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Logistics/Reminders 

● If you have formed groups - please update group info sheet 

● Please fill out survey - 
https://canvas.harvard.edu/courses/136127/assignments/866239

(Survey responses have been updated)

● Office Hours details here - 
https://edstem.org/us/courses/58478/discussion/5229430

https://docs.google.com/spreadsheets/d/1B8JePYtWLP-2dqOEwneW-gmasHBlxn03/edit?usp=sharing&ouid=109490521694988502723&rtpof=true&sd=true
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2. Containers in Architecture: Microservices vs. Monolithic
3. Implementing Containers as Microservices
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Recap: Environments vs Virtualization vs Containerization
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Environments
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Virtual Environment Manager (Conda)

● Dependency Isolation: Virtual environments 
redirect dependencies to their own directories, 
avoiding system-wide installs.

● No Kernel Isolation: Unlike VMs or containers, 
they don’t isolate the kernel.

● Resource Efficiency: Without an OS or kernel, 
virtual environments are lightweight and 
resource-efficient.

● Filesystem Access: Files written within a virtual 
environment can be accessed from other 
environments, as there’s no filesystem isolation.
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Virtualization (Virtual Machines) 
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● CPU Virtualization: Virtual CPUs are mapped to 
physical cores, but hypervisor management adds 
some overhead.

● Emulated Devices: VMs use virtual devices 
(CPUs, network adapters, disks) translated by the 
hypervisor to real hardware.

● Full OS: Each VM runs its own guest OS with 
independent kernel and user spaces, but this 
reduces efficiency.

● Resource Allocation: RAM, CPU, and disk 
space are often allocated in fixed blocks, limiting 
flexibility in resource usage.
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Containerization
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● Namespaces: Containers isolate processes and 
resources, making them act like independent systems. 
For example, PID namespaces separate process IDs, and 
mount namespaces provide unique file systems.

● Cgroups: These limit CPU, memory, and IO usage for 
each container, ensuring efficient resource use.

● Process Virtualization: Namespaces and cgroups work 
together to isolate and control processes.

● Shared Kernel: Containers use the host’s OS kernel but 
have their own files, making them lightweight and 
efficient.

● Direct Access: Containers interact with host resources 
directly, reducing overhead compared to VMs.
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Why use Containers?
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Conceptual Scenario

• Picture building an application, such as an online cheese store.

Traditional Approach

• Traditionality you would build this using a Monolithic Architecture.
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Monolithic Architecture
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HTML is HTML.
JSON is a data format for communication between clients and 

APIs.
REST is the protocol of communication with the API.



12

Monolithic Architecture - Advantages
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Simplicity in Development:
Most tools and IDEs natively support monolithic applications.

Ease of Deployment:
All components bundled into a single, unified package.

Scalability:
Easier to scale by replicating the entire application as a whole 
(horizontal scaling).
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Monolithic Architecture - Disadvantages
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Maintenance Challenges:

Complexity increases over time, making it harder to implement 
changes or find issues.

System Vulnerability:

A failure in a single component can lead to the collapse of the 
entire system.

Patching Difficulties:

Patching or updating specific modules can be cumbersome due 
to tightly-coupled components.
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Monolithic Architecture - Disadvantages

14

Technology Lock-in:

Adopting new technologies or updating existing ones can be 
problematic due to interdependencies.

Slow Startup:

Increased startup time as all components must be initialized 
simultaneously.

Onboarding Challenges:
New users need to familiarize themselves with the entire 
codebase. 
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Applications have changed dramatically
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Today

Apps are constantly being developed 
Build from loosely coupled components

Newer version are deployed often
Deployed to a multitude of servers

A decade ago

Apps were monolithic
Built on a single stack (e.g. .Net or Java)

Long lived
Deployed to a single server

Data Science

Apps are being integrated with various 
data types/sources and models 
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Monolithic Architecture
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Today: Microservice Architecture
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Microservice Architecture - Advantages
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Simplified Maintenance:
Modular design makes it easier to manage, update, and debug individual services.

Fault Isolation:
Independent components ensure that failure in one service doesn't bring down the 
entire application.

