performance is comparative to full
parameter fine-tuning and, in some cases, even outperforms it.

These metrics are
used for performance

evaluation.

PROTOPAPAS

LoRA

• LoRA reduces the trainable parameters and memory
requirements while maintaining good performance.

• LoRA adds pairs of rank decomposition weight matrices (called
update matrices) to each layer of the LLM.

• Only the update matrices, which have significantly fewer
parameters than the original model weights, are trained.

60

- Summary

PROTOPAPAS

Outline

• Training Cycle – LLM
• Instruction-tuning

• Full Parameter
• PEFT

• LoRA
• QLoRA

PROTOPAPAS

QLoRA

• QLoRA is the extended version of LoRA which works mainly by
quantizing the precision of the network parameters.

• Before we dive into what QLoRA is, let’s look at what quantization
is.

Think of quantization as ‘ splitting range into buckets ’.

62

PROTOPAPAS

QLoRA

Think of quantization as ‘ splitting range into buckets ’.

27 55.3 83.78

Any number between
0 and 100

Quantized by
 whole numbers

27 55 83

20 50 80

Quantized by
10s

1 num =
infinite bytes

1 num =
0.875 bytes

1 num =
0.5 bytes
(3 bits ~
0.375 bytes)

63

PROTOPAPAS

QLoRA

Let’s look at an example!

64

Let 𝑋𝐹𝑃32 be an array of values.

1.5 2.3 3.7 4.1 5.6 6.8 7.9 8.4 9.2 10.2

Here, FP32 refers to a 32-
bit floating-point

number.

What if we want to quantize from FP32 to Int8?

PROTOPAPAS

QLoRA

So, to quantize 𝑋𝐹𝑃32 to 𝑋𝐼𝑛𝑡8 :

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑋𝐹𝑃32
𝑋𝐹𝑃32

65

Int8 values range from -127 to
127

The absolute maximum value
in the array, 𝑋𝐹𝑃32 .

Array of values

PROTOPAPAS

QLoRA

66

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

So, to quantize 𝑋𝐹𝑃32 to 𝑋𝐼𝑛𝑡8 :

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑋𝐹𝑃32
𝑋𝐹𝑃32

PROTOPAPAS

QLoRA

67

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

So, to quantize 𝑋𝐹𝑃32 to 𝑋𝐼𝑛𝑡8 :

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑋𝐹𝑃32
𝑋𝐹𝑃32

PROTOPAPAS

QLoRA

68

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

1.5 2.3 3.7 4.1 5.6 6.8 7.9 8.4 9.2 10.2

In our example,

𝑋𝐹𝑃32

𝑐𝐹𝑃32 =
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑋𝐹𝑃32 =
127

10.2
 = 12.4509

Now, we combine the formula and the values that we
have

PROTOPAPAS

QLoRA

69

𝑋𝐼𝑛𝑡8 = 12.4509𝑟𝑜𝑢𝑛𝑑(x 1.5 2.3 3.7 4.1 5.6 6.8 7.9 8.4 9.2 10.2)

𝑋𝐼𝑛𝑡8 = 18 29 46 51 69 85 98 105 115 127

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

Voila! That’s how we quantize from FP32 to Int8 using the formula:

PROTOPAPAS

QLoRA

70

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

Now that we know what quantization is, let’s look at how QLoRA
works!

𝑋𝐹𝑃32 =
𝑋𝐼𝑛𝑡8

𝑐𝐹𝑃32

To dequantize:

What if we want to dequantize and get back the original array,
𝑋𝐹𝑃32?

Dequantization
error

PROTOPAPAS

QLoRA – The Pizza

Imagine QLoRA to be a mouthwatering pizza.

71

Now, to make a pizza, we need to gather a few key ingredients!

PROTOPAPAS

QLoRA – The Ingredients

4-Bit NormalFloat

There are 3 key ingredients which helps us make QLoRA:

72

Paged OptimizerDouble Quantization

PROTOPAPAS

QLoRA – Ingredient 1: 4-Bit NormalFloat

4-bit NormalFloat
4-bit NormalFloat is a clever way to split
the buckets.

4-bit means we have
24 = 16 possible buckets for quantization.

Equally spaced buckets

Equally sized buckets
This is an enhanced version of

quantile quantization.

