
Pavlos Protopapas
SEAS/ Harvard

AC215

Lecture 20: Operations - Scaling

Outline

1. Recap
2. Motivation
3. Introduction to Kubernetes
4. Tutorial: Deploying a Kubernetes Cluster
5. Advantages of using Kubernetes

2

Recap

3

OS

Bins/lib

App2

Infrastructure

Hypervisor

Virtualization

OS OS

Bins/lib Bins/lib

App1 App3

Operating System

VM VM VM

Infrastructure

Docker

Containerization

Operating System

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Infrastructure

Python

Virtual Environments

Operating System

Libs

App1

Venv

Libs

App2

Venv

Libs

App3

Venv

Recap

Virtual Environment

Pros: remove complexity
Cons: does not isolate from OS

Virtual Machines

Pros: isolate OS guest from host
Cons: intensive use hardware

Containers

Pros: lightweight
Cons: issues with security, scalability,

and control

4

Recap

Virtual Environment

Pros: remove complexity
Cons: does not isolate from OS

Virtual Machines

Pros: isolate OS guest from host
Cons: intensive use hardware

Containers

Pros: lightweight
Cons: issues with security, scalability,

and control

Monolithic

Microservices

How to manage
microservices?

Container

5

Outline

1. Recap
2. Motivation
3. Introduction to Kubernetes
4. Tutorial: Deploying a Kubernetes Cluster
5. Advantages of using Kubernetes

6

Motivation

Pavlos wants an app with 1 frontend & 2 backends

Frontend

API 1

API 2

7

Motivation - 3 Containers in 1 VM

Virtual Machine

API Service 1

NGINX Container
HTTP 9000

Frontend

HTTP 3000

HTTP 80

API Service 2

HTTP 9001

Support builds and deploys the app with the following architecture

8

Motivation - 3 Containers in 1 VM

Demo… [3 Containers in 1 VM]

9

http://demo-1-vm.dlops.io/?title=3%20Containers%20in%201%20VM&api1=http://demo-1-vm.dlops.io/api1&api2=http://demo-1-vm.dlops.io/api2

Motivation - 3 Containers in 1 VM

Container Crashes
Pavlos must contact support for resolution.

Support Actions:
Access the server via SSH.

• Perform the following fixes:
• Restart the container to reset memory.
• Relaunch a terminated container.

10

Motivation - 3 Containers in 3 VM

Pavlos’ Request to Support

Can we deploy the app across multiple servers?

This way, if one server goes down, I’ll have a backup to rely on.”

11

Motivation - 3 Containers in 3 VM

Support deploys the app on to 3 servers with backup apis

Virtual Machine

API Service 1

NGINX Container

HTTP 9000

API Service 1

HTTP 9001

Virtual Machine

HTTP 80

Frontend

Virtual Machine

API Service 2

NGINX Container

HTTP 9000

API Service 2

HTTP 9001

12

Motivation - 3 Containers in 3 VM

Demo… [3 Containers in 3 VMs]

13

http://demo-3-vms-1.dlops.io/?title=3%20Containers%20in%203%20VMs&api1=http://demo-3-vms-2.dlops.io/api1/v1&api2=http://demo-3-vms-3.dlops.io/api2/v1

Motivation - 3 Containers in 3 VM

Problems:
● When container crashes, Pavlos can switch to backup API manually

● Support SSHs into server and fix when available:

○ Memory reset with container restart

○ Startup a killed container

14

Motivation - Kubernetes

Pavlos’ Question to Support
• Can we automate:

•Failovers

•Load balancing

•Scaling

•And other key processes?”

Kubernetes to the rescue...

15

Kubernetes (K8s) to the Rescue

• K8s is an orchestration tool for managing distributed containers across
a cluster of nodes (VMs).

• The word Kubernetes comes from the ancient Greek word kubernḗtēs,
which means helmsman or pilot. The name is a reference to the role of a
helmsman, who steers a ship and maintains a steady course.

• Kubernetes was announced by Google on June 6, 2014. The project was
conceived and created by Google employees Joe Beda, Brendan Burns,
and Craig McLuckie.

16

Kubernetes (K8s) to the Rescue

• Kubernetes (K8s) is made up of building blocks that help deploy and
scale applications based on CPU, memory, or custom metrics.

