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Recap

Virtual Environment

Pros: remove complexity
Cons: does not isolate from OS

Virtual Machines

Pros: isolate OS guest from host
Cons: intensive use hardware

Containers

Pros: lightweight
Cons: issues with security, scalability, 

and control
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Motivation

Pavlos wants an app with 1 frontend & 2 backends

Frontend

API 1

API 2
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Motivation - 3 Containers in 1 VM

Virtual Machine

API Service 1

NGINX Container
HTTP 9000

Frontend

HTTP 3000

HTTP 80

API Service 2

HTTP 9001

Support builds and deploys the app with the following architecture
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Motivation - 3 Containers in 1 VM

Demo… [3 Containers in 1 VM] 
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http://demo-1-vm.dlops.io/?title=3%20Containers%20in%201%20VM&api1=http://demo-1-vm.dlops.io/api1&api2=http://demo-1-vm.dlops.io/api2


Motivation - 3 Containers in 1 VM

Container Crashes
Pavlos must contact support for resolution.

Support Actions:
Access the server via SSH.

• Perform the following fixes:
• Restart the container to reset memory.
• Relaunch a terminated container.
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Motivation - 3 Containers in 3 VM

Pavlos’ Request to Support

Can we deploy the app across multiple servers?

This way, if one server goes down, I’ll have a backup to rely on.”
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Motivation - 3 Containers in 3 VM

Support deploys the app on to 3 servers with backup apis

Virtual Machine

API Service 1

NGINX Container

HTTP 9000

API Service 1

HTTP 9001

Virtual Machine

HTTP 80

Frontend

Virtual Machine

API Service 2

NGINX Container

HTTP 9000

API Service 2

HTTP 9001
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Motivation - 3 Containers in 3 VM

Demo… [3 Containers in 3 VMs]
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http://demo-3-vms-1.dlops.io/?title=3%20Containers%20in%203%20VMs&api1=http://demo-3-vms-2.dlops.io/api1/v1&api2=http://demo-3-vms-3.dlops.io/api2/v1


Motivation - 3 Containers in 3 VM

Problems:
● When container crashes, Pavlos can switch to backup API manually

● Support SSHs into server and fix when available:

○ Memory reset with container restart

○ Startup a killed container
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Motivation - Kubernetes

Pavlos’ Question to Support
• Can we automate:

•Failovers

•Load balancing

•Scaling

•And other key processes?”

Kubernetes to the rescue...
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Kubernetes (K8s) to the Rescue

• K8s is an orchestration tool for managing distributed containers across 
a cluster of nodes (VMs). 

• The word Kubernetes comes from the ancient Greek word kubernḗtēs, 
which means helmsman or pilot. The name is a reference to the role of a 
helmsman, who steers a ship and maintains a steady course.

• Kubernetes was announced by Google on June 6, 2014. The project was 
conceived and created by Google employees Joe Beda, Brendan Burns, 
and Craig McLuckie.
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Kubernetes (K8s) to the Rescue

• Kubernetes (K8s) is made up of building blocks that help deploy and 
scale applications based on CPU, memory, or custom metrics.

• K8s itself follows a primary-replica architecture with components that 
govern an individual node and others part of the control plane

• Core concepts in Kubernetes include pods, services and deployments.

• K8s users define rules for how container management should occur, 
and then K8s handles the rest!
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Kubernetes to the Rescue

Support deploys the app on to 3 k8s clusters with 2 nodes each

Kubernetes Cluster

Node (VM)Node (VM)

Kubernetes Cluster

Node (VM)Node (VM)

Kubernetes Cluster

Node (VM)Node (VM)

Frontend API 1 API 2
Pods Pods
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Kubernetes to the Rescue

Demo… [Kubernetes Cluster]
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http://frontend.demo-k8s-lb.dlops.io/?title=Kubernetes%20Cluster&api1=http://api1.demo-k8s-lb.dlops.io&api2=http://api2.demo-k8s-lb.dlops.io


Kubernetes

Pavlos requests on automation:
• Failovers
• Load balancing
• Scaling 
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Container vs Kubernetes Deployment
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Why Kubernetes? 

23

• Automating and Management of Microservices
• Bridging Application Deployment & Deployment (Dev + Ops)
• Standardizing Cloud Deployments
•   Daily Management of Applications



How do we build with Kubernetes?

Remember the Cheese App Architecture:

API Service 
Container

NGINX Container
HTTP 9000

Vector DB 
Container

TCP/IP 5432 Cheese App 
Container

HTTP 3000

Compute Instance (Virtual Machine)

Local Computer

IDE/ CLI

Containers

CLI:
gcloud
docker
ansible
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Kubernetes Cluster

K8s Components & Architecture
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Kubernetes Cluster

K8s Components & Architecture
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Kubernetes API server

Scheduler Controllers

etcd

Worker Node 1

Kube Proxy

Kubelet

Container Runtime

Pod 1 Pod 2

container

container

container

container

container

container

.