0

73

PROTOPAPAS

QLoRA – Ingredient 1: 4-Bit NormalFloat

Why use 4-bit NormalFloat
Designed for efficient storage and
computation in machine learning.

Most datasets in machine learning are
normally distributed and precision
around the mean is valuable.

Equally spaced buckets

Equally sized buckets
This is an enhanced version of

quantile quantization.

0

74

PROTOPAPAS

4-Bit NormalFloat

There are 3 key ingredients which helps us make QLoRA:

QLoRA – The Ingredients

75

Paged OptimizerDouble Quantization

PROTOPAPAS

QLoRA – Ingredient 2: Double Quantization

Remember this formula?

Now, if we think about this in terms of neural networks….

Takes up
memory

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

Which is not an issue, as it’s just 1 constant. Right?

76

PROTOPAPAS

QLoRA – Ingredient 2: Double Quantization

Now, if we think about this in terms of neural networks….

Weight Tensor

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9

Let’s take a 5x5 matrix to be the weights in a neural
network:

77

PROTOPAPAS

QLoRA – Ingredient 2: Double Quantization

Now, if we think about this in terms of neural networks….

-4 -2 0 -22 16

-5 -88 -9 48 27

72 -100 -50 -18 40

22 8 -81 127 -66

-60 10 40 99 -57

78

𝑢𝑠𝑖𝑛𝑔 𝑐

Rescale all parameters

𝑟𝑜𝑢𝑛𝑑 𝑊𝐹𝑃32𝑐𝐹𝑃32 = 𝑊𝐼𝑛𝑡8If we bring back the formula:

Rescaled Weight TensorWeight Tensor

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9

PROTOPAPAS

QLoRA – Ingredient 2: Double Quantization

Now, if we think about this in terms of neural networks….

-4 -2 0 -22 16

-5 -88 -9 48 27

72 -100 -50 -18 40

22 8 -81 127 -66

-60 10 40 99 -57

79

𝑢𝑠𝑖𝑛𝑔 𝑐

Rescale all parameters

𝑟𝑜𝑢𝑛𝑑 𝑊𝐹𝑃32𝑐𝐹𝑃32 = 𝑊𝐼𝑛𝑡8If we bring back the formula:

Rescaled Weight TensorWeight Tensor

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9We quantize to Int8 for simplicity but
when we implement QLoRA we use

4-bit Normal Float.

PROTOPAPAS

QLoRA – Ingredient 2: Double Quantization

Now, if we think about this in terms of neural networks….

-4 -2 0 -22 16

-5 -88 -9 48 27

72 -100 -50 -18 40

22 8 -81 127 -66

-60 10 40 99 -57

80

𝑢𝑠𝑖𝑛𝑔 𝑐

Rescale all parameters

𝑟𝑜𝑢𝑛𝑑 𝑊𝐹𝑃32𝑐𝐹𝑃32 = 𝑊𝐼𝑛𝑡8If we bring back the formula:

Rescaled Weight TensorWeight Tensor

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9

Do you see a
problem

here?

PROTOPAPAS

QLoRA – Ingredient 2: Double Quantization

Let’s see how the weight tensors look like on the graph.

This is unbounded and could take up any maximum value (an outlier!).

𝑊𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑊𝐹𝑃32
𝑊𝐹𝑃32)

0

81

+10000

PROTOPAPAS

QLoRA – Ingredient 2: Double Quantization

Let’s see how the weight tensors look like on the graph.

This is unbounded and could take up any maximum value (an outlier!).

𝑊𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑊𝐹𝑃32
𝑊𝐹𝑃32)

0

82

This could
introduce bias

in our
quantization

process

+10000

PROTOPAPAS

QLoRA – Ingredient 2: Double Quantization

Let’s see how the weight tensors look like on the graph.

This is unbounded and could take up any maximum value (an outlier!).

𝑊𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑊𝐹𝑃32
𝑊𝐹𝑃32)

0

83

This could
introduce bias

in our
quantization

process

+10000

So, how do we avoid this problem?

PROTOPAPAS

QLoRA – Ingredient 2 : Double Quantization

84

Let’s look at an example to understand this concept.

The answer to that is: Block-wise Quantization, which is the first
step in Double Quantization!

We take the weight tensor that we saw in the previous slides.