• K8s itself follows a primary-replica architecture with components that
govern an individual node and others part of the control plane

• Core concepts in Kubernetes include pods, services and deployments.

• K8s users define rules for how container management should occur,
and then K8s handles the rest!

17

Kubernetes to the Rescue

Support deploys the app on to 3 k8s clusters with 2 nodes each

Kubernetes Cluster

Node (VM)Node (VM)

Kubernetes Cluster

Node (VM)Node (VM)

Kubernetes Cluster

Node (VM)Node (VM)

Frontend API 1 API 2
Pods Pods

18

Kubernetes to the Rescue

Demo… [Kubernetes Cluster]

19

http://frontend.demo-k8s-lb.dlops.io/?title=Kubernetes%20Cluster&api1=http://api1.demo-k8s-lb.dlops.io&api2=http://api2.demo-k8s-lb.dlops.io

Kubernetes

Pavlos requests on automation:
• Failovers
• Load balancing
• Scaling

20

Outline

1. Recap
2. Motivation
3. Introduction to Kubernetes
4. Tutorial: Deploying a Kubernetes Cluster
5. Advantages of using Kubernetes

21

Container vs Kubernetes Deployment

Node

Node (VM)

Docker

Container Deployment

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Kubernetes Deployment

Node

Docker Docker

Node

Docker

NodeNode

Docker Docker

Kubernetes Cluster

22

Why Kubernetes?

23

• Automating and Management of Microservices
• Bridging Application Deployment & Deployment (Dev + Ops)
• Standardizing Cloud Deployments
• Daily Management of Applications

How do we build with Kubernetes?

Remember the Cheese App Architecture:

API Service
Container

NGINX Container
HTTP 9000

Vector DB
Container

TCP/IP 5432 Cheese App
Container

HTTP 3000

Compute Instance (Virtual Machine)

Local Computer

IDE/ CLI

Containers

CLI:
gcloud
docker
ansible

24

Kubernetes Cluster

K8s Components & Architecture

Local Computer

IDE/ CLI

Containers

CLI:
gcloud
docker
kubectl
ansible

Control Plane Worker Plane

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Worker Node 2

Worker Node N

25

Worker Node 1Master Node 1

Master Node 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Master Node 3

Kubernetes Cluster

K8s Components & Architecture

Local Computer

IDE/ CLI

Containers

CLI:
gcloud
docker
kubectl
ansible

Control Plane Worker Plane

26

Kubernetes API server

Scheduler Controllers

etcd

Worker Node 1

Kube Proxy

Kubelet

Container Runtime

Pod 1 Pod 2

container

container

container

container

container

container

.

.

.

.

.

.

.

.

.

Worker Node 2

Worker Node N

Cloud
Provider API

Kubernetes Cluster

K8s Components & Architecture

Local Computer

IDE/ CLI

Containers

CLI:
gcloud
docker
kubectl
ansible

Control Plane Worker Plane

27

Kubernetes API server

Scheduler Controllers

etcd

Worker Node 1

Kube Proxy

Kubelet

Container Runtime

Pod 1 Pod 2

container

container

container

container

container

container

.

.

.

.

.

.

.

.

.

Worker Node 2

Worker Node N

Cloud
Provider APIThe control plane has:

• API server contains various
methods to directly access the
Kubernetes

• etcd works as backend for service
discovery that stores the cluster’s
state and its configuration

• Scheduler assigns applications to
each worker node

• Controller manager:
• Keeps track of worker nodes

• Handles node failures and
replicates if needed

• Provide endpoints to access the
application from the outside world

• Communicates with cloud provide
regarding resources such as nodes
and IP addresses

Kubernetes Cluster

K8s Components & Architecture

Local Computer

IDE/ CLI

Containers

CLI:
gcloud
docker
kubectl
ansible

Control Plane Worker Plane

28

Kubernetes API server

Scheduler Controllers

etcd

Worker Node 1

Kube Proxy

Kubelet

Container Runtime

Pod 1 Pod 2

container

container

container

container

container

container

.

.

.

.

.

.

.

.

.

