
Pavlos Protopapas
SEAS/Harvard

AC215

Lecture 5: Docker Workflows

Logistics/Reminders

● Approx. 70% of class has project partners - if you have formed group
make sure to update this group info spreadsheet

● We highly encourage you to find project partners based on your mutual
interests or goals (rather than us assigning later on)

● Even if you don’t have partners, you must submit fill the form so we know
you are active.

● Class video recordings are available on Canvas -> Panopto

https://docs.google.com/spreadsheets/d/1B8JePYtWLP-2dqOEwneW-gmasHBlxn03/edit?usp=sharing&ouid=109490521694988502723&rtpof=true&sd=true

Outline

1. Recap: Review of Previous Material
2. Working with Containers Workflow
3. Data Pipelines
4. Data Labeling

3

Outline

1. Recap: Review of Previous Material
2. Working with Containers Workflow
3. Data Pipelines
4. Data Labeling

4

Translate Text

Tutorial (T5) - Building the Mega Pipeline App

5

Record Audio Generate Text Synthesise AudioTranscribe Audio

GCS Bucket

Audio + Text Files

Synthesise Audio

1 2 3

4

6

5

Software Development Workflow (with Docker)

6

GitHub

Source Control

Development machines only
needs Docker installed.

Containers need to be setup
only once.

Every team member moves
code to source . Build server only needs

Docker installed.

Docker images are built for a
release and pushed to
container registry.

Production server only
needs Docker installed.

Production server pulls
Docker images from
container registry and
runs them.

Linux

Mac

Build Server

Linux

Production/ Test Servers

LinuxLinux

Windows

Software Development Workflow (with Docker)

7

GitHub

Source Control

Development machines only
needs Docker installed.

Containers need to be setup
only once.

Every team member moves
code to source . Build server only needs

Docker installed.

Docker images are built for a
release and pushed to
container registry.

Production server only
needs Docker installed.

Production server pulls
Docker images from
container registry and
runs them.

Linux

Mac

Build Server

Linux

Production/ Test Servers

LinuxLinux

Windows

Who creates the Dockerfile, and where is it
stored? Do we use pre-built images or does

each developer build them? Who is in charge
of managing this? Also, what’s the process for

handling the Pipfile and Pipfile.lock?

This seems like a lot.

Software Development Workflow (with Docker)

8

GitHub

Source Control

Development machines only
needs Docker installed.

Containers need to be setup
only once.

Every team member moves
code to source . Build server only needs

Docker installed.

Docker images are built for a
release and pushed to
container registry.

Production server only
needs Docker installed.

Production server pulls
Docker images from
container registry and
runs them.

Linux

Mac

Build Server

Linux

Production/ Test Servers

LinuxLinux

Windows

Software Development Workflow (with Docker)

At this stage, creating multiple Dockerfiles along with their corresponding
Pipfiles and secrets has become repetitive.

Is there any way to optimize the process?

9

Outline

1. Recap: Review of Previous Material
2. Working with Containers Workflow
3. Data Pipelines
4. Data Labeling

10

Workflow with Docker: Scenario 1 (early stages of development)

11

GitHub

Source Control
Push Dockerfile and Pipfiles
to the GitHub repository

“Senior” Developer
A senior developer is
responsible for creating the
Dockerfile, along with the
initial Pipfile and Pipfile.lock.

Linux

Mac

Windows

Developers pull the Dockerfile and Pipfiles from the GitHub
repository.
• Build the Docker image and run containers.
• Develop within the containers, with the option to install
packages (Pipfiles will be changed) and modify the
Dockerfile if needed, then rebuild.

Workflow with Docker: Scenario 1 (early stages of development)

12

“Senior” Developer The senior developer reviews
and merges all pull requests,
then consolidates the updates
into a new Dockerfile and
Pipfiles.

GitHub

Source ControlLinux

Mac

Windows

Once development is
complete, developers submit
a pull request to the GitHub
repository with their code and
any updates to the Dockerfile
or Pipfiles.

Workflow with Docker: Scenario 2 (later stages of development)

13

Linux

Mac

Windows

• Developers pull images from
DockerHub and the Dockerfile/Pipfiles from
GitHub.
• They run containers from the images
and develop inside them.
• Rebuilding the images is only needed
on rare occasions.

GitHub

Source Control

“Senior” Developer
The “senior” developer creates
the Docker images and pushes
the Dockerfile and Pipfiles to
GitHub, while pushing the
images to DockerHub.

DockertHub

Images

Workflow with Docker: Scenario 2 (later stages of development)

14

Linux

Mac

Windows

• Developers submit a pull request to
GitHub for their code.
• In some cases, they may also include
changes to the Dockerfile or Pipfiles in the
pull request.

GitHub

Source Control

“Senior” Developer

DockertHub

Images

The senior developer reviews
and merges all pull requests,
then consolidates the updates
into a new Dockerfile and Pipfiles
and builds new images which are
pushed to DockerHub.

