
Pavlos ProtopapasPavlos Protopapas
SEAS/Harvard

AC215

Lecture 3: Containers I

Outline

1. Recap & Motivation
2. What is a Container
3. Why use Containers
4. How to use Containers

2

Outline

1. Recap & Motivation
2. What is a Container
3. Why use Containers
4. How to use Containers

3

Recap Virtual Machines: Pros and Cons

Cons
• Resource Intensive:
• Consumes hardware resources from the

host machine.

• Portability Issues:
• VMs are large in size, making them harder

to move between systems.

• Overhead:
• Requires additional resources to run the

hypervisor and manage multiple operating
systems.

Pros
• Full Autonomy:

Complete control over the operating system and
applications, similar to a physical server.

• Very Secure:
• Isolated environment helps in minimizing the risk

of system intrusion.

• Lower Cost:
• Can be more cost-effective for applications that

need full OS functionality.

• Cloud Adoption:
• Offered by all major cloud providers for

on-demand server instances.

4

Recap: Virtual Environments

5

Cons
• Difficulty in Setup:
• Initial setup can be complex, especially

for those new to the concept..

• No Isolation from Host:
• Virtual environments share the host's

operating system, leading to potential
conflicts.

• OS Limitations:
• May not be compatible across different

operating systems, requiring additional
configuration.

Pros
• Reproducible Research:
• Easy to replicate experiments and share

research outcomes due to consistent
environments.

• Explicit Dependencies:
• Clear listing of all required packages

and versions, reducing ambiguity.

• Improved Engineering Collaboration:
• Team members can quickly set up the

same environment, streamlining
development.

Wish List

Automated Setup:
Automatically set up (installs) OS and extra libraries and set up the python
environment.

Isolation:
Complete separation from the host machine, ensuring a consistent run-time
environment.

Resource Efficiency:
Minimal use of CPU, Memory, and Disk resources, optimized for performance.

Quick Startups:
Near-instantaneous initialization, reducing time to deployment.

6

Containers

Outline

1. Recap & Motivation
2. What is a Container
3. Why use Containers
4. How to use Containers

7

What is a CONTAINER

A container is a program that runs
on your machine, essentially
acting as a miniature computer
within your main computer. It uses
resources from the host machine
(CPU, Memory, Disk, etc.) but
behaves like its own operating
system with an isolated file system
and network.

8

CPU, Memory, Disk, …

Container Program

MacOS, Windows, …

Laptop, Desktop:

Operating System:

Software:

Containers:
Files

Apps

Files

Apps

Files

Apps

It packages code and all its dependencies to ensure that the
application behaves the same way, regardless of where it's
run.

Environments vs Virtualization vs Containerization

9

OS

Bins/lib

App2

Infrastructure

Hypervisor

Virtualization

OS OS

Bins/lib Bins/lib

App1 App3

Operating System

VM VM VM

Infrastructure

Container Program

Containerization

Operating System

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Infrastructure

Python

Virtual Environments

Operating System

Libs

App1

Venv

Libs

App2

Venv

Libs

App3

Venv

Containerization

10

To understand how containers work, we need to first
introduce two key Linux kernel features: namespaces and
cgroups.

Physical Hardware

Containerization

Operating System

Container Engine (Docker)

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Containerization

11

To understand how containers work, we need to first
introduce two key Linux kernel features: namespaces and
cgroups.

Kernel

Physical Hardware

Containerization

User Space

Container Engine (Docker)

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

The Operating System contains the Kernel, which
has low level access to the hardware and the User
Space which contains programs outside the Kernel.

Containerization

12

Namespace is a feature provided by the Linux Kernel that
creates an isolation between system components.

Namespaces allow different processes (or groups of
processes) to have their own separate view of system
resources, such as process IDs, file systems, network
interfaces, and more.

When a process is placed into a namespace, it can only
see and interact with the resources within that
namespace.

Kernel

Physical Hardware

Containerization

User Space

Container Engine (Docker)

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

https://man7.org/linux/man-pages/man7/namespaces.7.html

Containerization: Namespaces

13

● PID Namespace: processes inside different PID
namespaces can have the same process ID (PID) without
conflicts. The host will be able to see the different
processes with a different PIDs.