Worker Node 2

Worker Node N

Cloud
Provider APIThe worker node consists of:

● Kubelet talks to the API server
and manages containers on its node

● Kube Proxy load-balances
network traffic between application
components and the outside world

● Container Runtime: In our
case this will be Docker. The
runtime host Pods which run
container instances

K8s Architecture

K8s Architecture – Control Pane

API Server – The core
component server that exposes the
Kubernetes HTTP API

Scheduler – Looks for Pods not
yet bound to a node, and assigns
each Pod to a suitable node.

Etcd – Consistent and
highly-available key value store for
all API server data

K8s Architecture – Node

Kubelet – Ensures that Pods are
running, including their containers.

kube-proxy – Maintains network
rules on nodes to implement
Services.

Container runtime – Software
responsible for running containers.
e.g. Docker

K8s Architecture – Pod

Pods are the smallest deployable
units of computing that you can
create and manage in Kubernetes.

A Pod is a group of containers that
share resources like storage and
networking. It's like a virtual host for
one or more closely related
containers that work together.

Pods are ephemeral. Whenever
they die if needed they’re replaced
by a new pod.

K8s Architecture – Pod

K8s Pods come in two main use
cases.

• Single-container Pods: Most
common use case. A Pod wraps
around a single container,
simplifying management.

• Multi-container Pods:
Advanced use case. Multiple
tightly coupled containers share
resources and form a single unit,
ideal for specific applications.

K8s Architecture – Deployments

A Deployment manages multiple
Pods to run a stateless application.

Key features:
● Declarative updates for Pods and

ReplicaSets
● Automatically adjusts actual state

to match desired state
● Supports creating new

ReplicaSets or adopting existing
resources

K8s Architecture – Deployments

The following are typical use cases
for Deployments:

• Create a Deployment, which
automatically rolls out a
ReplicaSet and creates Pods.

• Create a new ReplicaSet and
manage the transition

• Check rollout status for success.
• Roll back to a previous revision if

unstable.
• Scale up the Deployment to

handle increased load

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:

app: nginx
spec:
 replicas: 3
 selector:

matchLabels:
 app: nginx
 template:

metadata:
 labels:
 app: nginx

spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

K8s Architecture – ReplicaSet

A ReplicaSet's purpose is to
maintain a stable set of replica Pods
running at any given time.

Usually, you define a Deployment
and let that Deployment manage
ReplicaSets automatically.

K8s Architecture – ReplicaSet

A ReplicaSet's is often used to
guarantee the availability of a
specified number of identical Pods.

a Deployment is a higher-level
concept that manages ReplicaSets
and provides declarative updates to
Pods along with a lot of other useful
features. Therefore, we recommend
using Deployments instead of directly
using ReplicaSets

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: frontend
 labels:

app: guestbook
tier: frontend

spec:
 # modify replicas according to your
case
 replicas: 3
 selector:

matchLabels:
 tier: frontend
 template:

metadata:
 labels:
 tier: frontend

spec:
 containers:
 - name: php-redis
 image:
us-docker.pkg.dev/google-samples/
containers/gke/gb-frontend:v5

K8s Architecture – Networking

A pod has its own private network
namespace which is shared by all of the
containers within the pod

Each pod in a cluster gets its own unique
cluster-wide IP address.

All pods can communicate with all other
pods, whether they are on the same
node or on different nodes.

Agents on a node (such as system
daemons, or kubelet) can communicate
with all pods on that node.

K8s Architecture – Services

Pods are ephemeral. When they
terminate, so does their ip address.

Groups of pods can be given a
permanent ip address called a Service

By default clients send requests to a
stable internal IP address (ClusterIP)

Clients can also send requests to the IP
address of a node and a nodePort
specified by the Service

apiVersion: v1
kind: Service
metadata:
 name: my-np-service
spec:
 selector:
 app: products
 department: sales
 type: NodePort
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

apiVersion: v1
kind: Service
metadata:
 name: my-cip-service
spec:
 selector:
 app: metrics
 department: sales
 type: ClusterIP
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

K8s Architecture – Ingress

An Ingress exposes HTTP and HTTPS
routes from outside the cluster to
services within the cluster.

An Ingress may be configured to give
Services externally-reachable URLs,
load balance traffic, terminate TLS, and
offer name-based virtual hosting.

