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Automation

We want to automate the following operations:

• Running data pipeline jobs

• Model training & model deployment

• Frontend deployment

• Backend deployment

• Building & Pushing Docker containers
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CI / CD
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Continuous Integration (CI)
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Continuous Integration (CI) automates a series of scripts to run 
whenever changes are pushed, in order to:

• Continuously integrate changes into the production branch 
• Run automated tests 
• Enforce coding standards 
• Perform static code analysis 

Note: Coding standards are about style and consistency.
Static code analysis is about identifying potential defects and vulnerabilities.



Continuous Integration (CI)
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Continuous Integration (CI) allows multiple developers to contribute 
to a shared repository by automating quality checks to ensure the 
code remains functional.

This is achieved through: 

• Running automated tests to catch bugs early
• Enforcing coding standards to maintain consistency
• Performing static code analysis 

Note: Coding standards are about style and consistency.
Static code analysis is about identifying potential defects and vulnerabilities without 
executing the code.



Continuous Deployment / Delivery  (CD)

Continuous Delivery (CD): extension of CI to ensure software can be 
reliably released at any time. 
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Continuous Deployment (CD): Is to take automation further by 
deploying code changes to production automatically, as soon as the new 
features are integrated into the main codebase.

Note: Delivery ensures changes are always ready to be deployed, but keeping a person in the loop. Deployment 
ensures changes are automatically passed into production.



CI in AI/ML

Regularly integrates ML code, data, and models into a shared repository while ensuring 
consistency through automated checks.

Automatically tests these integrations to ensure consistency.

Enables quick detection of issues in:

• Data quality
• Code correctness
• Model performance

Challenges in AI/ML CI

Balancing frequent integrations with:

• High computational demands of training models.
• Long-running tests for large datasets and complex pipelines.

Ensuring compatibility between evolving data, features, and model versions.
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CD in AI/ML

Automates the release of ML models, data, and pipelines to production environments, 
ensuring that updates are deployed as soon as possible, maintaining reliability after 
passing all validation steps.

Benefits:

• All the CI benefits
• Performance validation: Ensures metrics are within tolerance
• Scalability: Leverages cloud infrastructure

Challenges:

• Data drift
• Validation of complex models such as LLMs
• Cost
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CI/CD Providers and Tools

TeamCity Github GitLab Jenkins CircleCI TravisCI

Some of the common CI CD provider and tools:
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How to Implement CI/CD

We already have a deployment container that can:

• Build Docker images.
• Run Vertex AI pipeline jobs.
• Deploy app to K8s cluster.
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How to Implement CD
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We can automate using GitHub Actions by:

• Monitoring code commits.
• Build & run deployment container.
• Invoke CLI in deployment container to:

– Build & push docker images for release
– Run Vertex AI jobs using new newly build images
– Deploy newly build images of app to K8s cluster
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Tutorial: Continuous Integration, Continuous Deployment
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Steps to apply CI / CD on the cheese app components:
● Create a Github / Workflow file defining deployment steps

https://github.com/dlops-io/cheese-app-v4/tree/main/.github/workflows
● Commit your code using  /deploy-app to the commit message 

# Basic format

git commit -m "your message /deploy-app"

For detailed instructions, please refer to the following link
■ Cheese App CICD. 

(https://github.com/dlops-io/cheese-app-v4#cheese-app---automation )
■ Cheese App - GitHub Actions. 

(https://github.com/dlops-io/cheese-app-v4/actions )

https://github.com/dlops-io/cheese-app-v4/tree/main/.github/workflows
https://github.com/dlops-io/cheese-app-v4#cheese-app---automation
https://github.com/dlops-io/cheese-app-v4#cheese-app---automation
https://github.com/dlops-io/cheese-app-v4/actions
https://github.com/dlops-io/cheese-app-v4/actions


Review 
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Lecture 2-4: Environments vs Virtualization vs Containerization
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Lecture 2-4: Environments vs Virtualization vs Containerization
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Lecture 5: Docker Workflows  
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Lecture 6: Data Labeling and Data Versioning
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Lecture 7: Instruction based GPT => ChatGPT 
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We will break it down into 3 steps:

Supervised fine tuning model

Training a reward model

Fine-tuning the model with 
reinforcement learning



Lecture 8-9: RAGs
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Lecture 9-10:  Fine Tuning LLMs  (LoRA, qLoRA)
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Notice how the reparameterization (LoRA) runs parallel to the 
original model. 



Lecture 11:  Distillation 



Lecture 12-13:  Weight and Biases/VertexAI serveless training 
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Notebook

def get_dataset():

... 

def get_model_1():

... 

def get_model_2():

... 

# Data

train_data, val_data = 

get_dataset(...)

# Model

model_1 = 

build_model_1(...)

# Train

training_results = 

model_1.fit(...)

Python File
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... 

def get_model_1():

... 

def get_model_2():

... 

# Data

train_data, val_data = 

get_dataset(...)

# Model

model = ... 

# Train

training_results = 

model.fit(...)
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Lecture 15: Model Deployment with VertexAI   



Lecture 16: CI
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Lecture 17-18: Frontend, Fast API 



Lecture 19: Ansible



THANK YOU
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