Streamlined Patching:
Easier to patch or update specific services without affecting the entire system.

Technological Flexibility:
Adapting to or adopting new technologies becomes seamless due to service 
independence.

Quick Startup:
Reduced startup time as all components can be initialized in parallel.
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Microservice Architecture - Disadvantages
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Development and Deployment Complexity:
Using multiple technologies across components can complicate both 
development and deployment, as managing diverse dependencies 
requires a more intricate setup.

Scaling Concerns:
Scaling the entire application can be intricate due to disparate 
components.

Docker + Kubernetes 
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Why use Containers?
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• Consider a software development team workflow for 
developing an App

• Traditionality you would develop/build this independently in 
various machines (dev, test, qa, prod) 
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Software Development Workflow (no Docker)
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22

Software Development Workflow (with Docker)
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Software Development Workflow (with Docker)
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Who creates the Dockerfile, and where is it 
stored? Do we use pre-built images or does 

each developer build them? Who is in charge 
of managing this? Also, what’s the process for 

handling the Pipfile and Pipfile.lock?

This seems like a lot.
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Software Development Workflow (with Docker)
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Tutorial (T5) -  Building the Mega Pipeline App

One of Formaggio.me’s goals is to create a podcast on various 
cheese-related topics. After recording the podcast, we plan to transcribe the 
audio, use a language model to correct grammar and enhance the text, and 
then generate audio that will be made available to our users. Remember, we 
aim to reach an audience all over the world, so the podcast will be translated 
into various languages and synthesized into audio.

The goal here is to simulate a realistic development scenario where each 
component will be developed by different teams and containerized.

BONUS: You can use elevenlabs API to generate text with Pavlos’ 
voice or your own voice.

http://formaggio.me
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Tutorial (T5) -  Building the Mega Pipeline App

1. Role of the bucket and that they will be using our bucket. The 
only need the secrets to communicate

2. Remove all unnecessary folders 
3. Sequence matters
4. All containers are local 
5. Basic steps are: Create 

a. Docker, Pipfile, Pipfile.loc and secrete 
b. Build images 
c. Run image
d. Run cli.py 
e. Clarify some of the cli.py synthesize options 

6. go through process step by step



28

Translate Text

Tutorial (T5) -  Building the Mega Pipeline App
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Tutorial (T5) - Team Challenge!

• We’ll form teams of 5, and each team must complete 5 tasks.
• The first team to finish all tasks will win a special prize!
• Don’t worry, every team that completes the tasks will also get a reward!
• The rewards are a surprise—so give it your best effort and have fun!
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Tutorial (T5) -  Building the Mega Pipeline App
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Before we start let us review how do we authenticate to different services/accounts and APIs

 OAuth 2.0:
For user-driven authentication and access.

Service Account (part of IAM in GCP): 
For server-to-server interactions requiring automation and high control without user intervention.

API Key:
For lightweight, less secure access to APIs, use cautiously.

Default Service Accounts (part of IAM in GCP):
For Compute Engine, Kubernetes Engine, and App Engine with predefined permissions.

Workload Identity Federation:
For external identities to access GCP securely.

GCP Authentication Methods
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Tutorial (T5) -  Building the Mega Pipeline App
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• App: https://ac215-mega-pipeline.dlops.io/

• Teams
– 📝Task A transcribe_audio:

– 🗒Task B generate_text:

– 🔊Task C synthesis_audio_en:

– 󰏃Task D translate_text:

– 🔊Task E synthesis_audio:

• Instructions: https://github.com/dlops-io/mega-pipeline  

https://ac215-mega-pipeline.dlops.io/
https://github.com/dlops-io/mega-pipeline/tree/main/transcribe_audio
https://github.com/dlops-io/mega-pipeline/tree/main/generate_text
https://github.com/dlops-io/mega-pipeline/tree/main/synthesis_audio_en
https://github.com/dlops-io/mega-pipeline/tree/main/translate_text
https://github.com/dlops-io/mega-pipeline/tree/main/synthesis_audio
https://github.com/dlops-io/mega-pipeline




THANK YOU

Now check: https://formaggio.me/