Workflow with Docker: A Flexible Approach

Is there a “perfect” workflow?
No

So, how do we decide what to do?
Clear communication and rules are essential. Each team can have its own
workflow, based on the project and team needs.

Tutorial (T5B) - Building the Mega Pipeline App with a structured workflow

16

In this tutorial we will build the Mega Pipeline App (again).

 Unlike what we did in T5, this time we will follow a more structured workflow.

● The Dockerfiles and Pipfiles will be provided; you won’t need to create them.
● You can either build the images yourself or run them directly from DockerHub.
● Secrets should be stored in a folder outside the app directories, which will not

be part of the repository.
● A docker-shell.sh script is provided to handle all Docker-related tasks,

including building, setting environments, and running containers.

• App: https://ac215-mega-pipeline.dlops.io/

• Instructions: https://github.com/dlops-io/mega-pipeline/tree/flexible-workflow

https://ac215-mega-pipeline.dlops.io/
https://ac215-mega-pipeline.dlops.io/
https://github.com/dlops-io/mega-pipeline/tree/flexible-workflow

Outline

1. Recap: Review of Previous Material
2. Working with Containers Workflow
3. Data Pipelines
4. Data Labeling

17

Motivation

More Data Faster Hardware

● Extraction
● Transformation
● Labeling
● Versioning
● Storage

● Processing
● Input to Training

● SOTA Models
● Transfer Learning
● Distillation
● Compression

● Scaling data
processing

● GPU, TPU
● Multi GPU Server

Training

The 3 components for better Deep Learning

Better/Faster Models

18

Motivation

More Data Faster Hardware

● Extraction
● Transformation
● Labeling
● Versioning
● Storage

● Processing
● Input to Training

● SOTA Models
● Transfer Learning
● Distillation
● Compression

● Scaling data
processing

● GPU, TPU
● Multi GPU Server

Training

The 3 components for better Deep Learning

Better/Faster Models

19

The narrative of the data challenges

• When collecting cheese images or text, we might source them from web
searches or user uploads, but the quality and format of these images or text
can vary over time.

• Also images may not always be in the correct format, and we need to
address issues with duplicates or poor-quality images.

• Additionally, cheese text needs to be chunked for Retrieval-Augmented
Generation (RAG) applications and converted into a suitable format for
fine-tuning large language models (LLMs).

• Managing this data involves labeling new images from both users and web
searches, keeping track of different versions of cheese data, and ensuring
that the images we acquire are of high quality.

20

Challenges

Extraction
● Varied Sources/Formats: Data comes in different shapes, sizes, and

formats.
● Timelines of Updates: Data can change over time, affecting model

performance.
Transformation
● Labeling: Manual annotation is often labor-intensive.
● Versions: Multiple versions can cause inconsistency.
● Quality: Poorly processed data can lead to poor models.
Management
● Labeling: Consistency and quality are paramount.
● Versions: Ensuring data traceability and reproducibility.
● Quality: Ensuring the data is clean, relevant, and well-documented.

21

Solution

Containerize Data Tasks

● Benefits: Consistent environment, easy to scale, and improves
reproducibility.

Using Prebuilt Containers for Data Tasks

● Benefits: Saves time, ensures quality, and utilizes community-verified
methods.

Manage Tasks Using Pipeline Management Tools

● Examples: Apache Airflow, Kubeflow Pipelines.

● Benefits: Streamlines data workflows, manages dependencies, and
allows for easy monitoring.

22

Tools

Pipeline Management [FUTURE LECTURE]

● Kubeflow End-to-end orchestration of machine learning pipelines

Data Labeling [TODAY]

● Label Studio
● Annotation of text, images, audio, and more.
● Customizable templates, multi-format support.
● Teams needing flexibility in data labeling tasks.

Data Versioning [NEXT LECTURE]

● DVC (Data Version Control)
● Version control for datasets and machine learning models.
● Git-like commands, storage optimization.
● Teams that want to maintain version history of data and models.

23

Components (artifacts) of an AI Application

24

What are the components of an AI App?
• Data: The backbone of any AI application, needed for training and

validation.

• Model: The trained AI algorithm

• Source Code: Includes the model implementation, front end, back
end, and Dockerfiles

• Container Images: Encapsulated environments that ensure the
application runs consistently across different systems.

How do we manage all of these?

Components (artifacts) of an AI Application

25

Management Strategies

• Data: Implement storage, versioning, and backup.

• Model: Track versions and performance; update as needed.

• Source Code: Use version control and maintain documentation.

• Containers: Use orchestration tools for deployment and scaling.

What are Pipelines

26

Cloud Store: Datasets, Models, Container Images GitHub: Source Code, Container templates

Example components of an AI App:

Notebooks

Cloud Notebooks {development phase}

Colab Jupyter Hub

Containers

Application Server Training Server (n GPUs)
Training Server Cluster (each with n GPUs)

Cloud Platform

Streamline with Tools

● Manual Methods: Scripts and manual tasks can work, but they’re
often slow and prone to mistakes.

28

● Automated Tools: For better efficiency and fewer errors, use tools that
simplify and automate these processes.

31

THANK YOU

32

