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PROTOPAPAS

Training Cycle - LLM

Pre-Training

The training cycle for a LLM consists of 3 main stages:

Instruct Safety
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Training Cycle - LLM

Pre-Training

Objective: 
The goal of pre-training is to teach the model general 
language understanding.

Process:
The model is trained on a massive dataset of text 
from the internet and other sources.

Outcome:
A base model that has a general understanding of the 
language.
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This is what we’ve learned when 
we talked about how GPT works
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Training Cycle - LLM

Instruct

Objective: 
The goal is to make the model useful for specific 
tasks and improving its ability to follow instructions.

Process:
Fine-tuning the model on datasets that contain 
instructions and the desired outputs.

Outcome:
A model that becomes better at interpreting and 
following user instructions.

This also includes 
RLHF.
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Training Cycle - LLM

Safety

Objective: 
The goal is to make sure that the model outputs are 
safe and ethical.

Process:
Involves further fine-tuning. We use RLHF to provide 
feedback on model outputs.

Outcome:
The model becomes safer reducing risk of biased 
content.

It’s after this step that we get 
models like ChatGPT, Claude etc

8
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Training Cycle - LLM

In this lecture, we will be focusing on the Instruct stage of 
fine-tuning.

Instruct Safety

So, fine-tuning takes place in 2 stages.
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Training Cycle - LLM

There are 2 types of 
fine-tuning that we 

can do.
Instruct

Domain Specific 
Finetuning

Task Specific 
Finetuning

Summarization Classification Sentiment 
Analysis

Medicine Finance Legal

10
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Training Cycle - LLM

• A method of prompt 
engineering where the model is 
shown task demonstrations as 
part of the prompt.

• No change in model 
parameters.

Before we go deeper into fine-tuning there is another way of adapting LLMs for 
specific task, which is called “In-context” learning.

• A process of training the LLM 
on a labelled dataset specific 
to a particular task. 

• Change in model parameters.

In-context Learning Fine-tuning

Fine-tuning is a supervised process that leads to a new model, in contrast 
with in-context learning, which is considered “ephemeral.”

11



PROTOPAPAS

Training Cycle - LLM
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shown task demonstrations as 
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You may recall in-context 
learning from previous lecture 
with reference to prompting. 

Let’s focus on fine-tuning and 
how it makes our LLM better.
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Instruction-tuning (Full Parameter)

Fine-tuning very often means instruction fine-tuning.

15

An instruction dataset, comprising pairs of instructions, answers, 
and sometimes context, is required for such fine-tuning.
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Instruction-tuning (Full Parameter)

16

This is an example of what an instruction dataset looks like.

Instruction Context Output

Suggest a good restaurant Los Angeles, CA
In Los Angeles, CA, I suggest 
Rossoblu Italian Restaurant

Rewrite the sentence with 
more descriptive words

The game is fun
The game is exhilarating 

and enjoyable

Calculate the area of the 
triangle

Base: 5cm; Height: 6cm
The area of the triangle is 

15 𝑐𝑚2

Source: Alpaca-GPT4 dataset

https://wandb.ai/capecape/alpaca_ft/reports/How-to-Fine-Tune-an-LLM-Part-1-Preparing-a-Dataset-for-Instruction-Tuning--Vmlldzo1NTcxNzE2
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Instruction-tuning (Full Parameter)

Task-specific fine-tuning: 
This particular process involves training the model on a smaller, 
task-specific dataset. 

For e.g.: Summarize this, translate that, etc

17

This allows the model to learn the nuances, and specialized 
vocabulary relavant to the task.
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Instruction-tuning (Full Parameter)

For e.g., if you train a model 
specifically for question answering:

18

Notice, how it answers requests, 
starting with ‘Sure…’. 
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Instruction-tuning (Full Parameter)

This is opposed to how language models are trained (next word 
prediction), according to which the answer should just included the 
haiku directly.