An Ingress doesn’t expose arbitrary
ports or protocols other than HTTP and
HTTPS

K8s Architecture – ConfMap

A ConfigMap is used to store
non-confidential data in key-value pairs.
Pods can consume ConfigMaps as
environment variables, command-line
arguments, or as configuration files in a
volume.

A ConfigMap allows you to decouple
environment-specific configuration from
your container images, so that your
applications are easily portable.

apiVersion: v1

kind: ConfigMap

metadata:

 name: database-config

data:

 database_URL:
"192.168.100.1/database"

 database_port: "3306"

K8s Architecture – Secrets

A Secret is an object that contains a
small amount of sensitive data such as a
password, a token, or a key. Such
information might otherwise be put in a
Pod specification or in a container
image. Using a Secret means that you
don't need to include confidential data in
your application code/container.

Secrets are similar to ConfigMaps but
are specifically intended to hold
confidential data.

apiVersion: v1
kind: Secret
metadata:
 name: secret-sa-sample
 annotations:

kubernetes.io/service-account.name:
"sa-name"
type: kubernetes.io/service-account-token
data:
 extra: YmFyCg==

Kubernetes Secrets are, by default, stored unencrypted in the API server's underlying data store (etcd). Anyone with API
access can retrieve or modify a Secret. In order to safely use Secrets, take at least the following steps: (1) Enable Encryption
at Rest for Secrets. (2) Consider using external Secret store providers.

K8s Architecture – Volumes

Container files are temporary and lost
when:

● Container crashes
● Container stops

This poses problems for applications
that:

● Need persistent data
● Require consistent state

Solution: Use K8s Volumes, to retain
data beyond container lifetimes.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: foo-pv

spec:

 storageClassName: ""

 claimRef:

 name: foo-pvc

 namespace: foo

 ...

kubectl

Kubernetes provides a command line tool kubectl for
communicating with a Kubernetes cluster's control plane, using
the Kubernetes API.

Use the following syntax to run kubectl commands from your
terminal window:

kubectl [command] [TYPE] [NAME] [flags]

kubectl

Create a service using the definition in example-service.yaml.
kubectl apply -f example-service.yaml

Create a replication controller using the definition in
example-controller.yaml.
kubectl apply -f example-controller.yaml

Create the objects that are defined in any .yaml, .yml, or .json
file within the <directory> directory.
kubectl apply -f <directory>

Kubernetes Cluster

How do we build with Kubernetes?

Local Computer

IDE/ CLI

Containers

CLI:
gcloud
docker

kubectl
ansible

Control Plane Worker Node 1

Docker

Worker Node 2

Docker

Worker Node 2

Docker

46

Kubernetes Summary

47

• Abstracting Infrastructure
• Standardize Application Deployment
• Deploy Applications Declaratively
• Daily Management of Applications

Outline

1. Recap
2. Motivation
3. Introduction to Kubernetes
4. Tutorial: Deploying a Kubernetes Cluster
5. Advantages of using Kubernetes

48

Create Kubernetes Cluster

To create a Kubernetes cluster
• You must first install gcloud which is the GCPs command-line

tool
• You create and delete clusters using gcloud

Example:

gcloud container clusters create test-cluster --num-nodes 2 --zone us-east1-c

Create a 2 node Kubernetes Cluster

Creating cluster test-cluster in us-east1-c...⠶

49

Create Kubernetes Cluster

gcloud container clusters create test-cluster --num-nodes 2 --zone us-east1-c

Create a 2 node Kubernetes Cluster

To inspect the contents of your cluster, go to: https://console.cloud.google.com/kubernetes/...
kubeconfig entry generated for test-cluster.
NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE NODE_VERSION NUM_NODES STATUS
test-cluster us-east1-c 1.20.9-gke.701 34.73.126.138 e2-medium 1.20.9-gke.701 2 RUNNING

50

Deploying to Kubernetes Cluster

To create a Kubernetes cluster and deploy app to it.
• You must first install kubectl which is the Kubernetes

command-line tool
• You can manage all resources in Kubernetes using kubectl

Examples:

kubectl version --client

Get version of client

kubectl version

Get version of server

Client Version: version.Info{Major:"1", Minor:"22", GitVersion:"v1.22.1",
GitCommit:"632ed300f2c34f6d6d15ca4cef3d3c7073412212",
GitTreeState:"clean", BuildDate:"2021-08-19T15:45:37Z",
GoVersion:"go1.16.7", Compiler:"gc", Platform:"linux/amd64"}