Weight Tensor (𝑊𝐹𝑃32)

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9

PROTOPAPAS

-0.1 -1.5 -0.1 0.8 0.5

QLoRA – Ingredient 2 : Double Quantization

85

We flatten the matrix as follows:

Now we divide it up into different blocks.

𝑐𝑖 𝑐𝑗 𝑐𝑘 𝑐𝑙 𝑐𝑚

We calculate the quantization constants for each block.

Weight Tensor (𝑊𝐹𝑃32)

-0.7 -0.3 0.0 -0.4 0.3 -1.0 0.2 0.7 1.7 -0.9 1.2 -1.7 -0.9 -0.3 0.7 0.4 0.1 -1.4 2.2 -1.1

If there are any outliers in a block, they won’t
affect the quantisation in the other blocks.

PROTOPAPAS

-0.1 -1.5 -0.1 0.8 0.5

QLoRA – Ingredient 2 : Double Quantization

86

𝑐𝑖 𝑐𝑗 𝑐𝑘 𝑐𝑙 𝑐𝑚

Weight Tensor (𝑊𝐹𝑃32)

-0.7 -0.3 0.0 -0.4 0.3 -1.0 0.2 0.7 1.7 -0.9 1.2 -1.7 -0.9 -0.3 0.7 0.4 0.1 -1.4 2.2 -1.1

181.4 74.7 84.7 74.7 57.7

-9 -127 -12 70 40-127 -54 0 -73 54 -77 13 51 127 -74 93 -127 -64 -24 52 22 8 -81 127 -66

We now rescale all the parameters per block.

Rescaled Weight Tensor (𝑊𝐼𝑛𝑡8)

𝐶𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝐶𝐹𝑃32 𝐶𝐹𝑃32)

PROTOPAPAS

We now have a new array:

QLoRA – Ingredient 2 : Double Quantization

𝑐1
𝐹𝑃32

87

𝑐𝑖 𝑐𝑗 𝑐𝑘 𝑐𝑙 𝑐𝑚

Now, we repeat the same process of quantization for the
quantization constants.

𝑐1
𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(

127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑐1
𝐹𝑃32 𝑐1

𝐹𝑃32)

𝑐1
𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐2

𝐹𝑃32𝑐1
𝐹𝑃32)

Double Quantization

𝑐1
𝐹𝑃32 is an array of
all the constants

from each block of
the Weight Tensor.

PROTOPAPAS

QLoRA – Ingredient 2 : Double Quantization

89

𝑐1
𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐2

𝐹𝑃32𝑐1
𝐹𝑃32)

Let’s see the difference in memory usage before and after
Double Quantization.

PROTOPAPAS

QLoRA – Ingredient 2 : Double Quantization

90

Before

Weight Tensor (𝑊𝐹𝑃32)

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9

Next, let’s look at the memory usage after
Double Quantization.

All we had was a weight matrix containing FP32 values.

In our example, we had a 5x5 matrix.

Each value was 4 bytes in size.

25x4=100 bytes So, the total memory used
was:

PROTOPAPAS

QLoRA – Ingredient 2 : Double Quantization

91

Before 25x4=100 bytes

After

-9 -127 -12 70 40

-127 -54 0 -73 54

-77 13 51 127 -74

93 -127 -64 -24 52

22 8 -81 127 -66

Rescaled Weight Tensor
(𝑊𝐼𝑛𝑡8)

25x1=25 bytes.

𝑐𝑖 𝑐𝑗 𝑐𝑘 𝑐𝑙 𝑐𝑚

𝑐1
𝐼𝑛𝑡8

5x1=5bytes.

𝑐2
𝐹𝑃32

4 bytes

So, in total:

25 + 5 + 4 = 34 bytes

PROTOPAPAS

QLoRA – Ingredient 2 : Double Quantization

92

Before

25x4=100 bytes

After

25 + 5 + 4 = 34 bytes

That is an approximate 70% reduction in memory
usage!!

-9 -127 -12 70 40

-127 -54 0 -73 54

-77 13 51 127 -74

93 -127 -64 -24 52

22 8 -81 127 -66

𝑐𝑖 𝑐𝑗 𝑐𝑘 𝑐𝑙 𝑐𝑚

𝑐2
𝐹𝑃32

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9

PROTOPAPAS

4-Bit NormalFloat

There are 3 key ingredients which helps us make QLoRA:

QLoRA – The Ingredients

95

Paged OptimizerDouble Quantization

PROTOPAPAS

QLoRA – Ingredient 3

So, how do we train a modern Neural Networks without taking a hit
on the memory?