For e.g., if you train a model 
specifically for question answering:

19

Notice, how it answers requests, 
starting with ‘Sure…’. 
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Instruction-tuning (Full Parameter)

We have to be careful while doing task-specific finetuning to avoid 
catastrophic forgetting.

Catastrophic forgetting refers to the phenomenon where a model 
loses its ability to perform previously learned tasks when it is being 
fine-tuned on new tasks.

The key idea of catastrophic forgetting is that as the model learns 
new tasks, it may overwrite what it previously learned, leading to a 
loss in performance on earlier tasks.

20
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Instruction-tuning (Full Parameter)

To mitigate the problem of catastrophic forgetting, we need to do 
multi-task finetuning.

This requires a lot of data, and training resources.
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Instruction-tuning (Full Parameter)

• We need to update all the parameters while finetuning. 
• For a 7B model, we need to update 7 billion weights. For a 13 billion 

model, we need to update 13 billion weights.

• Storing and updating these weights require a lot of GPU memory.

22

 Fun Fact: Did you know, training GPT-4 involved ~25,000 
A100 GPUs over ~90-100 days, costing OpenAI nearly $100 
million!
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Instruction-tuning (Full Parameter)
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 Fun Fact: Did you know, training GPT-4 involved ~25,000 
A100 GPUs over ~90-100 days, costing OpenAI nearly $100 
million!
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Instruction-tuning (Full Parameter)

Let’s take a fine-tuning example now.

Say we want to finetune a 10 billion parameter model. Let’s see how 
that looks in memory.

24

Assuming, we’re working with FP16 (half precision), which takes 
approximately 2 bytes per parameter.
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Instruction-tuning (Full Parameter)

Assuming, we’re working with FP16 (half precision), which takes 
approximately 2 bytes per parameter.

10B parameter model

Parameters(FP16) 20GB

Gradient(FP16) 20GB

Optimizer 
States(FP32)

Momentum
Variance

120GB

In general, 
these states 
need more 
precision.

25

We use the 
Adam 

Optimizer.
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Instruction-tuning (Full Parameter)

Assuming, we’re working with FP16 (half precision), which takes 
approximately 2 bytes per parameter.

4090 
GPU

24GB

4090 
GPU

24GB

4090 
GPU

24GB

4090 
GPU

24GB

4090 
GPU

24GB

4090 
GPU

24GB

4090 
GPU

24GB

This model needs 
at least 7 top-of-the-
line consumer-grade 

GPU’s to finetune.
26

10B parameter model

Parameters(FP16) 20GB

Gradient(FP16) 20GB

Optimizer 
States(FP32)

Momentum
Variance

120GB
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Instruction-tuning (Full Parameter)

This makes full parameter finetuning inaccessible to normal folks 
like us.

So, what can we 
do?

27
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Instruction-tuning (PEFT)

PEFT stands for Parameter Efficient Finetuning.

Unlike full parameter finetuning, PEFT preserves the vast majority of 
the model’s original weights.

There are majorly three methods to do PEFT. 
1. Additive
2. Selective
3. Reparameterization

29
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Instruction-tuning (PEFT)

31
Source: paper “Scaling Down to Scale Up” 

(arxiv.org)

Add trainable layers or 
parameters to model

Add new trainable 
layers to the 

architecture called 
‘Adapters’

Focuses on 
manipulating the input 

(not the same as 
prompt engineering)

Subsets the 
parameters to 

finetune

Reparametrize model 
weights using a new 

representation

https://arxiv.org/pdf/2303.15647
https://arxiv.org/pdf/2303.15647
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Instruction-tuning (PEFT)
There are a lot of techniques. We’re interested in LoRA, which is one of 

the most popular.