Example: two containers running on the same host. In
one container, a web server process (e.g., Nginx) might
have a PID of 1. In another container, a database process
(e.g., MySQL) could also have a PID of 1. The host might
assign 345 and 678, respectively.

Kernel

Physical Hardware

Containerization

User Space

Container Engine (Docker)

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Containerization: Namespaces

14

● Mount Namespace: different containers will have their
own view of the filesystem. This includes mounted disks,
mount points or directories.

Example: Suppose you have two containers that mount
to the directory /data, where one container mounts
Drive_A and the other Drive_B. Both containers will be
unaware of other mounted drives.

Kernel

Physical Hardware

Containerization

User Space

Container Engine (Docker)

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Containerization: Namespaces

15

● Network Namespace: different containers will have their
own isolated sub-network to interact with. This include IP
addresses, routing tables, firewall rules, etc.

Example: multiple containers can use the same IP
address to perform tasks, without worrying about
interfering with each other or security concerns.

Kernel

Physical Hardware

Containerization

User Space

Container Engine (Docker)

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Containerization: Namespaces

16

● IPC Namespace: Inter-Process Communication. It
isolates the processes communication and shared
memory within each namespace.

● UTS Namespace: UNIX Timesharing System. Allows
each namespace to define its own localhost.

● User Namespace: Isolates user groups within each
container. Even if a process is running as root inside the
container, it will have non-root privileges in the host.

Kernel

Physical Hardware

Containerization

User Space

Container Engine (Docker)

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Containerization: Control Groups

17

Complementary to namespaces, cgroups (Control Groups)
allow the limitation and management of system resources such
as CPU, memory, disk I/O, and network bandwidth.

By controlling resource allocation, cgroups enable more
efficient resource utilization and isolation within containers,
making them more lightweight and flexible compared to virtual
machines (VMs).

Also, they provide an additional layer of security ensuring that
one container cannot bring the system down by exhausting
one of those resources.

Kernel

Physical Hardware

Containerization

User Space

Container Engine (Docker)

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Containerization: Security Features

18

Apart from namespaces and cgroups, the Docker engine
utilizes additional kernel features to increase security.

By default, containers are given a reduced set of privileges
(Secure computing mode, seccomp) reducing by 44 the
available system calls (300+). This ensures that containers
remain isolated and cannot control the host.

A container is unlikely to require root privileges, since those
tasks can be executed by the host. Only the absolutely
necessary information is passed into the container.

Kernel

Physical Hardware

Containerization

User Space

Container Engine (Docker)

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

https://docs.docker.com/engine/security/seccomp/

Containerization: Security features

19

Example:
Unless configured otherwise, the containers don’t have access
to the syscall reboot. Which would allow a container to reboot
the system.

If a container has access to the syscall quotactl, it would have
the ability to change the disk quotas, affecting the rest of the
host and other containers or VMs.

Kernel

Physical Hardware

Containerization

User Space

Container Engine (Docker)

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Additional security layer are applied, such as AppArmor
(Application Armor) and SELinux (Security-Enhanced
Linux).
These modules restrict the the usage of files, directories,
sockets, and other processes. Providing an additional
layer of security, preventing any container of accessing
core system components.

Containerization: Security features

20

Kernel

Physical Hardware

Containerization

User Space

Container Engine (Docker)

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Do not confuse with cgroups, which control
resource management!

What Makes Containers so Small?

Bins/lib

App1

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Docker client

Daemon

User Space

Linux Kernel

RAM Drives

Network

CPU

GPU Audio

Container = User Space of OS

Each container has the minimum code required to run its program. It
leverages the host Os (User Space and Kernel) to perform its task.

Syscalls Namespaces cgroups

Containers compatibility

If Docker containers rely on Linux kernel features, how can we use them on MacOS
and Windows?

Both OS’s spin stripped down VMs that translate syscalls from the Daemon to the native Kernel.

Kernel

Physical Hardware

MacOS

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Docker Engine

User Space

HyperKit

Kernel

Physical Hardware

Windows

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Docker Engine

User Space
WSL2

HyperKit is a virtualization
technology.

WSL2 is a custom built
Linux kernel, integrated with
Windows.
It spins an even thinner
Linux VM, which allows it to
run native linux programs.

