
Pavlos Protopapas
SEAS/Harvard

AC215

Lecture 4: Containers II

Logistics/Reminders

● If you have formed groups - please update group info sheet

● Please fill out survey -
https://canvas.harvard.edu/courses/136127/assignments/866239

(Survey responses have been updated)

● Office Hours details here -
https://edstem.org/us/courses/58478/discussion/5229430

https://docs.google.com/spreadsheets/d/1B8JePYtWLP-2dqOEwneW-gmasHBlxn03/edit?usp=sharing&ouid=109490521694988502723&rtpof=true&sd=true

3

Outline

1. Recap: Review of Previous Material
2. Containers in Architecture: Microservices vs. Monolithic
3. Implementing Containers as Microservices

3

4

Outline

1. Recap: Review of Previous Material
2. Containers in Architecture: Microservices vs. Monolithic
3. Implementing Containers as Microservices

4

5

Recap: Environments vs Virtualization vs Containerization

5

OS

Bins/lib

App2

Infrastructure

Hypervisor

Virtualization

OS OS

Bins/lib Bins/lib

App1 App3

Operating System

VM VM VM

Infrastructure

Docker

Containerization

Operating System

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Infrastructure

Python

Virtual Environments

Operating System

Libs

App1

Venv

Libs

App2

Venv

Libs

App3

Venv

6

Environments

6

Physical Hardware

Language Runtime (Python)

Virtual Environments

Host Operating System

Libs

App1

Venv

Libs

App2

Venv

Libs

App3

Venv

Virtual Environment Manager (Conda)

● Dependency Isolation: Virtual environments
redirect dependencies to their own directories,
avoiding system-wide installs.

● No Kernel Isolation: Unlike VMs or containers,
they don’t isolate the kernel.

● Resource Efficiency: Without an OS or kernel,
virtual environments are lightweight and
resource-efficient.

● Filesystem Access: Files written within a virtual
environment can be accessed from other
environments, as there’s no filesystem isolation.

7

Virtualization (Virtual Machines)

7

Guest OS

Bins/Libs

App2

Physical Hardware

Hypervisor

Virtualization

Guest OS

Bins/Libs

App1

Host Operating System

VM VM

Hardware
Virtualization

Hardware
Virtualization

● CPU Virtualization: Virtual CPUs are mapped to
physical cores, but hypervisor management adds
some overhead.

● Emulated Devices: VMs use virtual devices
(CPUs, network adapters, disks) translated by the
hypervisor to real hardware.

● Full OS: Each VM runs its own guest OS with
independent kernel and user spaces, but this
reduces efficiency.

● Resource Allocation: RAM, CPU, and disk
space are often allocated in fixed blocks, limiting
flexibility in resource usage.

8

Containerization

8

Physical Hardware

Container Engine (Docker)

Containerization

Operating System

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

● Namespaces: Containers isolate processes and
resources, making them act like independent systems.
For example, PID namespaces separate process IDs, and
mount namespaces provide unique file systems.

● Cgroups: These limit CPU, memory, and IO usage for
each container, ensuring efficient resource use.

● Process Virtualization: Namespaces and cgroups work
together to isolate and control processes.

● Shared Kernel: Containers use the host’s OS kernel but
have their own files, making them lightweight and
efficient.

● Direct Access: Containers interact with host resources
directly, reducing overhead compared to VMs.

9

Outline

1. Recap: Review of Previous Material
2. Containers in Architecture: Microservices vs. Monolithic
3. Implementing Containers as Microservices

9

10

Why use Containers?

10

Conceptual Scenario

• Picture building an application, such as an online cheese store.

Traditional Approach

• Traditionality you would build this using a Monolithic Architecture.

11

Monolithic Architecture

11

Browser Apps

Mobile Apps

Server

Database

Storefront UI Module

Catalog Module

Reviews Module

Orders Module

HTML / REST / JSON

REST / JSON

Java

Oracle

HTML is HTML.
JSON is a data format for communication between clients and

APIs.
REST is the protocol of communication with the API.