33

Source: paper “Scaling Down to Scale Up” 
(arxiv.org)

https://arxiv.org/pdf/2303.15647
https://arxiv.org/pdf/2303.15647
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LoRA - Intuition

LoRA revolves around the idea that any matrix W ∈  𝑅𝑚×𝑛 can 
be decomposed into 𝐖 = 𝑩𝑨 where 𝐵 ∈ 𝑅𝑚×𝑟 and A ∈ 𝑅𝑟×𝑛

= ×

𝑊 𝐵 𝐴

Rank 1

37
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LoRA - Intuition

LoRA revolves around the idea that any matrix W ∈  𝑅𝑚×𝑛 can 
be decomposed into 𝐖 = 𝑩𝑨 where 𝐵 ∈ 𝑅𝑚×𝑟 and A ∈ 𝑅𝑟×𝑛

= ×

𝑊 𝐵 𝐴

38

25 
elements

10 
elements
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LoRA - Intuition

We can even increase the rank to get better performance.

= ×

𝑊 𝐵 𝐴

39

25 
elements

10 
elements
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LoRA - Working

Now, we use the same concept of matrix decomposition 
while finetuning an LLM.    

𝑊0 + Δ𝑊 = 𝑊0 +
𝛼

𝑟
𝐵𝐴

Remember, we are decomposing the update matix (Δ𝑊), and 
not the original weights 𝑊0.
    

Initial 
LLM 

Weights

Update 
matrix

Decomposed 
matrices

Scaling 
parameter

40

Rank of 
𝐵𝐴
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LoRA - Working

𝑊0 + Δ𝑊 = 𝑊0 +
𝛼

𝑟
𝐵𝐴

We initialize B using a zero matrix, and A using a normal 
distribution.

Now, let’s look at this diagrammatically.
    

42
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LoRA - Working

44

Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

A = 𝛮(0, 𝜎2) 

𝑟

𝐵 = 0

ℎ

Notice how the reparameterization (LoRA) runs parallel to the 
original model. 
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LoRA - Working

45

Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

ℎ

Notice how the reparameterization (LoRA) runs parallel to the 
original model. 

Backward 
Pass

During the 
backward pass, we 
don’t use the pre-
trained weights and 
the gradients only 
flow through the 
adapters.

A = 𝛮(0, 𝜎2) 

𝑟

𝐵 = 0
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LoRA - Working

46

Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

ℎ

Notice how the reparameterization (LoRA) runs parallel to the 
original model. 

At inference time, 
the update matrix 

can be merged with 
the original model 
weights to make 

the process 
efficient.

A = 𝛮(0, 𝜎2) 

𝑟

𝐵 = 0
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LoRA - Intuition

48

Let’s explore the scale at which LoRA can help reduce  
the number of parameters needed to achieve 

comparable performance!
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LoRA - Intuition

Number of trainable parameters

Rank Model 7B Model 13B Model 70B Model 180B

1 167K 228K 529K 849K

2 334k 456k 1M 2M

8 1M 2M 4M 7M

16 3M 4M 8M 14M

512 86M 117M 270M 434M

1024 171M 233M 542M 869M

8192 1.4B 1.8B 4.3B 7B

Full 7B 13B 70B 180B
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LoRA - Intuition

Number of trainable parameters

Rank Model 7B Model 13B Model 70B Model 180B

1 167K 228K 529K 849K

2 334K 456K 1M 2M

8 1M 2M 4M 7M

16 3M 4M 8M 14M

512 86M 117M 270M 434M

1024 171M 233M 542M 869M

8192 1.4B 1.8B 4.3B 7B

Full 7B 13B 70B 180B

 This is a generalization considering an LLM of one layer. LLMs are made up of multiple layers.

52
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LoRA - Advantages

Compared to full parameter finetuning, LoRA has the following 
advantages:

1. Much faster
2. Finetuning can be achieved using less GPU memory
3. Cost efficient
4. Less prone to “catastrophic forgetting” since the original model 

weights are kept the same.

53
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LoRA – Isn’t it enough?

Optimizer 
State 
(FP32)

Base Model 
(FP16)

10B → 160GB

Full Parameter 
Fine Tuning
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LoRA – Isn’t it enough?

