
Pavlos Protopapas
SEAS/Harvard

AC215

Lecture 6: Data Labeling
Data Versioning

Outline

1. Data Labeling
2. Data Versioning

2

Outline

1. Data Labeling
2. Data Versioning

3

Tutorial (T6): Data Labeling

In this tutorial, we will learn how to perform labeling.

The task involves labeling images of cheeses such as Brie, Gruyère, Gouda,
and Parmigiano.

We will begin with images scraped from the web and then use Label Studio
to label them.

4

Cheese App Data Pipeline

5

GCS Bucket: cheese-app-data-demo

cheeses_unlabeled cheeses_labeled

Data Labeling

Container

Colab {training}

1

2

4

How do we do this?UnlabeledUnlabeled Labeled

brie

gouda

gruyere

parmigiano

Label Studio

3

Tutorial (T6): Data Labeling

To overcome some of the challenges of labeling, Label Studio
allows us to streamline the process.

We want to avoid uploading our data to any system, so we will
run it locally as a Docker container.

6

Tutorial (T6): Data Labeling

Before we proceed, we need to familiarize ourselves with some new
concepts:

• Docker Network
• Cloud Storage and Credentials
• Docker Compose

7

Tutorial (T6): Data Labeling

Before we proceed, we need to familiarize ourselves with some new
concepts:

• Docker Network
• Cloud Storage and Credentials
• Docker Compose

8

Docker Network

9

Docker networks allow different containers to communicate with each other in a
controlled environment over a virtual isolated local network.

Each network acts like a private channel, ensuring that containers can talk to
each other while staying separate from other containers that don’t need to
interact.

Typically, communication happen using predefined ports, such as
localhost:8080.

Docker Network

10

display info about network Name of the network
Redirects standard output
to this path that discards
the data sent to it.

In the following command:

docker network inspect data-versioning-network >/dev/null 2>&1
|| docker network create data-versioning-network

The first part checks if the network data-versioning-network exists. It sends the
output to /dev/null, discarding it. Same as the error.

docker network inspect data-versioning-network > /dev/null

Docker Network

11

Suppress the standard
error too

Run next command only if
previous command fails

In the following command:

docker network inspect data-versioning-network >/dev/null 2>&1
|| docker network create data-versioning-network

The first part checks if the network data-versioning-network exists. It sends the
output to /dev/null, discarding it. Same as the error.

docker network inspect data-versioning-network > /dev/null 2>&1 ||

Docker Network

12

creates the network Desired name of the
docker network

In the following command:

docker network inspect data-versioning-network >/dev/null 2>&1
|| docker network create data-versioning-network

The final part creates the network if it does not exist.

docker network inspect data-versioning-network > /dev/null 2>&1 ||

docker network create data-versioning-network

Tutorial (T6): Data Labeling

Before we proceed, we need to familiarize ourselves with some new
concepts:

• Docker Network
• Cloud Storage and Credentials
• Docker Compose

13

Containers and Credentials

By now you are familiar with GCP Buckets. They allow to store information,
without any VM or container attached to it.

To ensure privacy, by default they cannot be accessed from outside.
If we want to host Label Studio and use data from the container, we require
the appropriate credentials.

14

Creating and setting up GCP Buckets

Buckets can be created programmatically or via the GUI.

For this tutorial:

● Go to https://console.cloud.google.com/storage/browser
● Create a bucket <bucket_name>
● Create a folder cheeses_unlabeled inside the bucket
● Create a folder cheeses_labeled inside the bucket

● Upload the images from your local folder into the folder cheeses_unlabeled
inside the bucket

● Configure the credentials to allow Label Studio access to the data.

15

Containers and Credentials: Service Account

16

A service account is a special type of GCP account that
represents a non-human user.
It is used by applications and virtual machines (VMs) to interact
with Google Cloud services programmatically.

Unlike a regular user account, which is linked to an individual
end-user, a service account belongs to an application or a service
running on GCP.