Outline

1. Recap & Motivation
2. What is a Container
3. Why use Containers
4. How to use Containers

23

Advantages of a CONTAINER

• Portability & Lightweight: Containers encapsulate everything
needed to run an application, making them easy to move
across different environments.

• Fully Packaged: Containers include the software and all its
dependencies, ensuring a consistent environment throughout
the development lifecycle.

• Versatile Usage: Containers can be used across various
stages, from development and testing to training and
production deployment

24

Outline

1. Recap & Motivation
2. What is a Container
3. Why use Containers
4. How to use Containers

25

Examples of Containerization Technologies:

LXC (Linux Containers): The original containerization technology on Linux,
offering lightweight virtualization with less isolation than Docker.

Docker: The most popular and widely used container platform, known for its
ease of use, robust ecosystem, and extensive support.

Podman: A daemonless container engine that is
compatible with Docker, providing more security features
like running containers as non-root.
rkt (Rocket): A security-focused container runtime,
designed as an alternative to Docker, with a strong
emphasis on simplicity and composability.
Orbstack: A fast, lightweight container and VM platform
optimized for seamless desktop development.

What is docker?

Open Source: Community-driven and

compatible.

Platform: Develop, ship, and run applications in

containers.

Portability: Consistent across various

environments.

Ecosystem: Docker Hub, Kubernetes, and more.

How to run a docker container

28

• We use a simple text file, the Dockerfile, to build the
Docker Image, which consists of an iso file and other files.

• We run the Docker Image to get Docker Container.

What is the difference between an image and container

29

Docker Image is a template aka a blueprint to create a
running docker container. Docker uses the information
available in the Image to create (run) a container.

Docker file is the hand written description of a recipe,
Image is like the formal recipe and ingredients, container is
like a dish.

Alternatively, you can think of an image as a class and a
container is an instance of that class.

Anatomy of a Dockerfile

30

FROM: Specifies the base OS image (e.g., alpine,
Ubuntu) for building the Docker image.

RUN: Executes commands to build the image. Each
RUN creates a new layer.

ENTRYPOINT: Sets the default executable for the
container, making it behave like a standalone
application.

CMD: Sets default commands or parameters for
container startup, but can be overridden by the
`docker run` command.

https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/

Anatomy of a Dockerfile

31

FROM: Specifies the base OS image (e.g.,
alpine, Ubuntu) for building the Docker image.

RUN: Executes commands to build the image.
Each RUN creates a new layer.

ENTRYPOINT: Sets the default executable for
the container, making it behave like a
standalone application.

CMD: Sets default commands or parameters
for container startup, but can be overridden by
the `docker run` command.

ADD: Similar to COPY, but can also
handle URLs and auto-extract
compressed files.

ENV: Sets environment variables
within the Docker image. These
variables can be used in
subsequent commands or by
applications within the container.

WORKDIR: Sets the working
directory for any RUN, CMD,
ENTRYPOINT, COPY, and ADD
instructions that follow in the
Dockerfile.

https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/

Docker Image as Layers

32

When we execute the build command, the daemon reads the
Dockerfile and creates a layer for every command.

Nmap (Network Mapper) is an open source utility
of network.

Image Layering

33

Container
(Writable, running application)

Layered Image 2

Layered Image 1

Platform Image
(Runtime Environment)

Platform images define the runtime environment, packages
and utilities necessary for containerized application to run. It is
an Image that has no parent

A static snapshot Images are read-only and capture the
container's settings.
- Layer images are read-only
- Each image depends on one or more parent images

A application sandbox
- Each container is based on an image that holds necessary

config data
- When you launch a container, a writable layer is added on

top of the image

Why Layers

34

Why build an image with multiple layers when we can just build it in a single layer?

Efficiency
Reuse common layers across different images, saving storage and speeding
up image creation.

Incremental Updates
Update only the changed layer, reducing the time and bandwidth needed for
deployment.

Cache Utilization
Docker caches layers. If no changes are detected, subsequent builds are
faster.

Modularity
Break down complex setup into manageable pieces, making debugging easier.

Security
Smaller attack surface per layer and easier to scan for vulnerabilities.