Optimizer 
State 
(FP32)

Base Model 
(FP16)

10B → 160GB

Full Parameter 
Fine Tuning

A
Optimizer 
State 
(FP32)

Base Model 
(FP16)

10B → ~40GB

LoRA

A

B

B
LoRA 
Adapter 
(FP16)
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LoRA – Isn’t it enough?

Optimizer 
State 
(FP32)

Base Model 
(FP16)

Full Parameter 
Fine Tuning

Optimizer 
State 
(FP32)

Base Model 
(FP16)

LoRA

A

A

B

B
LoRA 
Adapter 
(FP16)
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10B → 160GB 10B → ~40GB

This will be frozen. 
So, no optimization, 
but the parameters 

still needs to be 
stored in memory 
for forward pass
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LoRA – Isn’t it enough?

As we can see below, LoRA’s performance is comparative to full 
parameter fine-tuning and, in some cases, even outperforms it.

These metrics are 
used for performance 

evaluation. 
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LoRA

• LoRA reduces the trainable parameters and memory 
requirements while maintaining good performance.

• LoRA adds pairs of rank decomposition weight matrices (called 
update matrices) to each layer of the LLM.

• Only the update matrices, which have significantly fewer 
parameters than the original model weights, are trained.

60

- Summary
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QLoRA

• QLoRA is the extended version of LoRA which works mainly by 
quantizing the precision of the network parameters.

• Before we dive into what QLoRA is, let’s look at what quantization 
is.

Think of quantization as ‘ splitting range into buckets ’.

62
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QLoRA

Think of quantization as ‘ splitting range into buckets ’.

27 55.3 83.78

Any number between
0 and 100

Quantized by
 whole numbers

27 55 83

20 50 80

Quantized by
10s

1 num = 
infinite bytes

1 num =
0.875 bytes

1 num = 
0.5 bytes
(3 bits ~ 
0.375 bytes)

63
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QLoRA

Let’s look at an example!

64

Let 𝑋𝐹𝑃32 be an array of values. 

1.5 2.3 3.7 4.1 5.6 6.8 7.9 8.4 9.2 10.2

Here, FP32 refers to a 32-
bit floating-point 

number.

What if we want to quantize from FP32 to Int8?
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QLoRA

So, to quantize 𝑋𝐹𝑃32 to 𝑋𝐼𝑛𝑡8 :

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑋𝐹𝑃32
𝑋𝐹𝑃32

65

Int8 values range from -127 to 
127

The absolute maximum value 
in the array, 𝑋𝐹𝑃32 .

Array of values 
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QLoRA

66

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

So, to quantize 𝑋𝐹𝑃32 to 𝑋𝐼𝑛𝑡8 :

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑋𝐹𝑃32
𝑋𝐹𝑃32
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QLoRA
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𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

So, to quantize 𝑋𝐹𝑃32 to 𝑋𝐼𝑛𝑡8 :

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑋𝐹𝑃32
𝑋𝐹𝑃32



PROTOPAPAS

QLoRA
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𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

1.5 2.3 3.7 4.1 5.6 6.8 7.9 8.4 9.2 10.2

In our example, 

𝑋𝐹𝑃32

𝑐𝐹𝑃32  = 
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑋𝐹𝑃32  = 
127

10.2
 = 12.4509

Now, we combine the formula and the values that we 
have
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QLoRA

69

𝑋𝐼𝑛𝑡8 = 12.4509𝑟𝑜𝑢𝑛𝑑( x 1.5 2.3 3.7 4.1 5.6 6.8 7.9 8.4 9.2 10.2 )

𝑋𝐼𝑛𝑡8 = 18 29 46 51 69 85 98 105 115 127

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

Voila! That’s how we quantize from FP32 to Int8 using the formula:
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QLoRA

70

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

Now that we know what quantization is, let’s look at how QLoRA 
works!

𝑋𝐹𝑃32 =
𝑋𝐼𝑛𝑡8

𝑐𝐹𝑃32

To dequantize:

What if we want to dequantize and get back the original array, 
𝑋𝐹𝑃32?

