Lecture 21: Operations - Automation -
Review

AC215

Pavlos Protopapas
SEAS/ Harvard

Outline

1. Motivation
2. Automation

Outline

1. Motivation
2. Automation

Automation

We want to automate the following operations:
* Running data pipeline jobs
* Model training & model deployment
* Frontend deployment
* Backend deployment

 Building & Pushing Docker containers

Cl/CD

|
| |
1 |
—+P | Deploy — Monitor :
o .
|

Commits

Developers

Notifications

Continuous Integration (CI)

Continuous Integration (Cl) automates a series of scripts to run
whenever changes are pushed, in order to:

« Continuously integrate changes into the production branch
* Run automated tests

« Enforce coding standards

» Perform static code analysis

Note: Coding standards are about style and consistency.
Static code analysis is about identifying potential defects and vulnerabllities.

Continuous Integration (CI)

Continuous Integration (CI) allows multiple developers to contribute
to a shared repository by automating quality checks to ensure the
code remains functional.

This is achieved through:

* Running automated tests to catch bugs early
« Enforcing coding standards to maintain consistency
* Performing static code analysis

Note: Coding standards are about style and consistency.

Static code analysis is about identifying potential defects and vulnerabilities without
executing the code.

Continuous Deployment (CD)

Continuous Deployment (CD): Is to take automation further by
deploying code changes to production automatically, as soon as the new
features are integrated into the main codebase.

Note: Delivery ensures changes are always ready to be deployed, but keeping a person in the loop. Deployment
ensures changes are automatically passed into production.

Cl in AI/ML

Regularly integrates ML code, data, and models into a shared repository while ensuring
consistency through automated checks.

Automatically tests these integrations to ensure consistency.
Enables quick detection of issues in:

« Data quality
« Code correctness
* Model performance

Challenges in AI/ML CI
Balancing frequent integrations with:

« High computational demands of training models.
« Long-running tests for large datasets and complex pipelines.

Ensuring compatibility between evolving data, features, and model versions.

Cl in AI/ML

Regularly integrates ML code, data, and models into a shared repository while ensuring
consistency through automated checks.

Enables quick detection of issues related to:

« Data quality
« Code correctness
* Model performance

Challenges in Al/ML CI
Balancing frequent integrations with:

* High computational demands of training models.
« Long-running tests for large datasets and complex pipelines.

Ensuring compatibility between evolving data, features, and model versions.

CD in Al/ML

Automates the release of ML models, data, and pipelines to production environments,

ensuring that updates are deployed as soon as possible, maintaining reliability after
passing all validation steps.

Benefits:

« All the Cl benefits

 Performance validation: Ensures metrics are within tolerance
« Scalability: Leverages cloud infrastructure

Challenges:

 Data drift

« Validation of complex models such as LLMs
« Cost

11

CI/CD Providers and Tools

Some of the common CI CD provider and tools:

TeamCity Github GitLab Jenkins

CircleCl

TravisCI

12

How to Implement CI/CD

We already have a deployment container that can:

* Build Docker images.
* Run Vertex Al pipeline jobs.
* Deploy app to K8s cluster.

13

How to Implement CD

We can automate using GitHub Actions by:

* Monitoring code commits.

* Build & run deployment container.

* Invoke CLI in deployment container to:
— Build & push docker images for release
— Run Vertex Al jobs using new newly build images
— Deploy newly build images of app to K8s cluster

14

Cheese App: CI CD

o

O O
Data Processor Model Tralnlng

Users ‘ :‘;

Dev Team
Data Collector Model Deploy
‘ ‘ * (Commits)
|
. /
- <
Frontend Backend API
|
3 Google Cloud Platform) GitHub * i i (Commits)

GitHub Actions

ol % — v /> O
Bl KN 28

Storage Vertex Al Kubernetes | = oo Code Branches Actions

Tutorial: Continuous Integration, Continuous Deployment

Steps to apply Cl/ CD on the cheese app components:
e Create a Github / Workflow file defining deployment steps
https://qithub.com/dlops-io/cheese-app-v4/tree/main/.github/workflows

e Commit your code using /deploy-app to the commit message
Basic format

git commit -m "your message /deploy-app”