96

Before we talk about the third ingredient in QLoRA, let’s talk about
a problem.

We use gradient checkpointing.

Running Out of Memory!

A problem which all of us have faced while training a Neural
Network

PROTOPAPAS

QLoRA – Ingredient 3

Imagine this simple neural network

Layer 1 Layer 2 Layer 3 Layer 4

When we do a forward-pass, we calculate the activations for
each layer.

X ℎ1 ℎ2 ℎ3 ො𝑦

97

PROTOPAPAS

QLoRA – Ingredient 3

However, this takes up precious memory.

Modern-day computers have become very efficient at parallel
processing. What they lack is memory.

We don’t need to store all the hidden states.

98

Layer 1 Layer 2 Layer 3 Layer 4

X ℎ1 ℎ2 ℎ3 ො𝑦

PROTOPAPAS

QLoRA – Ingredient 3

We only store in memory what is needed at the moment.

99

X

Layer 1 Layer 2 Layer 3 Layer 4

ℎ1 ℎ2 ℎ3 ො𝑦

So, let’s see how it looks!

We keep discarding activations that have already been used to
calculate the next dependent hidden state’s activation.

PROTOPAPAS

QLoRA – Ingredient 3

100

X

Layer 1 Layer 2 Layer 3 Layer 4

ො𝑦

During backpropagation, we must recompute all the discarded
activations.

To manage this, we introduce checkpoints in the middle.

PROTOPAPAS

QLoRA – Ingredient 3

Checkpoints are usually placed at every 𝑛 layer, considering we
have a n-layer neural network.

So, now when we re-compute the activations for backward pass,
we don’t have to start from the beginning!

101

Layer 1 Layer 2 Layer 3 Layer 4

X ℎ1 ℎ2 ℎ3 ො𝑦

PROTOPAPAS

QLoRA – Ingredient 3

102

Layer 1 Layer 2 Layer 3 Layer 4

X ℎ2 ො𝑦

This allows us to mitigate the OOM (Out of memory) error to some
extent, but it doesn’t get rid of it!

We still see some memory spikes especially when we pass in long
sequences in the batch.

PROTOPAPAS

QLoRA – Ingredient 3

103

Layer 1 Layer 2 Layer 3 Layer 4

X ℎ2 ො𝑦

This allows us to mitigate the OOM (Out of memory) error to some
extent, but it doesn’t get rid of it!

We still see some memory spikes especially when we pass in long
sequences in the batch.

This is where our third ingredient comes
in!

PROTOPAPAS

QLoRA – Ingredient 3 : Paged Optimizer

104

It does automatic page-to-page transfers between CPU and GPU

Avoids the gradient checkpointing memory spikes that occur when
processing a mini batch with a long sequence length.

CPUGPU

Paged Optimizer - Looping in your CPU
Paging is a memory

management technique, where
RAM is divided into fixed-size

blocks called ‘pages’

GPU Memory is full
GPU Memory has

space now.
Now that the GPU has

space, when a page
moved to CPU is required,

we move it back to GPU
for computation.

PROTOPAPAS

4-Bit NormalFloat

We saw the 3 key ingredients needed to make QLoRA:

QLoRA – The Ingredients

105

Paged OptimizerDouble Quantization

Let’s bring it all
together.

PROTOPAPAS

QLoRA – Putting it all together

106

Optimizer
State
(FP32)

Base Model

10B => 160GB

Full Parameter
Fine Tuning

Optimizer
State
(FP32)

Base Model

10B => ~40GB

LoRA

A

A

B

B
LoRA
Adapter
(FP16)

FP16FP16

PROTOPAPAS

QLoRA – Putting it all together

107

Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

A = 𝛮(0, 𝜎2)

𝑟

𝐵 = 0

ℎ

BF16

BF16

BF16

In QLoRA we use BF16
(BrainFloat16) as compared to
FP16 in LoRA.

This leads to a change in
precision which is tailor-made for
deep learning tasks.

Before we talk about the 3
ingredients, there is another key
difference that we should know.