WE WILL SEE AN EXAMPLE LATER

Image Layering - Example

35

Debian Linux

Kernel

Install Python & Pip

Upgrade Pip

Install Pipenv

Pipenv Sync

Docker layers for a container running debian and a python environment using
Pipenv

Docker Vocabulary

36

Docker Image
The basis of a Docker container. Represent a full application

Containers
How you run your

application

Images
How you store
your application

Docker Container
The standard unit in which the application service resides and
executes

Registry Service (Docker Hub or Docker Trusted Registry)
Cloud or server-based storage and distribution service for your
images

Docker Engine
Creates, ships and runs Docker containers deployable on a
physical or virtual, host locally, in a datacenter or cloud service
provider

Docker File
A text document with commands on how to create an Image

FAQ: Running Multiple Containers from a Single Image

37

How can you run multiple containers from the same image?
Yes, you could think of an image as instating a class. You can create multiple
instances (containers) from a single image.

Wouldn’t all these containers be identical?

Not necessarily. Containers can be instantiated with different parameters using the
CMD command, making them unique in behavior.

FROM ubuntu:latest
RUN apt-get update
ENTRYPOINT ["/bin/echo", "Hello"]
CMD ["world"]

> docker build -t hello_world_cmd -f Dockerfile .

> docker run -it hello_world_cmd
> Hello world
> docker run -it hello_world_cmd Pavlos
> Hello Pavlos

Tutorial (T3): Installing Docker Desktop

38

● Install Docker Desktop. Use one of the links below to download the proper
Docker application depending on your operating system.
○ For Mac users, follow this link-

https://docs.docker.com/docker-for-mac/install/.
○ For Windows users, follow this link-

https://docs.docker.com/docker-for-windows/install/ Note: You will need
to install Hyper-V to get Docker to work.

○ For Linux users, follow this link-
https://docs.docker.com/install/linux/docker-ce/ubuntu/

● Once installed run the docker desktop.
● Open a Terminal window and type docker run hello-world to make

sure Docker is installed properly.

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/

Tutorial (T3): Docker commands

Check what version of Docker

39

docker --version

docker command
Get version of Docker CLI

Tutorial (T3): Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)

git clone https://github.com/dlops-io/simple-translate

40

https://github.com/dlops-io/simple-translate
https://github.com/dlops-io/simple-translate

Tutorial (T3): Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)
○ Build a container

41

https://github.com/dlops-io/simple-translate

Tutorial (T3): Docker commands

42

Build an image based on a Dockerfile

docker build -t simple-translate -f Dockerfile .

docker command
Build the image

Name the image
Name of docker file and “.” means look at

the current working directory

Use the official Debian-hosted Python image

FROM python:3.9-slim-buster

Tell pipenv where the shell is.

This allows us to use "pipenv shell" as a container entry point.

ENV PYENV_SHELL=/bin/bash

Ensure we have an up to date baseline, install dependencies

apt-get is a command-line tool used to manage packages
RUN set -ex; \ # -e build process will stop if any command following set -ex fails. -x prints the output

 apt-get update && \ # updates the local package index

 apt-get upgrade -y && \ # upgrade all the installed packages

 apt-get install -y --no-install-recommends build-essential git && \

 pip install --no-cache-dir --upgrade pip && \

 pip install pipenv

Add Pipfile, Pipfile.lock + python code

ADD . / # adds the content of the current directory “.” into the root directory of the container

RUN pipenv sync

Entry point

ENTRYPOINT ["/bin/bash"]

Get into the pipenv shell

CMD ["-c", "pipenv shell"]

Dockerfile

Docker Image as Layers

44

>docker build -t hello_world_cmd -f Dockerfile .