Dequantization 
error
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QLoRA – The Pizza

Imagine QLoRA to be a mouthwatering pizza.

71

Now, to make a pizza, we need to gather a few key ingredients!
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QLoRA – The Ingredients

4-Bit NormalFloat

There are 3 key ingredients which helps us make QLoRA:

72

Paged OptimizerDouble Quantization
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QLoRA – Ingredient 1: 4-Bit NormalFloat

4-bit NormalFloat
4-bit NormalFloat is a clever way to split 
the buckets.

4-bit means we have 
24 = 16 possible buckets for quantization.

Equally spaced buckets

Equally sized buckets
This is an enhanced version of 

quantile quantization.

0

73
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QLoRA – Ingredient 1: 4-Bit NormalFloat

Why use 4-bit NormalFloat
Designed for efficient storage and 
computation in machine learning.

Most datasets in machine learning are 
normally distributed and precision 
around the mean is valuable.

Equally spaced buckets

Equally sized buckets
This is an enhanced version of 

quantile quantization.

0

74
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4-Bit NormalFloat

There are 3 key ingredients which helps us make QLoRA:

QLoRA – The Ingredients

75

Paged OptimizerDouble Quantization
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QLoRA – Ingredient 2: Double Quantization

Remember this formula?

Now, if we think about this in terms of neural networks….

Takes up 
memory

𝑋𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐𝐹𝑃32𝑋𝐹𝑃32)

Which is not an issue, as it’s just 1 constant. Right?

76
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QLoRA – Ingredient 2: Double Quantization

Now, if we think about this in terms of neural networks….

Weight Tensor

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9

Let’s take a 5x5 matrix to be the weights in a neural 
network: 

77



PROTOPAPAS

QLoRA – Ingredient 2: Double Quantization

Now, if we think about this in terms of neural networks….

-4 -2 0 -22 16

-5 -88 -9 48 27

72 -100 -50 -18 40

22 8 -81 127 -66

-60 10 40 99 -57

78

𝑢𝑠𝑖𝑛𝑔 𝑐

Rescale all parameters

𝑟𝑜𝑢𝑛𝑑 𝑊𝐹𝑃32𝑐𝐹𝑃32 = 𝑊𝐼𝑛𝑡8If we bring back the formula:

Rescaled Weight TensorWeight Tensor

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9
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QLoRA – Ingredient 2: Double Quantization

Now, if we think about this in terms of neural networks….

-4 -2 0 -22 16

-5 -88 -9 48 27

72 -100 -50 -18 40

22 8 -81 127 -66

-60 10 40 99 -57
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𝑢𝑠𝑖𝑛𝑔 𝑐

Rescale all parameters

𝑟𝑜𝑢𝑛𝑑 𝑊𝐹𝑃32𝑐𝐹𝑃32 = 𝑊𝐼𝑛𝑡8If we bring back the formula:

Rescaled Weight TensorWeight Tensor

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9We quantize to Int8 for simplicity but 
when we implement QLoRA we use 

4-bit Normal Float.
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QLoRA – Ingredient 2: Double Quantization

Now, if we think about this in terms of neural networks….

-4 -2 0 -22 16

-5 -88 -9 48 27

72 -100 -50 -18 40

22 8 -81 127 -66

-60 10 40 99 -57

80

𝑢𝑠𝑖𝑛𝑔 𝑐

Rescale all parameters

𝑟𝑜𝑢𝑛𝑑 𝑊𝐹𝑃32𝑐𝐹𝑃32 = 𝑊𝐼𝑛𝑡8If we bring back the formula:

Rescaled Weight TensorWeight Tensor

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9

Do you see a 
problem 

here?
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Let’s see how the weight tensors look like on the graph.

This is unbounded and could take up any maximum value (an outlier!). 

𝑊𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑊𝐹𝑃32
𝑊𝐹𝑃32)

0

81

+10000
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QLoRA – Ingredient 2: Double Quantization

Let’s see how the weight tensors look like on the graph.

