
Pavlos Protopapas
SEAS/ Harvard

AC215

Lecture 21: Operations - Automation -
Review

1

Outline

1. Motivation
2. Automation

2

Outline

1. Motivation
2. Automation

3

Automation

We want to automate the following operations:

• Running data pipeline jobs

• Model training & model deployment

• Frontend deployment

• Backend deployment

• Building & Pushing Docker containers

4

CI / CD

5

Build TestCodebase Deploy

Developers

Monitor

Commits

Notifications

Continuous Integration (CI)

6

Continuous Integration (CI) automates a series of scripts to run
whenever changes are pushed, in order to:

• Continuously integrate changes into the production branch
• Run automated tests
• Enforce coding standards
• Perform static code analysis

Note: Coding standards are about style and consistency.
Static code analysis is about identifying potential defects and vulnerabilities.

Continuous Integration (CI)

7

Continuous Integration (CI) allows multiple developers to contribute
to a shared repository by automating quality checks to ensure the
code remains functional.

This is achieved through:

• Running automated tests to catch bugs early
• Enforcing coding standards to maintain consistency
• Performing static code analysis

Note: Coding standards are about style and consistency.
Static code analysis is about identifying potential defects and vulnerabilities without
executing the code.

Continuous Deployment / Delivery (CD)

Continuous Delivery (CD): extension of CI to ensure software can be
reliably released at any time.

8

Continuous Deployment (CD): Is to take automation further by
deploying code changes to production automatically, as soon as the new
features are integrated into the main codebase.

Note: Delivery ensures changes are always ready to be deployed, but keeping a person in the loop. Deployment
ensures changes are automatically passed into production.

CI in AI/ML

Regularly integrates ML code, data, and models into a shared repository while ensuring
consistency through automated checks.

Automatically tests these integrations to ensure consistency.

Enables quick detection of issues in:

• Data quality
• Code correctness
• Model performance

Challenges in AI/ML CI

Balancing frequent integrations with:

• High computational demands of training models.
• Long-running tests for large datasets and complex pipelines.

Ensuring compatibility between evolving data, features, and model versions.
9

CI in AI/ML

Regularly integrates ML code, data, and models into a shared repository while ensuring
consistency through automated checks.

Enables quick detection of issues related to:

• Data quality
• Code correctness
• Model performance

Challenges in AI/ML CI

Balancing frequent integrations with:

• High computational demands of training models.
• Long-running tests for large datasets and complex pipelines.

Ensuring compatibility between evolving data, features, and model versions.

10

CD in AI/ML

Automates the release of ML models, data, and pipelines to production environments,
ensuring that updates are deployed as soon as possible, maintaining reliability after
passing all validation steps.

Benefits:

• All the CI benefits
• Performance validation: Ensures metrics are within tolerance
• Scalability: Leverages cloud infrastructure

Challenges:

• Data drift
• Validation of complex models such as LLMs
• Cost

11

CI/CD Providers and Tools

TeamCity Github GitLab Jenkins CircleCI TravisCI

Some of the common CI CD provider and tools:

12

How to Implement CI/CD

We already have a deployment container that can:

• Build Docker images.
• Run Vertex AI pipeline jobs.
• Deploy app to K8s cluster.

13

How to Implement CD

14

We can automate using GitHub Actions by:

• Monitoring code commits.
• Build & run deployment container.
• Invoke CLI in deployment container to:

– Build & push docker images for release
– Run Vertex AI jobs using new newly build images
– Deploy newly build images of app to K8s cluster

GitHub Actions

Cheese App: CI CD

Data Collector

Data Processor Model Training

Model Deploy

Backend APIFrontend

GitHub

Code Branches Actions

Google Cloud Platform

Storage Vertex AI Kubernetes

Dev Team
(Commits)

(Commits)

BuildDeploy

Users

Tutorial: Continuous Integration, Continuous Deployment

16

Steps to apply CI / CD on the cheese app components:
● Create a Github / Workflow file defining deployment steps

https://github.com/dlops-io/cheese-app-v4/tree/main/.github/workflows
● Commit your code using /deploy-app to the commit message

Basic format

git commit -m "your message /deploy-app"

For detailed instructions, please refer to the following link
■ Cheese App CICD.

(https://github.com/dlops-io/cheese-app-v4#cheese-app---automation)
■ Cheese App - GitHub Actions.

(https://github.com/dlops-io/cheese-app-v4/actions)

https://github.com/dlops-io/cheese-app-v4/tree/main/.github/workflows
https://github.com/dlops-io/cheese-app-v4#cheese-app---automation
https://github.com/dlops-io/cheese-app-v4#cheese-app---automation
https://github.com/dlops-io/cheese-app-v4/actions
https://github.com/dlops-io/cheese-app-v4/actions

Review

17

Lecture 2-4: Environments vs Virtualization vs Containerization

18

OS

Bins/lib

App2

Infrastructure

Hypervisor

Virtualization

OS OS

Bins/lib Bins/lib

App1 App3

Operating System

VM VM VM

Infrastructure

Docker

Containerization

Operating System

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Infrastructure

Python

Virtual Environments

Operating System

Libs

App1

Venv

Libs

App2

Venv

Libs

App3

Venv

Lecture 2-4: Environments vs Virtualization vs Containerization

19

Lecture 5: Docker Workflows

20

Lecture 6: Data Labeling and Data Versioning

21

Lecture 7: Instruction based GPT => ChatGPT

22

We will break it down into 3 steps:

Supervised fine tuning model

Training a reward model

Fine-tuning the model with
reinforcement learning

Lecture 8-9: RAGs

23
23

Knowledge Base

User

Chunking
Documents

Embedding
Model

User Query

Document
Embedding

Query and
embedded
Query

Vector Database

Prompt + query
+ context

LLM

LLM Response

Indexing

Retrieval

Augmentation
& Generation

1 2

3 4 5

6 23

Lecture 9-10: Fine Tuning LLMs (LoRA, qLoRA)

24 24

Pretrained
Weights

Notice how the reparameterization (LoRA) runs parallel to the
original model.

Lecture 11: Distillation

Lecture 12-13: Weight and Biases/VertexAI serveless training

26

Notebook

def get_dataset():

...

def get_model_1():

...

def get_model_2():

...

Data

train_data, val_data =

get_dataset(...)

Model

model_1 =

build_model_1(...)

Train

training_results =

model_1.fit(...)

Python File

def get_dataset():

...

def get_model_1():

...

def get_model_2():

...

Data

train_data, val_data =

get_dataset(...)

Model

model = ...

Train

training_results =

model.fit(...)

Packaged
Python files

GCP

GCS Bucket

Vertex AI

Model Trainer CLI
 Container

2 Package & Upload to GCP

3 Create & Run Training Jobs

Job

CPU, RAM, GPU

Container

Job

CPU, RAM, GPU

Container

Job

CPU, RAM

Container

Lecture 15: Model Deployment with VertexAI

Lecture 16: CI

Build ReleaseTestCodebase Deploy

Developers

Monitor

Commit
s

Notifications

Lecture 17-18: Frontend, Fast API

Lecture 19: Ansible

THANK YOU

31