Sending build context to Docker daemon 34.3kB
Step 1/4 : FROM ubuntu:latest
latest: Pulling from library/ubuntu
54ee1f796a1e: Already exists
f7bfea53ad12: Already exists
46d371e02073: Already exists
b66c17bbf772: Already exists
Digest: sha256:31dfb10d52ce76c5ca0aa19d10b3e6424b830729e32a89a7c6eee2cda2be67a5
Status: Downloaded newer image for ubuntu:latest
 ---> 4e2eef94cd6b
Step 2/4 : RUN apt-get update
 ---> Running in e3e1a87e8d6e
Get:1 http://archive.ubuntu.com/ubuntu focal InRelease [265 kB]
Get:2 http://security.ubuntu.com/ubuntu focal-security InRelease [107 kB]
Get:3 http://security.ubuntu.com/ubuntu focal-security/universe amd64 Packages [67.5 kB]
Get:4 http://archive.ubuntu.com/ubuntu focal-updates InRelease [111 kB]
Get:5 http://archive.ubuntu.com/ubuntu focal-backports InRelease [98.3 kB]
Get:6 http://security.ubuntu.com/ubuntu focal-security/main amd64 Packages [231 kB]
Get:7 http://archive.ubuntu.com/ubuntu focal/restricted amd64 Packages [33.4 kB]
Get:8 http://archive.ubuntu.com/ubuntu focal/main amd64 Packages [1275 kB]
Get:9 http://security.ubuntu.com/ubuntu focal-security/multiverse amd64 Packages [1078 B]
…

Step1: Instruction 1

Step2: Instruction 2

FROM ubuntu:latest
RUN apt-get update
ENTRYPOINT ["/bin/echo", "Hello"]
CMD ["world"]

Docker Image as Layers

45

>docker build -t hello_world_cmd -f Dockerfile .

….
Step 3/4 : ENTRYPOINT ["/bin/echo", "Hello"]
 ---> Running in 52c7a98397ad
Removing intermediate container 52c7a98397ad
 ---> 7e4f8b0774de
Step 4/4 : CMD ["world"]
 ---> Running in 353adb968c2b
Removing intermediate container 353adb968c2b
 ---> a89172ee2876
Successfully built a89172ee2876
Successfully tagged hello_world_cmd:latest

Step3: Instruction 3

Step4: Instruction 4

FROM ubuntu:latest
RUN apt-get update
ENTRYPOINT ["/bin/echo", "Hello"]
CMD ["world"]

Docker Image as Layers

46

>docker build -t simple-translate -f Dockerfile .

 => [internal] load build definition from Dockerfile 0.0s
 => => transferring dockerfile: 756B 0.0s
 => [internal] load metadata for docker.io/library/python:3.11-slim-buster 1.0s
 => [internal] load .dockerignore 0.0s
 => => transferring context: 2B 0.0s
 => [1/4] FROM docker.io/library/python:3.11-slim-buster@sha256:c46b0ae5728c2247b99903098ade3176a58e274d9c7d2efeaaab3e0621a53935 2.8s
 => => resolve docker.io/library/python:3.11-slim-buster@sha256:c46b0ae5728c2247b99903098ade3176a58e274d9c7d2efeaaab3e0621a53935 0.0s
 => => sha256:81b2c804d9ba5014835bedffff61fb42e5d78be661b781654cda06b3d95237f0 1.37kB / 1.37kB 0.0s
 => => sha256:12cacc23b6dec78ca7b056d56e3de48252669ed49fffd95ed36adbf9dfe3cec0 6.85kB / 6.85kB 0.0s
 => => sha256:d191be7a3c9fa95847a482db8211b6f85b45096c7817fdad4d7661ee7ff1a421 25.92MB / 25.92MB 1.4s
 => => sha256:14aea17807c4c653827ca820a0526d96552bda685bf29293e8be90d1b05662f6 2.65MB / 2.65MB 0.6s
 => => sha256:67cefd826e1d4a3bce3c47a040ab445ba7ba6586dea8b8380bdad6ee3462f9c1 12.10MB / 12.10MB 1.3s
 => => sha256:c46b0ae5728c2247b99903098ade3176a58e274d9c7d2efeaaab3e0621a53935 988B / 988B 0.0s
 => => sha256:195c388ea91b233c774667795edf5a47d3b02b3db8da49447d964dbafee7a786 244B / 244B 0.7s
 => => sha256:db8899040fb5395274edb3f6930ed67e7c7a4cd70adc8f6f21cfa2ab92dce912 3.38MB / 3.38MB 1.2s
 => => extracting sha256:d191be7a3c9fa95847a482db8211b6f85b45096c7817fdad4d7661ee7ff1a421 0.8s
 => => extracting sha256:14aea17807c4c653827ca820a0526d96552bda685bf29293e8be90d1b05662f6 0.1s
 => => extracting sha256:67cefd826e1d4a3bce3c47a040ab445ba7ba6586dea8b8380bdad6ee3462f9c1 0.3s
 => => extracting sha256:195c388ea91b233c774667795edf5a47d3b02b3db8da49447d964dbafee7a786 0.0s
 => => extracting sha256:db8899040fb5395274edb3f6930ed67e7c7a4cd70adc8f6f21cfa2ab92dce912 0.2s
 => [internal] load build context 0.0s
 => => transferring context: 161.76kB 0.0s
 => [2/4] RUN set -ex; apt-get update && apt-get upgrade -y && apt-get install -y --no-install-recommends build-essential git && p 24.0s
 => [3/4] ADD . / 0.0s
 => [4/4] RUN pipenv sync 7.8s
 => exporting to image 0.7s
 => => exporting layers 0.7s
 => => writing image sha256:e473d8916478a1f09ecfeba01dde5113133490541018fb34dba99947ff140ba0 0.0s
 => => naming to docker.io/library/simple-translate 0.0s