This is unbounded and could take up any maximum value (an outlier!). 

𝑊𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑊𝐹𝑃32
𝑊𝐹𝑃32)

0

82

This could 
introduce bias 

in our 
quantization 

process

+10000
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Let’s see how the weight tensors look like on the graph.

This is unbounded and could take up any maximum value (an outlier!). 

𝑊𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑊𝐹𝑃32
𝑊𝐹𝑃32)

0

83

This could 
introduce bias 

in our 
quantization 

process

+10000

So, how do we avoid this problem?
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Let’s look at an example to understand this concept.

The answer to that is: Block-wise Quantization, which is the first 
step in Double Quantization!

We take the weight tensor that we saw in the previous slides.

Weight Tensor (𝑊𝐹𝑃32)

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9
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-0.1 -1.5 -0.1 0.8 0.5

QLoRA – Ingredient 2 : Double Quantization
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We flatten the matrix as follows:

Now we divide it up into different blocks.

𝑐𝑖 𝑐𝑗 𝑐𝑘 𝑐𝑙 𝑐𝑚

We calculate the quantization constants for each block.

Weight Tensor (𝑊𝐹𝑃32)

-0.7 -0.3 0.0 -0.4 0.3 -1.0 0.2 0.7 1.7 -0.9 1.2 -1.7 -0.9 -0.3 0.7 0.4 0.1 -1.4 2.2 -1.1

If there are any outliers in a block, they won’t 
affect the quantisation in the other blocks. 
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-0.1 -1.5 -0.1 0.8 0.5

QLoRA – Ingredient 2 : Double Quantization
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𝑐𝑖 𝑐𝑗 𝑐𝑘 𝑐𝑙 𝑐𝑚

Weight Tensor (𝑊𝐹𝑃32)

-0.7 -0.3 0.0 -0.4 0.3 -1.0 0.2 0.7 1.7 -0.9 1.2 -1.7 -0.9 -0.3 0.7 0.4 0.1 -1.4 2.2 -1.1

181.4 74.7 84.7 74.7 57.7

-9 -127 -12 70 40-127 -54 0 -73 54 -77 13 51 127 -74 93 -127 -64 -24 52 22 8 -81 127 -66

We now rescale all the parameters per block.

Rescaled Weight Tensor (𝑊𝐼𝑛𝑡8)

𝐶𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(
127

𝑎𝑏𝑠𝑚𝑎𝑥 𝐶𝐹𝑃32 𝐶𝐹𝑃32)
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We now have a new array:

QLoRA – Ingredient 2 : Double Quantization

𝑐1
𝐹𝑃32

87

𝑐𝑖 𝑐𝑗 𝑐𝑘 𝑐𝑙 𝑐𝑚

Now, we repeat the same process of quantization for the 
quantization constants.

𝑐1
𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(

127

𝑎𝑏𝑠𝑚𝑎𝑥 𝑐1
𝐹𝑃32 𝑐1

𝐹𝑃32)

𝑐1
𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐2

𝐹𝑃32𝑐1
𝐹𝑃32)

Double Quantization

𝑐1
𝐹𝑃32 is an array of 
all the constants 

from each block of 
the Weight Tensor.
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𝑐1
𝐼𝑛𝑡8 = 𝑟𝑜𝑢𝑛𝑑(𝑐2

𝐹𝑃32𝑐1
𝐹𝑃32)

Let’s see the difference in memory usage before and after
Double Quantization.
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Before

Weight Tensor (𝑊𝐹𝑃32)

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9

Next, let’s look at the memory usage after 
Double Quantization.

All we had was a weight matrix containing FP32 values.

In our example, we had a 5x5 matrix.

Each value was 4 bytes in size.

25x4=100 bytes So, the total memory used 
was:
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Before 25x4=100 bytes 

After

-9 -127 -12 70 40

-127 -54 0 -73 54

-77 13 51 127 -74

93 -127 -64 -24 52

22 8 -81 127 -66

Rescaled Weight Tensor 
(𝑊𝐼𝑛𝑡8)

25x1=25 bytes.

