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Automation

We want to automate the following operations:
* Running data pipeline jobs
* Model training & model deployment
* Frontend deployment
* Backend deployment

 Building & Pushing Docker containers
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Continuous Integration (CI)

Continuous Integration (Cl) automates a series of scripts to run
whenever changes are pushed, in order to:

« Continuously integrate changes into the production branch
* Run automated tests

« Enforce coding standards

» Perform static code analysis

Note: Coding standards are about style and consistency.
Static code analysis is about identifying potential defects and vulnerabllities.



Continuous Integration (CI)

Continuous Integration (CI) allows multiple developers to contribute
to a shared repository by automating quality checks to ensure the
code remains functional.

This is achieved through:

* Running automated tests to catch bugs early
« Enforcing coding standards to maintain consistency
* Performing static code analysis

Note: Coding standards are about style and consistency.

Static code analysis is about identifying potential defects and vulnerabilities without
executing the code.



Continuous Deployment (CD)

Continuous Deployment (CD): Is to take automation further by
deploying code changes to production automatically, as soon as the new
features are integrated into the main codebase.

Note: Delivery ensures changes are always ready to be deployed, but keeping a person in the loop. Deployment
ensures changes are automatically passed into production.



Cl in AI/ML

Regularly integrates ML code, data, and models into a shared repository while ensuring
consistency through automated checks.

Automatically tests these integrations to ensure consistency.
Enables quick detection of issues in:

« Data quality
« Code correctness
* Model performance

Challenges in AI/ML CI
Balancing frequent integrations with:

« High computational demands of training models.
« Long-running tests for large datasets and complex pipelines.

Ensuring compatibility between evolving data, features, and model versions.



Cl in AI/ML

Regularly integrates ML code, data, and models into a shared repository while ensuring
consistency through automated checks.

Enables quick detection of issues related to:

« Data quality
« Code correctness
* Model performance

Challenges in Al/ML CI
Balancing frequent integrations with:

* High computational demands of training models.
« Long-running tests for large datasets and complex pipelines.

Ensuring compatibility between evolving data, features, and model versions.



CD in Al/ML

Automates the release of ML models, data, and pipelines to production environments,

ensuring that updates are deployed as soon as possible, maintaining reliability after
passing all validation steps.

Benefits:

« All the Cl benefits

 Performance validation: Ensures metrics are within tolerance
« Scalability: Leverages cloud infrastructure

Challenges:

 Data drift

« Validation of complex models such as LLMs
« Cost
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CI/CD Providers and Tools

Some of the common CI CD provider and tools:

TeamCity Github GitLab Jenkins

CircleCl

TravisCI
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How to Implement CI/CD

We already have a deployment container that can:

* Build Docker images.
* Run Vertex Al pipeline jobs.
* Deploy app to K8s cluster.
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How to Implement CD

We can automate using GitHub Actions by:

* Monitoring code commits.

* Build & run deployment container.

* Invoke CLI in deployment container to:
— Build & push docker images for release
— Run Vertex Al jobs using new newly build images
— Deploy newly build images of app to K8s cluster
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Cheese App: CI CD
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Tutorial: Continuous Integration, Continuous Deployment

Steps to apply Cl/ CD on the cheese app components:
e Create a Github / Workflow file defining deployment steps
https://qithub.com/dlops-io/cheese-app-v4/tree/main/.github/workflows

e Commit your code using /deploy-app to the commit message
# Basic format

git commit -m "your message /deploy-app”

For detailed instructions, please refer to the following link

m Cheese App CICD.
(https://github.com/dlops-io/cheese-app-v4#tcheese-app---automatic

m Cheese App - GitHub Actions.
(https://github.com/dlops-io/cheese-app-v4/actions )



https://github.com/dlops-io/cheese-app-v4/tree/main/.github/workflows
https://github.com/dlops-io/cheese-app-v4#cheese-app---automation
https://github.com/dlops-io/cheese-app-v4#cheese-app---automation
https://github.com/dlops-io/cheese-app-v4/actions
https://github.com/dlops-io/cheese-app-v4/actions
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Lecture 2-4: Environments vs Virtualization vs Containerization

Virtual Environments Virtualization Containerization
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Lecture 2-4: Environments vs Virtualization vs Containerization
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Lecture 5: Docker Workflows

Workflow with Docker: Scenario 2 (later stages of development)

Windows

Mac

“Senior” Developer
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Source Control

» Developers submit a pull request to
GitHub for their code.

* In some cases, they may also include
changes to the Dockerfile or Pipfiles in the
pull request.

The senior developer reviews
and merges all pull requests,
then consolidates the updates
into a new Dockerfile and
Pipfiles and builds new images
which are pushed to DockerHub.

........................
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Lecture 6: Data Labeling and Data Versioning
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Lecture 7: Instruction based GPT => ChatGPT

We will break it down into 3 steps:

Supervised fine tuning model

'\

ﬂ

Training a reward model
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Fine-tuning the model with

reinforcement learning
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Lecture 8-9: RAGs
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Lecture 9-10: Fine Tuning LLMs (LoRA, gLoRA)

h

Pretrained m
T

Weights

W e ]Rdxd

Notice how the reparameterization (LoRA) runs parallel to the
original model.

24 24



Lecture 11: Distillation
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Lecture 12-13: Weight and Biases/VertexAl serveless training
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Lecture 15: Model Deployment with VertexAl
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Lecture 16: ClI
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Lecture 17-18: Frontend, Fast API
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Lecture 19: Ansible
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