.

.

.

.

.

.

.

.

Worker Node 2

Worker Node N

Cloud 
Provider API



Kubernetes Cluster

K8s Components & Architecture
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Kubernetes API server

Scheduler Controllers
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Cloud 
Provider APIThe control plane has:

• API server contains various 
methods to directly access the 
Kubernetes

• etcd works as backend for service 
discovery that stores the cluster’s 
state and its configuration

• Scheduler assigns applications to 
each worker node

• Controller manager:
• Keeps track of worker nodes

• Handles node failures and 
replicates if needed

• Provide endpoints to access the 
application from the outside world

• Communicates with cloud provide 
regarding resources such as nodes 
and IP addresses



Kubernetes Cluster

K8s Components & Architecture

Local Computer
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Cloud 
Provider APIThe worker node consists of:

● Kubelet talks to the API server 
and manages containers on its node

● Kube Proxy load-balances 
network traffic between application 
components and the outside world

● Container Runtime: In our 
case this will be Docker. The 
runtime host Pods which run 
container instances



K8s Architecture



K8s Architecture – Control Pane

API Server – The core 
component server that exposes the 
Kubernetes HTTP API

Scheduler – Looks for Pods not 
yet bound to a node, and assigns 
each Pod to a suitable node.

Etcd – Consistent and 
highly-available key value store for 
all API server data



K8s Architecture – Node

Kubelet – Ensures that Pods are 
running, including their containers.

kube-proxy – Maintains network 
rules on nodes to implement 
Services.

Container runtime – Software 
responsible for running containers.  
e.g. Docker 



K8s Architecture – Pod

Pods are the smallest deployable 
units of computing that you can 
create and manage in Kubernetes.

A Pod is a group of containers that 
share resources like storage and 
networking. It's like a virtual host for 
one or more closely related 
containers that work together.

Pods are ephemeral.  Whenever 
they die if needed they’re replaced 
by a new pod.



K8s Architecture – Pod

K8s Pods come in two main use 
cases. 

• Single-container Pods: Most 
common use case. A Pod wraps 
around a single container, 
simplifying management.

• Multi-container Pods: 
Advanced use case. Multiple 
tightly coupled containers share 
resources and form a single unit, 
ideal for specific applications.



K8s Architecture – Deployments

A Deployment manages multiple 
Pods to run a stateless application.

Key features:
● Declarative updates for Pods and 

ReplicaSets
● Automatically adjusts actual state 

to match desired state
● Supports creating new 

ReplicaSets or adopting existing 
resources



K8s Architecture – Deployments

The following are typical use cases 
for Deployments:

• Create a Deployment, which 
automatically rolls out a 
ReplicaSet and creates Pods.

• Create a new ReplicaSet and 
manage the transition

• Check rollout status for success.
• Roll back to a previous revision if 

unstable.
• Scale up the Deployment to 

handle increased load

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-deployment
  labels:

app: nginx
spec:
  replicas: 3
  selector:

matchLabels:
  app: nginx
  template:

metadata:
  labels:
    app: nginx

spec:
  containers:
  - name: nginx
    image: nginx:1.14.2
    ports:
    - containerPort: 80



K8s Architecture – ReplicaSet

A ReplicaSet's purpose is to 
maintain a stable set of replica Pods 
running at any given time. 

Usually, you define a Deployment 
and let that Deployment manage 
ReplicaSets automatically.



K8s Architecture – ReplicaSet

A ReplicaSet's is often used to 
guarantee the availability of a 
specified number of identical Pods.

a Deployment is a higher-level 
concept that manages ReplicaSets 
and provides declarative updates to 
Pods along with a lot of other useful 
features. Therefore, we recommend 
using Deployments instead of directly 
using ReplicaSets

apiVersion: apps/v1
kind: ReplicaSet
metadata:
  name: frontend
  labels:

app: guestbook
tier: frontend

spec:
  # modify replicas according to your 
case
  replicas: 3
  selector:

matchLabels:
  tier: frontend
  template:

metadata:
  labels:
    tier: frontend

spec:
  containers:
  - name: php-redis
    image: 
us-docker.pkg.dev/google-samples/
containers/gke/gb-frontend:v5



K8s Architecture – Networking

A pod has its own private network 
namespace which is shared by all of the 
containers within the pod

Each pod in a cluster gets its own unique 
cluster-wide IP address.

All pods can communicate with all other 
pods, whether they are on the same 
node or on different nodes.

Agents on a node (such as system 
daemons, or kubelet) can communicate 
with all pods on that node.



K8s Architecture – Services

Pods are ephemeral.  When they 
terminate, so does their ip address.