𝑐𝑖 𝑐𝑗 𝑐𝑘 𝑐𝑙 𝑐𝑚

𝑐1
𝐼𝑛𝑡8

5x1=5bytes.

𝑐2
𝐹𝑃32

4 bytes

So, in total:

25 + 5 + 4 = 34 bytes
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Before

25x4=100 bytes 

After

25 + 5 + 4 = 34 bytes

That is an approximate 70% reduction in memory 
usage!!

-9 -127 -12 70 40

-127 -54 0 -73 54

-77 13 51 127 -74

93 -127 -64 -24 52

22 8 -81 127 -66

𝑐𝑖 𝑐𝑗 𝑐𝑘 𝑐𝑙 𝑐𝑚

𝑐2
𝐹𝑃32

-0.7 -0.3 0.0 -0.4 0.3

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

-1.0 0.2 0.7 1.7 -0.9
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4-Bit NormalFloat

There are 3 key ingredients which helps us make QLoRA:

QLoRA – The Ingredients

95

Paged OptimizerDouble Quantization
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QLoRA – Ingredient 3

So, how do we train a modern Neural Networks without taking a hit 
on the memory?

96

Before we talk about the third ingredient in QLoRA, let’s talk about 
a problem.

We use gradient checkpointing.

Running Out of Memory!

A problem which all of us have faced while training a Neural 
Network
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QLoRA – Ingredient 3

Imagine this simple neural network

Layer 1 Layer 2 Layer 3 Layer 4

When we do a forward-pass, we calculate the activations for 
each layer.

X ℎ1 ℎ2 ℎ3 ො𝑦

97
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However, this takes up precious memory. 

Modern-day computers have become very efficient at parallel 
processing. What they lack is memory.

We don’t need to store all the hidden states. 

98

Layer 1 Layer 2 Layer 3 Layer 4

X ℎ1 ℎ2 ℎ3 ො𝑦
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We only store in memory what is needed at the moment.

99

X

Layer 1 Layer 2 Layer 3 Layer 4

ℎ1 ℎ2 ℎ3 ො𝑦

So, let’s see how it looks!

We keep discarding activations that have already been used to 
calculate the next dependent hidden state’s activation.
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X

Layer 1 Layer 2 Layer 3 Layer 4

ො𝑦

During backpropagation, we must recompute all the discarded 
activations. 

To manage this, we introduce checkpoints in the middle.
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Checkpoints are usually placed at every 𝑛 layer, considering we 
have a n-layer neural network.

So, now when we re-compute the activations for backward pass, 
we don’t have to start from the beginning!

101

Layer 1 Layer 2 Layer 3 Layer 4

X ℎ1 ℎ2 ℎ3 ො𝑦
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Layer 1 Layer 2 Layer 3 Layer 4

X ℎ2 ො𝑦

This allows us to mitigate the OOM (Out of memory) error to some 
extent, but it doesn’t get rid of it!

We still see some memory spikes especially when we pass in long 
sequences in the batch.



PROTOPAPAS

QLoRA – Ingredient 3

103

Layer 1 Layer 2 Layer 3 Layer 4

X ℎ2 ො𝑦

This allows us to mitigate the OOM (Out of memory) error to some 
extent, but it doesn’t get rid of it!

We still see some memory spikes especially when we pass in long 
sequences in the batch.

This is where our third ingredient comes 
in!
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It does automatic page-to-page transfers between CPU and GPU 

Avoids the gradient checkpointing memory spikes that occur when 
processing a mini batch with a long sequence length.