Step1: Instruction 1

Step2: Instruction 2

Step3: Instruction 3
Step4: Instruction 4

Docker Image as Layers

47

> docker image history hello_world_cmd
IMAGE CREATED CREATED BY SIZE COMMENT
a89172ee2876 8 minutes ago /bin/sh -c #(nop) CMD ["world"] 0B
7e4f8b0774de 8 minutes ago /bin/sh -c #(nop) ENTRYPOINT ["/bin/echo" "… 0B
cfc0c414a914 8 minutes ago /bin/sh -c apt-get update 22.8MB
4e2eef94cd6b 3 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B
<missing> 3 weeks ago /bin/sh -c mkdir -p /run/systemd && echo 'do… 7B
<missing> 3 weeks ago /bin/sh -c set -xe && echo '#!/bin/sh' > /… 811B
<missing> 3 weeks ago /bin/sh -c [-z "$(apt-get indextargets)"] 1.01MB
<missing> 3 weeks ago /bin/sh -c #(nop) ADD file:9f937f4889e7bf646… 72.9MB

> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello_world_cmd latest a89172ee2876 7 minutes ago 96.7MB
ubuntu latest 4e2eef94cd6b 3 weeks ago 73.9MB

Docker Image as Layers

48

> docker image history simple-translate
IMAGE CREATED CREATED BY SIZE COMMENT
e473d8916478 22 minutes ago CMD ["-c" "pipenv shell"] 0B buildkit.dockerfile.v0
<missing> 22 minutes ago ENTRYPOINT ["/bin/bash"] 0B buildkit.dockerfile.v0
<missing> 22 minutes ago RUN /bin/sh -c pipenv sync # buildkit 40.5MB buildkit.dockerfile.v0
<missing> 22 minutes ago ADD . / # buildkit 155kB buildkit.dockerfile.v0
<missing> 22 minutes ago RUN /bin/sh -c set -ex; apt-get update &… 329MB buildkit.dockerfile.v0
<missing> 22 minutes ago ENV PYENV_SHELL=/bin/bash 0B buildkit.dockerfile.v0
<missing> 15 months ago CMD ["python3"] 0B buildkit.dockerfile.v0
<missing> 15 months ago RUN /bin/sh -c set -eux; savedAptMark="$(a… 12.2MB buildkit.dockerfile.v0
<missing> 15 months ago ENV PYTHON_GET_PIP_SHA256=96461deced5c2a487d… 0B buildkit.dockerfile.v0
<missing> 15 months ago ENV PYTHON_GET_PIP_URL=https://github.com/py… 0B buildkit.dockerfile.v0
<missing> 15 months ago ENV PYTHON_SETUPTOOLS_VERSION=65.5.1 0B buildkit.dockerfile.v0
<missing> 15 months ago ENV PYTHON_PIP_VERSION=23.1.2 0B buildkit.dockerfile.v0
<missing> 15 months ago RUN /bin/sh -c set -eux; for src in idle3 p… 32B buildkit.dockerfile.v0
<missing> 15 months ago RUN /bin/sh -c set -eux; savedAptMark="$(a… 31.4MB buildkit.dockerfile.v0
<missing> 15 months ago ENV PYTHON_VERSION=3.11.4 0B buildkit.dockerfile.v0
<missing> 15 months ago ENV GPG_KEY=A035C8C19219BA821ECEA86B64E628F8… 0B buildkit.dockerfile.v0
<missing> 15 months ago RUN /bin/sh -c set -eux; apt-get update; a… 6.66MB buildkit.dockerfile.v0
<missing> 15 months ago ENV LANG=C.UTF-8 0B buildkit.dockerfile.v0
<missing> 15 months ago ENV PATH=/usr/local/bin:/usr/local/sbin:/usr… 0B buildkit.dockerfile.v0
<missing> 15 months ago /bin/sh -c #(nop) CMD ["bash"] 0B
<missing> 15 months ago /bin/sh -c #(nop) ADD file:d4a87f28032264e15… 63.5MB

> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello_world_cmd latest e473d8916478 47 hours ago 8.83MB
simple-translate latest e473d8916478 22 minutes ago 483MB

Why Layers

49

Why build an image with multiple layers when we can just build it in a single layer?
Let’s take an example to explain this concept better, let us try to change the Dockerfile_cmd we
created and rebuild a new Docker image.

> docker build -t hello_world_cmd -f Dockerfile_cmd .
Sending build context to Docker daemon 34.3kB
Step 1/4 : FROM ubuntu:latest
 ---> 4e2eef94cd6b
Step 2/4 : RUN apt-get update
 ---> Using cache
 ---> cfc0c414a914
Step 3/4 : ENTRYPOINT ["/bin/echo", "Hello"]
 ---> Using cache
 ---> 7e4f8b0774de
Step 4/4 : CMD ["world"]
 ---> Using cache
 ---> a89172ee2876
Successfully built a89172ee2876
Successfully tagged hello_world_cmd:latest

Have seen this before. Use
cache

As you can see that the image was built using the existing layers from our previous docker image
builds. If some of these layers are being used in other containers, they can just use the existing layer
instead of recreating it from scratch.

Why Layers

50

Why build an image with multiple layers when we can just build it in a single layer?
Let’s take an example to explain this concept better, let us try to change the Dockerfile_cmd we
created and rebuild a new Docker image.
> docker build -t hello_world_cmd -f Dockerfile_cmd .
[+] Building 0.6s (9/9) FINISHED docker:desktop-linux
 => [internal] load build definition from Dockerfile 0.0s
 => => transferring dockerfile: 756B 0.0s
 => [internal] load metadata for docker.io/library/python:3.11-slim-buster 0.5s
 => [internal] load .dockerignore 0.0s
 => => transferring context: 2B 0.0s
 => [1/4] FROM docker.io/library/python:3.11-slim-buster@sha256:c46b0ae5728c2247b99903098ade3176a58e274d9c7d2efeaaab3e0621a53935 0.0s
 => [internal] load build context 0.0s
 => => transferring context: 5.91kB 0.0s
 => CACHED [2/4] RUN set -ex; apt-get update && apt-get upgrade -y && apt-get install -y --no-install-recommends build-essential git && 0.0s
 => CACHED [3/4] ADD . / 0.0s
 => CACHED [4/4] RUN pipenv sync 0.0s
 => exporting to image 0.0s
 => => exporting layers 0.0s
 => => writing image sha256:e473d8916478a1f09ecfeba01dde5113133490541018fb34dba99947ff140ba0 0.0s
 => => naming to docker.io/library/simple-translate 0.0s

Have seen this before. Use cache

As you can see that the image was built using the existing layers from our previous docker image
builds. If some of these layers are being used in other containers, they can just use the existing layer
instead of recreating it from scratch.