Tutorial (T6): Data Labeling

Before we proceed, we need to familiarize ourselves with some new
concepts:

• Docker Network
• Cloud Storage and Credentials
• Docker Compose

17

Docker Compose

For this tutorial we used shell scripts to automate the deployment of
containers.
Docker Compose is the standard way to build and run sequences of
containers that depend on each other.

They require a docker compose YAML file, for defining and running
multi-container Docker applications.

With a single command, you build and start all the containers.

18

version: "3.8"

Define network that the various docker containers will share

networks:

 default:

 name: data-labeling-network

 external: true

services:

 data-label-cli:

 image: data-label-cli

 container_name: data-label-cli

 volumes:

 - ../secrets:/secrets

 - ../data-labeling:/app

 environment:

 GOOGLE_APPLICATION_CREDENTIALS: /secrets/data-service-account.json

 GCP_PROJECT: "ac215-project"

 GCP_ZONE: "us-central1-a"

 GCS_BUCKET_NAME: "cheese-app-data-demo"

 LABEL_STUDIO_URL: "http://data-label-studio:8080"

 depends_on:

 - data-label-studio

 …

docker-compose.yml

List of containers to run

Volumes to mount to the container

 Environment variables to set
inside container

Specifies if this container depends on
another container that needs to be
started first

 data-label-studio:

 image: heartexlabs/label-studio:latest

 container_name: data-label-studio

 ports:

 - 8080:8080

 volumes:

 - ./docker-volumes/label-studio:/label-studio/data

 - ../secrets:/secrets

 environment:

 LABEL_STUDIO_DISABLE_SIGNUP_WITHOUT_LINK: "true"

 LABEL_STUDIO_USERNAME: "pavlos@seas.harvard.edu"

 LABEL_STUDIO_PASSWORD: "awesome"

 GOOGLE_APPLICATION_CREDENTIALS: /secrets/data-service-account.json

 GCP_PROJECT: "ac215-project"

 GCP_ZONE: "us-central1-a"

docker-compose.yml continued

Volumes to mount to the container

 Environment variables to set
inside container

Port to expose from inside
container to the host outside

Tutorial (T6): Data Labeling: Label Studio + CLI

21

Label Studio
Container

Browser -
http://localhost:8080

Secrets

CLI
 Container

Terminal - cli.py

MountMount

GCS Bucket

Images + Labels

ENV: GOOGLE_APPLICATION_CREDENTIALS

Source Codedocker-volume/label-studio

Label Studio

HTTP 8080

5 Shell into container

2
Set Environment Variable to
access GCS Bucket

1 Mount external folders

3 Expose port 8080

Tutorial (T6): Data Labeling

22

Steps to create a Data Pipeline to use unlabeled images and create a
processes to label the dataset:

■ Create a GCS bucket to store all data.
■ Run Data Labeling Container.
■ For detailed instructions, please refer to the following link

● Data Labeling. (https://github.com/dlops-io/data-labeling)

https://github.com/dlops-io/data-labeling
https://github.com/dlops-io/data-labeling

Outline

1. Data Labeling
2. Data Versioning

23

Why Data Versioning?

Keep Track:
● Monitor data changes and stay organized.
Protection:
● Backup data and restore earlier versions if needed.
Compliance:
● Meet regulations by tracking changes, making audits simple.
Collaboration:
● Let multiple users work together smoothly.
Efficiency:
● Save space by storing only the changes, not full copies.

24

Approaches to Data Versioning

Static Data: Only the queries are versioned since the underlying data
remains unchanged over time.
Dynamic Data: A full snapshot of the dataset is taken at specific points in
time to capture changes.

All Other Cases: Versioning is based on tracking differences (deltas)
between data states, enabling efficient storage and management of
updates.

And … “wait for it”

25

Approaches to Data Versioning

26Friends don’t let friends do this

Tools for Data Versioning Based on Differences

1. DVC (Data Version Control)
• Git-like versioning for datasets and models.
• Tracks changes in data and integrates with ML workflows.

2. Delta Lake
• Adds version control and ACID transactions to data lakes.
• Supports time travel for querying historical data.