CPUGPU

Paged Optimizer - Looping in your CPU
Paging is a memory 

management technique, where 
RAM is divided into fixed-size 

blocks called ‘pages’

GPU Memory is full
GPU Memory has 

space now.
Now that the GPU has 

space, when a page 
moved to CPU is required, 

we move it back to GPU 
for computation.
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4-Bit NormalFloat

We saw the 3 key ingredients needed to make QLoRA:

QLoRA – The Ingredients

105

Paged OptimizerDouble Quantization

Let’s bring it all 
together.
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Optimizer 
State 
(FP32)

Base Model

10B => 160GB

Full Parameter 
Fine Tuning

Optimizer 
State 
(FP32)

Base Model 

10B => ~40GB

LoRA

A

A

B

B
LoRA 
Adapter 
(FP16)

FP16FP16
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Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

A = 𝛮(0, 𝜎2) 

𝑟

𝐵 = 0

ℎ

BF16

BF16

BF16

In QLoRA we use BF16 
(BrainFloat16) as compared to 
FP16 in LoRA.

This leads to a change in 
precision which is tailor-made for 
deep learning tasks. 

Before we talk about the 3 
ingredients, there is another key 
difference that we should know.
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Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

A = 𝛮(0, 𝜎2) 

ℎ

BF16
BF16

BF16

Ingredient 1:

4-Bit NormalFloat

Double Quantization

We store W, as 4-Bit NormalFloat

To convert and store, we make use of 
Double Quantization!

Ingredient 2:

NF4

A = 𝛮(0, 𝜎2) 

𝑟

𝐵 = 0
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Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

ℎ

BF16

BF16
NF4

We then use the BF16 values of W, A 
and B to perform the required 
calculations. 

BF16

Forward Pass

During the forward pass, we first 
dequantize the W weights from NF4 
to BF16 for computation. 

The BF16 values of W is then deleted 
to save on storage!

A = 𝛮(0, 𝜎2) 

𝑟

𝐵 = 0
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Pretrained
Weights

W ε ℝ𝑑×𝑑

X

𝑑

ℎ

BF16

BF16
NF4

As in LoRA, we keep W weights 
frozen and allow the gradients to 
only flow through the adapters.

We then repeat the cycle of forward 
and backward passes till a minima 
is reached.

Backward Pass

A = 𝛮(0, 𝜎2) 

𝑟

𝐵 = 0
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Optimizer 
State (FP32)

Base Model 

10B => ~12GB

QLoRA

LoRA Adapter 
(BF16)

4bit NormalFloat

CPU

Pages are moved to the CPU 
from the GPU when it does not 
have space and moved back to 
GPU for when it’s required and 

there is space.

Paged 
Optimizer

Ingredient 3:



PROTOPAPAS

QLoRA – Putting it all together

Putting it mathematically,

Let’s start with LoRA:

112

Weights of LoRA: 𝑊0 +
𝛼

𝑟
𝐵𝐴

Forward pass in LoRA:

Initial 
LLM 

Weights Decomposed 
matrices

Scaling 
parameter

Y = X𝑊0 +
𝛼

𝑟
𝑋𝐵𝐴

Rank of B 
and A
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𝑌𝐵𝐹16

113

Let’s expand the formula and see how it looks!  

Y

where 𝑑𝑜𝑢𝑏𝑙𝑒𝐷𝑒𝑞𝑢𝑎𝑛𝑡 𝑐1
𝐹𝑃32, 𝑐2

𝑘−𝑏𝑖𝑡 , 𝑊𝑜
𝑁𝐹4 = 𝑑𝑒𝑞𝑢𝑎𝑛𝑡 𝑑𝑒𝑞𝑢𝑎𝑛𝑡 c1

FP32, c2
k−bit , W𝑜

4bit

= X𝑊0 +
𝛼

𝑟
𝑋𝐵𝐴

= 𝑋𝐵𝐹16𝑑𝑜𝑢𝑏𝑙𝑒𝐷𝑒𝑞𝑢𝑎𝑛𝑡 𝑐1
𝐹𝑃32, 𝑐2

𝑘−𝑏𝑖𝑡 , 𝑊𝑜
𝑁𝐹4 +

𝛼

𝑟
𝑋𝐵𝐹16𝐵𝐵𝐹16𝐴𝐵𝐹16

= WBF16
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