Tutorial (T3): Docker commands

51

List all docker images

docker image ls

docker command
Docker command for image

Docker command option to list all images

Tutorial (T3): Docker commands

52

List all running docker containers

docker container ls

docker command
Docker command for container

Docker command option to list all containers

Tutorial (T3): Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)
○ Build a container
○ Run a container

53

https://github.com/dlops-io/simple-translate

Tutorial (T3): Docker commands

54

Run a docker container using an image

docker run --rm --name simple-translate -ti --entrypoint /bin/bash simple-translate

Run the container

automatically clean up the container and
remove the file system when the container

exit

Name of the container

‘t’ is to give us a terminal and ‘i’ is for
interactive mode

Default command to execute on
startup. Overwrites the

ENTRYPOINT from Dockerfile

Name of the image to use

Tutorial (T3): Docker commands

55

Open another command prompt and check how many container
and images we have

docker container ls

docker image ls

Tutorial (T3): Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)
○ Build a container
○ Run a container
○ Push container on Docker Hub

56

https://github.com/dlops-io/simple-translate

Tutorial (T3): Docker commands

57

Sign up in Docker Hub and create an Access Token. Use that
token to authenticate with the command below

docker login -u <USER NAME> -p <ACCESS TOKEN>

Command used to
authenticate to a Docker
registry

 Specifies the username for authentication

Utilizes an access token
instead of a password for

secure authentication.

https://hub.docker.com/settings/security

Tutorial (T3): Docker commands

58

Tag the Docker Image

docker tag <SOURCE IMAGE NAME>[:TAG] <USER NAME>/<TARGET_IMAGE[:TAG]>

Assigns a new name or tag to
an image

The existing image name to be tagged.
Optional tag for the source image (defaults to

latest if omitted).

Docker Hub username or
repository namespace.

The new name for the tagged
image.

Tutorial (T3): Docker commands

59

● Push to Docker Hub

docker push <USER NAME>/<TARGET_IMAGE[:TAG]>

Command used to upload a
Docker image from your local
machine to a remote registry
like Docker Hub

The name of the image you
want to push to the registry.

User name can be included as
part of the name

Tutorial (T3): Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)
○ Build a container
○ Run a container
○ Push container on Docker Hub
○ Pull the new container and run it

60

https://github.com/dlops-io/simple-translate

Tutorial (T3): Docker commands

61

● Pull from Docker Hub

docker pull [OPTIONS] <USER NAME>/<TARGET_IMAGE[:TAG]>

Command used to download
a Docker image from a
registry to your local
machine

The name of the image you
want to pull and TAG

Tutorial (T3): Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)
○ Build a container
○ Run a container
○ Push container on Docker Hub
○ Pull the new container and run it

● For detail instruction go here
(https://github.com/dlops-io/simple-translate#developing-app-using-containers-t3)

62

https://github.com/dlops-io/simple-translate
https://github.com/dlops-io/simple-translate?tab=readme-ov-file#developing-app-using-containers-t3

Tutorial (T3): Docker commands

63

Exit from all containers and let us clear of all images

docker system prune -a

docker command
Docker command for system

Docker command option to remove all images not
referenced by any containers

Tutorial (T3): Docker commands

64

Check how many containers and images we have currently

docker container ls

docker image ls

Tutorial (T4): Running App on VM using Docker

● Let us run the simple-translate app using Docker
● For this we will do the following:

○ Create a VM Instance
○ SSH into the VM
○ Install Docker inside the VM
○ Run the containerized simple-translate app

● Full instructions can be found here
(https://github.com/dlops-io/simple-translate#running-app-on-vm-using-docker-t4)

65

https://github.com/dlops-io/simple-translate?tab=readme-ov-file#running-app-on-vm-using-docker-t4

Recap: How do we build an App?

Development

Python: pipenv
Chromium: Mac install,
Windows install
OS: Mac, Windows

Python: Colab provided env
OS: Linux

Python: pipenv
OS: Mac, Windows

Multiple developers, Using Mac and Windows OS

Python: pipenv
OS: Linux

Deployment

Server

Recap: How do we build an App?

Development

Python: pipenv
Chromium: Mac install,
Windows install
OS: Mac, Windows

Python: Colab provided env
OS: Linux

Python: pipenv
OS: Mac, Windows

Multiple developers, Using Mac and Windows OS

Python: pipenv
OS: Linux

Deployment

Server

Isolate work into containers

Container
Container

Container

Logistics/Reminders

Please fill out survey -
https://canvas.harvard.edu/courses/136127/assignments/866239

Office Hours details here -
https://edstem.org/us/courses/58478/discussion/5229430

Thank you