12

Monolithic Architecture - Advantages

12

Simplicity in Development:
Most tools and IDEs natively support monolithic applications.

Ease of Deployment:
All components bundled into a single, unified package.

Scalability:
Easier to scale by replicating the entire application as a whole
(horizontal scaling).

13

Monolithic Architecture - Disadvantages

13

Maintenance Challenges:

Complexity increases over time, making it harder to implement
changes or find issues.

System Vulnerability:

A failure in a single component can lead to the collapse of the
entire system.

Patching Difficulties:

Patching or updating specific modules can be cumbersome due
to tightly-coupled components.

14

Monolithic Architecture - Disadvantages

14

Technology Lock-in:

Adopting new technologies or updating existing ones can be
problematic due to interdependencies.

Slow Startup:

Increased startup time as all components must be initialized
simultaneously.

Onboarding Challenges:
New users need to familiarize themselves with the entire
codebase.

15

Applications have changed dramatically

15

Today

Apps are constantly being developed
Build from loosely coupled components

Newer version are deployed often
Deployed to a multitude of servers

A decade ago

Apps were monolithic
Built on a single stack (e.g. .Net or Java)

Long lived
Deployed to a single server

Data Science

Apps are being integrated with various
data types/sources and models

16

Monolithic Architecture

16

Browser Apps

Mobile Apps

Server

Database

Storefront UI Module

Catalog Module

Reviews Module

Orders Module

HTML / REST / JSON

REST / JSON

Java

Oracle

17

Today: Microservice Architecture

17

Browser Apps

Mobile Apps

Edge Device Apps

API Service

REST / JSON

REST / JSON

REST / JSON

Storefront UI

Catalog Module

Reviews Module

Orders Module

HTML

Recommendation
Module

Cloud Store

Database

Database

Models

18

Microservice Architecture - Advantages

18

Simplified Maintenance:
Modular design makes it easier to manage, update, and debug individual services.

Fault Isolation:
Independent components ensure that failure in one service doesn't bring down the
entire application.

Streamlined Patching:
Easier to patch or update specific services without affecting the entire system.

Technological Flexibility:
Adapting to or adopting new technologies becomes seamless due to service
independence.

Quick Startup:
Reduced startup time as all components can be initialized in parallel.

19

Microservice Architecture - Disadvantages

19

Development and Deployment Complexity:
Using multiple technologies across components can complicate both
development and deployment, as managing diverse dependencies
requires a more intricate setup.

Scaling Concerns:
Scaling the entire application can be intricate due to disparate
components.

Docker + Kubernetes

20

Why use Containers?

20

• Consider a software development team workflow for
developing an App

• Traditionality you would develop/build this independently in
various machines (dev, test, qa, prod)

21

Software Development Workflow (no Docker)

21

GitHub

Source Control

Windows

Node.js
Python

Linux

C++
Python

Mac

Node.js
Python

OS Specific installation in
every developer machine

Every team member moves
code to source control

The build server must be
configured with all necessary
software and frameworks.

The production build process
involves pulling the code from
the source control system.

Test Servers / Production

LinuxLinux

The production server must
have all necessary software
and frameworks installed.

It will also run on a different
OS version compared to the
development machines.

Build Server

Linux

Node.js is a platform that allows
you to run JavaScript code outside
a web browser.

22

Software Development Workflow (with Docker)

22

GitHub

Source Control

Development machines only
needs Docker installed.

Containers need to be setup
only once.

Every team member moves
code to source . Build server only needs

Docker installed.

Docker images are built for a
release and pushed to
container registry.

Production server only
needs Docker installed.

Production server pulls
Docker images from
container registry and
runs them.

Linux

Mac

Build Server

Linux

Production/ Test Servers

LinuxLinux

Windows

23

Software Development Workflow (with Docker)

23

GitHub

Source Control

Development machines only
needs Docker installed.

Containers need to be setup
only once.

Every team member moves
code to source . Build server only needs

Docker installed.

Docker images are built for a
release and pushed to
container registry.

Production server only
needs Docker installed.

Production server pulls
Docker images from
container registry and
runs them.