For detailed instructions, please refer to the following link

m Cheese App CICD.
(https://github.com/dlops-io/cheese-app-v4#tcheese-app---automatic

m Cheese App - GitHub Actions.
(https://github.com/dlops-io/cheese-app-v4/actions)

https://github.com/dlops-io/cheese-app-v4/tree/main/.github/workflows
https://github.com/dlops-io/cheese-app-v4#cheese-app---automation
https://github.com/dlops-io/cheese-app-v4#cheese-app---automation
https://github.com/dlops-io/cheese-app-v4/actions
https://github.com/dlops-io/cheese-app-v4/actions

Review

Lecture 2-4: Environments vs Virtualization vs Containerization

Virtual Environments Virtualization Containerization

18

Lecture 2-4: Environments vs Virtualization vs Containerization

()

1

[—> Synthesise Audio
2 3 .
DID
Q oy Low? : =5 RO X
Record Audio Transcribe Audio

S ()
Generate Text

Translate Text Synthesise Audio
GCS Bucket I I

-
b

Audio + Text Files

19

Lecture 5: Docker Workflows

Workflow with Docker: Scenario 2 (later stages of development)

Windows

Mac

“Senior” Developer

oOwe
'.‘ \

Source Control

» Developers submit a pull request to
GitHub for their code.

* In some cases, they may also include
changes to the Dockerfile or Pipfiles in the
pull request.

The senior developer reviews
and merges all pull requests,
then consolidates the updates
into a new Dockerfile and
Pipfiles and builds new images
which are pushed to DockerHub.

........................

14

20

Lecture 6: Data Labeling and Data Versioning

4
Unlabeled Labeled

e How do we do this? T E e | e i

m parmigiano ~» [
______________________ gruy =
1
GCS Bucket: cheese-app-data-demo
. cheeses_unlabeled cheeses_labeled
2
Data Labeling 3
£ ontanex Label Studio
&
282

21

Lecture 7: Instruction based GPT => ChatGPT

We will break it down into 3 steps:

Supervised fine tuning model

'\

ﬂ

Training a reward model

\

—
Fine-tuning the model with

reinforcement learning

22

Lecture 8-9: RAGs

Indexin
Documents Document dexing
Embedding

— Chunking _— >©

[
|
|
|
|
I Knowledge Base
I

Augmentation
& Generation

Embedding

Model Vector Datapase

S ” > - LLM
m User Query Query and Prompt + query
embedded \ / + context
User ‘ Ouory
Retrieval

LLM Response

é 23 %3

Lecture 9-10: Fine Tuning LLMs (LoRA, gLoRA)

h

Pretrained m
T

Weights

W e]Rdxd

Notice how the reparameterization (LoRA) runs parallel to the
original model.

24 24

Lecture 11: Distillation

g

Lecture 12-13: Weight and Biases/VertexAl serveless training

2) Package & Upload to GCP “Y acp

CO Notebook) Python File Packaged
Python files

TAR.GZ
S

T ? :/ Vertex Al

AAAAA

Train

xxxxxxxxxxxxxxxxx

Job Job Job
Container Container Container

Model Trainer CLI i
Container Ll

CPU, RAM, GPU CPU, RAM, GPU CPU, RAM

3) Create & Run Training Jobs

Lecture 15: Model Deployment with VertexAl

1 Get Saved Model (2) Update Model Signature 3 GCP

w | ; ® | (s Uploadto GCS
Saved Model Saved Model - L o
Update Signatures 3 i 4 w

:/ Vertex Al

l

7/_4 Upload to Model Registry Model Registry Model Endpoints
Model Deployment > 0 :
CLI Container 5 £ < : : >

__

's) Deploy Model Endpoint

Lecture 16: ClI

O
7
©

o
@

o
o}

@)

Developers

Notifications

Lecture 17-18: Frontend, Fast API

3 —

APl exposes python functions 5 . . Ul on Browser
REST / JSON T HTML
>_ — API Service Frontend App I, >—
Taiiviiial Container Container Terminal
Mount T Mount T Mount
2 :—(_l; _S:)l:rc_:e_c_o:i; _: (1 :—<_/; _S:)l:r;e—c_o:le_ —:
|
Mount other folders Mount Source Code into Container
Persistent Folder Secrets
5 Edit Code from VS Code

Lecture 19: Ansible

Frontend Service
NodePort:3000

API Service S | Vector
NodePort:9000 ferotEh R0y

THANK YOU