3. Pachyderm
• Version control for data pipelines.
• Tracks every dataset change and supports rollback.

4. Git LFS (Large File Storage)
5. Quilt
6. LakeFS

27

Tools for Data Versioning Based on Differences:

1. DVC (Data Version Control)
• Git-like versioning for datasets and models.
• Tracks changes in data and integrates with ML workflows.

2. Delta Lake
• Adds version control and ACID transactions to data lakes.
• Supports time travel for querying historical data.

3. Pachyderm
• Version control for data pipelines.
• Tracks every dataset change and supports rollback.

4. Git LFS (Large File Storage)
5. Quilt
6. LakeFS

28

Tutorial (T7): Data Versioning

29

Steps to create a Data Pipeline to version a dataset:
○ Run Data Versioning Container.
○ Test data versions from Colab.
○ For detailed instructions, please refer to the following link

■ Data Versioning (https://github.com/dlops-io/data-versioning).

■ Test Data Version Notebook
(https://colab.research.google.com/drive/1RRQ1SlHq5lKK76R8LoQdi5LjC
nND3jTq?authuser=1).

https://github.com/dlops-io/data-labeling
https://github.com/dlops-io/data-versioning
https://colab.research.google.com/drive/1RRQ1SlHq5lKK76R8LoQdi5LjCnND3jTq?authuser=1
https://colab.research.google.com/drive/1RRQ1SlHq5lKK76R8LoQdi5LjCnND3jTq?authuser=1
https://colab.research.google.com/drive/1RRQ1SlHq5lKK76R8LoQdi5LjCnND3jTq?authuser=1

Tutorial (T7): Data Versioning

Before we proceed, we need to familiarize ourselves with some new
concepts:

• Mounting disks from GCS to a container
• Entrypoint

30

Mounting disks from GCS to a container

In order to use the data on the container, we have to link them. This is done via
gcsfuse.
gcsfuse --key-file=$GOOGLE_APPLICATION_CREDENTIALS
$GCS_BUCKET_NAME /mnt/gcs_data

31

gcsfuse —key-file=$GOOGLE_APP_CREDS $GCS_BUCKET_NAME /mnt/gcs_data

Command to mount
containers

Points to the file with the
Google Application
Credentials which will
authenticate us

Bucket name that we
mount. Names are unique
across GCP.

Path inside the container
where the data will be
mounted

Entrypoints

In Docker, entrypoints allow us to define a specific application or command
that runs automatically when the container starts.
This enables us to automate tasks inside the container, or even make the
docker run command behave like executing a standalone, containerized
program.

32

Entrypoints

For example, an entrypoint can run a script
ENTRYPOINT ["/myapp/start.sh"]

or a program with arguments
ENTRYPOINT ["python", "cli.py"]

In development containers,
ENTRYPOINT ["/bin/bash"]

is used to open a shell terminal for interactive commands.

33

Local system

|src

Since we mount a local
folder, any change in
local, is reflected inside
the container

34

container

myapp
|data
|folder2
|src
.git
.dvc

git
remote

contains:
data hashes

code
.dvc

src contains
the code, as
usual.

the dvc is contained
inside the repo.
Each dvc add,
ignores the local
“heavy” file
(.gitignore). Only the
hash is tracked.

DVC
remote

contains:
data

references

The remote dvc repo
contains the real data
and their hash.
Given a hash, returns
the original “heavy”
data

.git has to be created
before the .dvc

The data is
stored as a
hash on the
remote repo.

35

Another
container

we want a
repository here

“git clone” will pull the code, the .dvc, with
the hashes of the tracked files.

git
remote

contains:
data hashes

code
.dvc

DVC
remote

contains:
data

references

dvc pull data.dvc
Will identify the file associated with
the data.dvc file, and will put it inside
the repository

The git and dvc remotes are
different.
One is hosted on GitHub (for
example) and the other on GCP
buckets.

36

Logistics/Reminders

● Approx. 90% of class has project partners 🎉 - if you have formed group
make sure to update this group info spreadsheet

● What makes a good project ?

https://docs.google.com/spreadsheets/d/1B8JePYtWLP-2dqOEwneW-gmasHBlxn03/edit?usp=sharing&ouid=109490521694988502723&rtpof=true&sd=true

THANK YOU

37