Linux

Mac

Build Server

Linux

Production/ Test Servers

LinuxLinux

Windows

Who creates the Dockerfile, and where is it
stored? Do we use pre-built images or does

each developer build them? Who is in charge
of managing this? Also, what’s the process for

handling the Pipfile and Pipfile.lock?

This seems like a lot.

24

Software Development Workflow (with Docker)

24

GitHub

Source Control

Development machines only
needs Docker installed.

Containers need to be setup
only once.

Every team member moves
code to source . Build server only needs

Docker installed.

Docker images are built for a
release and pushed to
container registry.

Production server only
needs Docker installed.

Production server pulls
Docker images from
container registry and
runs them.

Linux

Mac

Build Server

Linux

Production/ Test Servers

LinuxLinux

Windows

25

Outline

1. Recap: Review of Previous Material
2. Containers in Architecture: Microservices vs. Monolithic
3. Implementing Containers as Microservices

25

26

Tutorial (T5) - Building the Mega Pipeline App

One of Formaggio.me’s goals is to create a podcast on various
cheese-related topics. After recording the podcast, we plan to transcribe the
audio, use a language model to correct grammar and enhance the text, and
then generate audio that will be made available to our users. Remember, we
aim to reach an audience all over the world, so the podcast will be translated
into various languages and synthesized into audio.

The goal here is to simulate a realistic development scenario where each
component will be developed by different teams and containerized.

BONUS: You can use elevenlabs API to generate text with Pavlos’
voice or your own voice.

http://formaggio.me

27

Tutorial (T5) - Building the Mega Pipeline App

1. Role of the bucket and that they will be using our bucket. The
only need the secrets to communicate

2. Remove all unnecessary folders
3. Sequence matters
4. All containers are local
5. Basic steps are: Create

a. Docker, Pipfile, Pipfile.loc and secrete
b. Build images
c. Run image
d. Run cli.py
e. Clarify some of the cli.py synthesize options

6. go through process step by step

28

Translate Text

Tutorial (T5) - Building the Mega Pipeline App

28

Record Audio Generate Text Synthesise AudioTranscribe Audio

GCS Bucket

Audio + Text Files

Synthesise Audio

1 2 3

4

6

5

29

Tutorial (T5) - Team Challenge!

• We’ll form teams of 5, and each team must complete 5 tasks.
• The first team to finish all tasks will win a special prize!
• Don’t worry, every team that completes the tasks will also get a reward!
• The rewards are a surprise—so give it your best effort and have fun!

30

Tutorial (T5) - Building the Mega Pipeline App

30

31

Before we start let us review how do we authenticate to different services/accounts and APIs

 OAuth 2.0:
For user-driven authentication and access.

Service Account (part of IAM in GCP):
For server-to-server interactions requiring automation and high control without user intervention.

API Key:
For lightweight, less secure access to APIs, use cautiously.

Default Service Accounts (part of IAM in GCP):
For Compute Engine, Kubernetes Engine, and App Engine with predefined permissions.

Workload Identity Federation:
For external identities to access GCP securely.

GCP Authentication Methods

32

Tutorial (T5) - Building the Mega Pipeline App

32

• App: https://ac215-mega-pipeline.dlops.io/

• Teams
– 📝Task A transcribe_audio:

– 🗒Task B generate_text:

– 🔊Task C synthesis_audio_en:

– 󰏃Task D translate_text:

– 🔊Task E synthesis_audio:

• Instructions: https://github.com/dlops-io/mega-pipeline

https://ac215-mega-pipeline.dlops.io/
https://github.com/dlops-io/mega-pipeline/tree/main/transcribe_audio
https://github.com/dlops-io/mega-pipeline/tree/main/generate_text
https://github.com/dlops-io/mega-pipeline/tree/main/synthesis_audio_en
https://github.com/dlops-io/mega-pipeline/tree/main/translate_text
https://github.com/dlops-io/mega-pipeline/tree/main/synthesis_audio
https://github.com/dlops-io/mega-pipeline

THANK YOU

Now check: https://formaggio.me/