Client Version: version.Info{Major:"1", Minor:"22", GitVersion:"v1.22.1",
GitCommit:"632ed300f2c34f6d6d15ca4cef3d3c7073412212",
GitTreeState:"clean", BuildDate:"2021-08-19T15:45:37Z",
GoVersion:"go1.16.7", Compiler:"gc", Platform:"linux/amd64"}
The connection to the server localhost:8080 was refused - did you
specify the right host or port?

51

Deploying to Kubernetes Cluster

Examples:

kubectl get all

Get Kubernetes Cluster Information

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kubernetes ClusterIP 10.3.240.1 <none> 443/TCP 48m

kubectl get componentstatuses

Get Kubernetes Component Status

NAME STATUS MESSAGE ERROR
scheduler Healthy ok
etcd-1 Healthy {"health":"true"}
controller-manager Healthy ok
etcd-0 Healthy {"health":"true"}

52

Deploying to Kubernetes Cluster

Examples:

kubectl get nodes

Get Kubernetes Cluster Nodes

NAME STATUS ROLES AGE VERSION
gke-test-cluster-default-pool-2e9eafc9-kj0s Ready <none> 51m v1.20.9-gke.701
gke-test-cluster-default-pool-2e9eafc9-t4pw Ready <none> 51m v1.20.9-gke.701

kubectl get pods

Get Kubernetes Pods

No resources found in default namespace.

53

Deploying to Kubernetes Cluster

You can view Kubernetes cluster details directly from GCP

54

Deploying to Kubernetes Cluster

kubectl apply -f deploy-k8s-tic-tac-toe.yml

Deploy App to Kubernetes

deployment.apps/web created
service/web created

Examples:

kubectl get services

Get Services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.3.240.1 <none> 443/TCP 29m
web LoadBalancer 10.3.242.77 34.139.195.206 80:32088/TCP 3m51s

55

Deploying to Kubernetes Cluster

apiVersion: apps/v1
kind: Deployment
spec:
 replicas: 2
 containers:
 - image: dlops/tic-tac-toe
 imagePullPolicy: IfNotPresent
 name: web
 ports:
 - containerPort: 8080
 protocol: TCP

apiVersion: v1
kind: Service
spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 8080
 type: LoadBalancer

Deployment YAML Service YAML

Service:
● Decares how traffic is routed

to a pod or a multiple
replicas.

● Service allows pods to die
Deployment:
● Decares what is in a pod and how many

replicas
● Is in charge of keeping the pod running

56

Deleting a Kubernetes Cluster

Example:

gcloud container clusters delete test-cluster --zone us-east1-c

Delete Kubernetes Cluster called test-cluster

The following clusters will be deleted.
 - [test-cluster] in [us-east1-c]

Do you want to continue (Y/n)? Y

Deleting cluster test-cluster...done.
Deleted [https://container.googleapis.com/v1/projects/.../zones/us-east1-c/clusters/test-cluster].

57

Tutorial: Deploying a Kubernetes Cluster

58

Deploying a Kubernetes Cluster

Run an ansible playbook now for the cheese app.

https://github.com/dlops-io/cheese-app-v3?tab=readme-ov-file#deployment-with-scaling-using-kubern
etes

https://github.com/dlops-io/cheese-app-v3?tab=readme-ov-file#deployment-with-scaling-using-kubernetes
https://github.com/dlops-io/cheese-app-v3?tab=readme-ov-file#deployment-with-scaling-using-kubernetes
https://github.com/dlops-io/cheese-app-v3?tab=readme-ov-file#deployment-with-scaling-using-kubernetes

Outline

1. Recap
2. Motivation
3. Introduction to Kubernetes
4. Tutorial: Deploying a Kubernetes Cluster
5. Advantages of using Kubernetes

59

Advantages of using Kubernetes

60

• Self-Service Deployment of Applications
• Reduce Cost by better Infrastructure Utilization
• Automatically Adjusting to varying loads
• Running Applications Smoothly
• Simplifying Application Development

THANK YOU