PROTOPAPAS

QLoRA – Putting it all together

108

Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

A = 𝛮(0, 𝜎2)

ℎ

BF16
BF16

BF16

Ingredient 1:

4-Bit NormalFloat

Double Quantization

We store W, as 4-Bit NormalFloat

To convert and store, we make use of
Double Quantization!

Ingredient 2:

NF4

A = 𝛮(0, 𝜎2)

𝑟

𝐵 = 0

PROTOPAPAS

QLoRA – Putting it all together

109

Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

ℎ

BF16

BF16
NF4

We then use the BF16 values of W, A
and B to perform the required
calculations.

BF16

Forward Pass

During the forward pass, we first
dequantize the W weights from NF4
to BF16 for computation.

The BF16 values of W is then deleted
to save on storage!

A = 𝛮(0, 𝜎2)

𝑟

𝐵 = 0

PROTOPAPAS

QLoRA – Putting it all together

110

Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

ℎ

BF16

BF16
NF4

As in LoRA, we keep W weights
frozen and allow the gradients to
only flow through the adapters.

We then repeat the cycle of forward
and backward passes till a minima
is reached.

Backward Pass

A = 𝛮(0, 𝜎2)

𝑟

𝐵 = 0

PROTOPAPAS

QLoRA – Putting it all together

111

Optimizer
State (FP32)

Base Model

10B => ~12GB

QLoRA

LoRA Adapter
(BF16)

4bit NormalFloat

CPU

Pages are moved to the CPU
from the GPU when it does not
have space and moved back to
GPU for when it’s required and

there is space.

Paged
Optimizer

Ingredient 3:

PROTOPAPAS

QLoRA – Putting it all together

Putting it mathematically,

Let’s start with LoRA:

112

Weights of LoRA: 𝑊0 +
𝛼

𝑟
𝐵𝐴

Forward pass in LoRA:

Initial
LLM

Weights Decomposed
matrices

Scaling
parameter

Y = X𝑊0 +
𝛼

𝑟
𝑋𝐵𝐴

Rank of B
and A

PROTOPAPAS

QLoRA – Putting it all together

𝑌𝐵𝐹16

113

Let’s expand the formula and see how it looks!