Groups of pods can be given a 
permanent ip address called a Service

By default clients send requests to a 
stable internal IP address (ClusterIP)

Clients can also send requests to the IP 
address of a node and a nodePort 
specified by the Service

apiVersion: v1
kind: Service
metadata:
  name: my-np-service
spec:
  selector:
    app: products
    department: sales
  type: NodePort
  ports:
  - protocol: TCP
    port: 80
    targetPort: 8080

apiVersion: v1
kind: Service
metadata:
  name: my-cip-service
spec:
  selector:
    app: metrics
    department: sales
  type: ClusterIP
  ports:
  - protocol: TCP
    port: 80
    targetPort: 8080



K8s Architecture – Ingress

An Ingress exposes HTTP and HTTPS 
routes from outside the cluster to 
services within the cluster. 

An Ingress may be configured to give 
Services externally-reachable URLs, 
load balance traffic, terminate TLS, and 
offer name-based virtual hosting.

An Ingress doesn’t expose arbitrary 
ports or protocols other than HTTP and 
HTTPS 



K8s Architecture – ConfMap

A ConfigMap is used to store 
non-confidential data in key-value pairs. 
Pods can consume ConfigMaps as 
environment variables, command-line 
arguments, or as configuration files in a 
volume.

A ConfigMap allows you to decouple 
environment-specific configuration from 
your  container images, so that your 
applications are easily portable.

apiVersion: v1

kind: ConfigMap

metadata:

  name: database-config

data:

  database_URL: 
"192.168.100.1/database"

  database_port: "3306"



K8s Architecture – Secrets

A Secret is an object that contains a 
small amount of sensitive data such as a 
password, a token, or a key. Such 
information might otherwise be put in a 
Pod specification or in a container 
image. Using a Secret means that you 
don't need to include confidential data in 
your application code/container.

Secrets are similar to ConfigMaps but 
are specifically intended to hold 
confidential data.

apiVersion: v1
kind: Secret
metadata:
  name: secret-sa-sample
  annotations:

kubernetes.io/service-account.name: 
"sa-name"
type: kubernetes.io/service-account-token
data:
  extra: YmFyCg==

Kubernetes Secrets are, by default, stored unencrypted in the API server's underlying data store (etcd). Anyone with API 
access can retrieve or modify a Secret.  In order to safely use Secrets, take at least the following steps: (1) Enable Encryption 
at Rest for Secrets. (2) Consider using external Secret store providers.



K8s Architecture – Volumes

Container files are temporary and lost 
when:

● Container crashes
● Container stops

This poses problems for applications 
that:

● Need persistent data
● Require consistent state

Solution: Use K8s Volumes, to retain 
data beyond container lifetimes.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: foo-pv

spec:

 storageClassName: ""

 claimRef:

   name: foo-pvc

   namespace: foo

 ...



kubectl

Kubernetes provides a command line tool  kubectl for 
communicating with a Kubernetes cluster's control plane, using 
the Kubernetes API.

Use the following syntax to run kubectl commands from your 
terminal window:

kubectl [command] [TYPE] [NAME] [flags]



kubectl

# Create a service using the definition in example-service.yaml.
kubectl apply -f example-service.yaml

# Create a replication controller using the definition in 
example-controller.yaml.
kubectl apply -f example-controller.yaml

# Create the objects that are defined in any .yaml, .yml, or .json 
file within the <directory> directory.
kubectl apply -f <directory>



Kubernetes Cluster

How do we build with Kubernetes?

Local Computer

IDE/ CLI

Containers

CLI:
gcloud
docker

kubectl
ansible

Control Plane Worker Node 1

Docker

Worker Node 2

Docker

Worker Node 2

Docker
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Kubernetes Summary
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• Abstracting Infrastructure
• Standardize Application Deployment
• Deploy Applications Declaratively
•   Daily Management of Applications
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Create Kubernetes Cluster

To create a Kubernetes cluster
• You must first install gcloud which is the GCPs command-line 

tool
• You create and delete clusters using gcloud 

Example:

gcloud container clusters create test-cluster --num-nodes 2 --zone us-east1-c

Create a 2 node Kubernetes Cluster

Creating cluster test-cluster in us-east1-c...⠶
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Create Kubernetes Cluster

gcloud container clusters create test-cluster --num-nodes 2 --zone us-east1-c

Create a 2 node Kubernetes Cluster

To inspect the contents of your cluster, go to: https://console.cloud.google.com/kubernetes/...
kubeconfig entry generated for test-cluster.
NAME          LOCATION    MASTER_VERSION  MASTER_IP      MACHINE_TYPE  NODE_VERSION    NUM_NODES  STATUS
test-cluster  us-east1-c  1.20.9-gke.701  34.73.126.138  e2-medium     1.20.9-gke.701  2          RUNNING
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Deploying to Kubernetes Cluster