Y

where 𝑑𝑜𝑢𝑏𝑙𝑒𝐷𝑒𝑞𝑢𝑎𝑛𝑡 𝑐1
𝐹𝑃32, 𝑐2

𝑘−𝑏𝑖𝑡 , 𝑊𝑜
𝑁𝐹4 = 𝑑𝑒𝑞𝑢𝑎𝑛𝑡 𝑑𝑒𝑞𝑢𝑎𝑛𝑡 c1

FP32, c2
k−bit , W𝑜

4bit

= X𝑊0 +
𝛼

𝑟
𝑋𝐵𝐴

= 𝑋𝐵𝐹16𝑑𝑜𝑢𝑏𝑙𝑒𝐷𝑒𝑞𝑢𝑎𝑛𝑡 𝑐1
𝐹𝑃32, 𝑐2

𝑘−𝑏𝑖𝑡 , 𝑊𝑜
𝑁𝐹4 +

𝛼

𝑟
𝑋𝐵𝐹16𝐵𝐵𝐹16𝐴𝐵𝐹16

= WBF16

PROTOPAPAS

THANK YOU

	Slide 2: Lecture 9: LLM-3 Finetuning
	Slide 3: Outline
	Slide 4: Outline
	Slide 5: Training Cycle - LLM
	Slide 6: Training Cycle - LLM
	Slide 7: Training Cycle - LLM
	Slide 8: Training Cycle - LLM
	Slide 9: Training Cycle - LLM
	Slide 10: Training Cycle - LLM
	Slide 11: Training Cycle - LLM
	Slide 12: Training Cycle - LLM
	Slide 14: Outline
	Slide 15: Instruction-tuning (Full Parameter)
	Slide 16: Instruction-tuning (Full Parameter)
	Slide 17: Instruction-tuning (Full Parameter)
	Slide 18: Instruction-tuning (Full Parameter)
	Slide 19: Instruction-tuning (Full Parameter)
	Slide 20: Instruction-tuning (Full Parameter)
	Slide 21: Instruction-tuning (Full Parameter)
	Slide 22: Instruction-tuning (Full Parameter)
	Slide 23: Instruction-tuning (Full Parameter)
	Slide 24: Instruction-tuning (Full Parameter)
	Slide 25: Instruction-tuning (Full Parameter)
	Slide 26: Instruction-tuning (Full Parameter)
	Slide 27: Instruction-tuning (Full Parameter)
	Slide 28: Outline
	Slide 29: Instruction-tuning (PEFT)
	Slide 31: Instruction-tuning (PEFT)
	Slide 33: Instruction-tuning (PEFT)
	Slide 35: Outline
	Slide 37: LoRA - Intuition
	Slide 38: LoRA - Intuition
	Slide 39: LoRA - Intuition
	Slide 40: LoRA - Working
	Slide 42: LoRA - Working
	Slide 44: LoRA - Working
	Slide 45: LoRA - Working
	Slide 46: LoRA - Working
	Slide 48: LoRA - Intuition
	Slide 49: LoRA - Intuition
	Slide 50: LoRA - Intuition
	Slide 51: LoRA - Intuition
	Slide 52: LoRA - Intuition
	Slide 53: LoRA - Advantages
	Slide 54: LoRA – Isn’t it enough?
	Slide 55: LoRA – Isn’t it enough?
	Slide 56: LoRA – Isn’t it enough?
	Slide 57: LoRA – Isn’t it enough?
	Slide 58: LoRA – Isn’t it enough?
	Slide 60: LoRA
	Slide 61: Outline
	Slide 62: QLoRA
	Slide 63: QLoRA
	Slide 64: QLoRA
	Slide 65: QLoRA
	Slide 66: QLoRA
	Slide 67: QLoRA
	Slide 68: QLoRA
	Slide 69: QLoRA
	Slide 70: QLoRA
	Slide 71: QLoRA – The Pizza
	Slide 72: QLoRA – The Ingredients
	Slide 73: QLoRA – Ingredient 1: 4-Bit NormalFloat
	Slide 74: QLoRA – Ingredient 1: 4-Bit NormalFloat
	Slide 75: QLoRA – The Ingredients
	Slide 76: QLoRA – Ingredient 2: Double Quantization
	Slide 77: QLoRA – Ingredient 2: Double Quantization
	Slide 78: QLoRA – Ingredient 2: Double Quantization
	Slide 79: QLoRA – Ingredient 2: Double Quantization
	Slide 80: QLoRA – Ingredient 2: Double Quantization
	Slide 81: QLoRA – Ingredient 2: Double Quantization
	Slide 82: QLoRA – Ingredient 2: Double Quantization
	Slide 83: QLoRA – Ingredient 2: Double Quantization
	Slide 84: QLoRA – Ingredient 2 : Double Quantization
	Slide 85: QLoRA – Ingredient 2 : Double Quantization
	Slide 86: QLoRA – Ingredient 2 : Double Quantization
	Slide 87: QLoRA – Ingredient 2 : Double Quantization
	Slide 89: QLoRA – Ingredient 2 : Double Quantization
	Slide 90: QLoRA – Ingredient 2 : Double Quantization
	Slide 91: QLoRA – Ingredient 2 : Double Quantization
	Slide 92: QLoRA – Ingredient 2 : Double Quantization
	Slide 95: QLoRA – The Ingredients
	Slide 96: QLoRA – Ingredient 3
	Slide 97: QLoRA – Ingredient 3
	Slide 98: QLoRA – Ingredient 3
	Slide 99: QLoRA – Ingredient 3
	Slide 100: QLoRA – Ingredient 3
	Slide 101: QLoRA – Ingredient 3
	Slide 102: QLoRA – Ingredient 3
	Slide 103: QLoRA – Ingredient 3
	Slide 104: QLoRA – Ingredient 3 : Paged Optimizer
	Slide 105: QLoRA – The Ingredients
	Slide 106: QLoRA – Putting it all together
	Slide 107: QLoRA – Putting it all together
	Slide 108: QLoRA – Putting it all together
	Slide 109: QLoRA – Putting it all together
	Slide 110: QLoRA – Putting it all together
	Slide 111: QLoRA – Putting it all together
	Slide 112: QLoRA – Putting it all together
	Slide 113: QLoRA – Putting it all together
	Slide 114: THANK YOU