To create a Kubernetes cluster and deploy app to it.
• You must first install kubectl which is the Kubernetes 

command-line tool
• You can manage all resources in Kubernetes using kubectl 

Examples:

kubectl version --client

Get version of client

kubectl version

Get version of server

Client Version: version.Info{Major:"1", Minor:"22", GitVersion:"v1.22.1", 
GitCommit:"632ed300f2c34f6d6d15ca4cef3d3c7073412212", 
GitTreeState:"clean", BuildDate:"2021-08-19T15:45:37Z", 
GoVersion:"go1.16.7", Compiler:"gc", Platform:"linux/amd64"}

Client Version: version.Info{Major:"1", Minor:"22", GitVersion:"v1.22.1", 
GitCommit:"632ed300f2c34f6d6d15ca4cef3d3c7073412212", 
GitTreeState:"clean", BuildDate:"2021-08-19T15:45:37Z", 
GoVersion:"go1.16.7", Compiler:"gc", Platform:"linux/amd64"}
The connection to the server localhost:8080 was refused - did you 
specify the right host or port?
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Deploying to Kubernetes Cluster

Examples:

kubectl get all

Get Kubernetes Cluster Information

NAME                 TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
service/kubernetes   ClusterIP   10.3.240.1   <none>        443/TCP   48m

kubectl get componentstatuses

Get Kubernetes Component Status

NAME                 STATUS    MESSAGE             ERROR
scheduler            Healthy   ok                  
etcd-1               Healthy   {"health":"true"}   
controller-manager   Healthy   ok                  
etcd-0               Healthy   {"health":"true"}
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Deploying to Kubernetes Cluster

Examples:

kubectl get nodes

Get Kubernetes Cluster Nodes

NAME                                          STATUS   ROLES    AGE   VERSION
gke-test-cluster-default-pool-2e9eafc9-kj0s   Ready    <none>   51m   v1.20.9-gke.701
gke-test-cluster-default-pool-2e9eafc9-t4pw   Ready    <none>   51m   v1.20.9-gke.701

kubectl get pods

Get Kubernetes Pods

No resources found in default namespace.
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Deploying to Kubernetes Cluster

You can view Kubernetes cluster details directly from GCP
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Deploying to Kubernetes Cluster

kubectl apply -f deploy-k8s-tic-tac-toe.yml

Deploy App to Kubernetes

deployment.apps/web created
service/web created

Examples:

kubectl get services

Get Services

NAME         TYPE           CLUSTER-IP    EXTERNAL-IP      PORT(S)        AGE
kubernetes   ClusterIP      10.3.240.1    <none>           443/TCP        29m
web          LoadBalancer   10.3.242.77   34.139.195.206   80:32088/TCP   3m51s
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Deploying to Kubernetes Cluster

---
apiVersion: apps/v1
kind: Deployment
spec:
  replicas: 2
  containers:
   - image: dlops/tic-tac-toe
     imagePullPolicy: IfNotPresent
     name: web
     ports:
      - containerPort: 8080
        protocol: TCP

---
apiVersion: v1
kind: Service
spec:
 ports:
 - port: 80
   protocol: TCP
   targetPort: 8080
 type: LoadBalancer

Deployment YAML Service YAML

Service: 
● Decares how traffic is routed 

to a pod or a multiple 
replicas. 

● Service allows pods to die
Deployment: 
● Decares what is in a pod and how many 

replicas
● Is in charge of keeping the pod running
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Deleting a Kubernetes Cluster

Example:

gcloud container clusters delete test-cluster --zone us-east1-c

Delete Kubernetes Cluster called test-cluster

The following clusters will be deleted.
 - [test-cluster] in [us-east1-c]

Do you want to continue (Y/n)?  Y

Deleting cluster test-cluster...done.                                                                                                     
Deleted [https://container.googleapis.com/v1/projects/.../zones/us-east1-c/clusters/test-cluster].
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Tutorial: Deploying a Kubernetes Cluster

58

Deploying a Kubernetes Cluster

Run an ansible playbook now for the cheese app. 

https://github.com/dlops-io/cheese-app-v3?tab=readme-ov-file#deployment-with-scaling-using-kubern
etes

https://github.com/dlops-io/cheese-app-v3?tab=readme-ov-file#deployment-with-scaling-using-kubernetes
https://github.com/dlops-io/cheese-app-v3?tab=readme-ov-file#deployment-with-scaling-using-kubernetes
https://github.com/dlops-io/cheese-app-v3?tab=readme-ov-file#deployment-with-scaling-using-kubernetes
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Advantages of using Kubernetes

60

• Self-Service Deployment of Applications
• Reduce Cost by better Infrastructure Utilization
• Automatically Adjusting to varying loads
• Running Applications Smoothly
•   Simplifying Application Development



THANK YOU


