
Pavlos Protopapas
SEAS/ Harvard

AC215

Lecture 19: Deployment/Ansible



Announcements

• Showcase Info - Missing ~7 projects 

Form  https://forms.gle/CewUpMnmYq2BxupW6

• React Zoom Session - 
Friday 11/15 - 3:00 - 4:30 PM  (will be recorded)

2

https://forms.gle/CewUpMnmYq2BxupW6


Outline

1. Recap
2. Deployment

3



Outline

1. Recap
2. Deployment

4



Recap: Cheese App Status
POC Prototype MVP

Data Collection

Build Baseline Models

ML Workflow

Deployment, Scaling & Automation

Setup Experiment Tracking

Build Better Models

5

Design & Build Cheese App



Recap: APIs & Frontend App

• Everything we built is on our local computer

• We need to deploy this to a server so our users can access 

6



Outline

1. Recap
2. Deployment

7



GCP

Deployment: Goal

8

Local Computer

IDE/ CLI

Containers
API Service 
Container

NGINX ContainerHTTP 9000

GCS Bucket

Models

GCE Persistent Volume

Local Models, 
Experiments

NFS

Compute Instance (Virtual Machine)

Cheese App 
Container

HTTP 3000

HTTPS 443

HTTP 80

Vector DB 
Container

HTTP 8000



Tutorial: Deployment Steps (Manual)

Push to Docker Hub: Build and push Docker images for API service and Frontend 
to Docker Hub repository

Setup VM Environment: Create VM instance on GCP and install Docker, create 
required folders and set permissions

Deploy Containers: Run Docker containers for API service and Frontend, creating 
a dedicated network for communication

Configure Web Server: Setup Nginx as reverse proxy, configure 
routing for API and Frontend services

9

Cheese App - Deployment to GCP (Manual)

https://github.com/dlops-io/cheese-app-v3?tab=readme-ov-file#cheese-app---deployment--scaling


Deployment Automation

In our manual deployment there were various steps to keep track of. 

We want to automate this!

10



Ansible

• Is a tool for infrastructure automation
• Think of infrastructure as code
• Ansible scripts (playbooks) consist of instructions for tasks like

– Server & Cluster creation/deletion
– Software installation & setup
– Networking setup

• Everything is code, so you can check it into GitHub and share

11



Ansible: History

• Ansible was created by Michael DeHaan in 2012 and acquired by Red 
Hat in 2015.

• It configures systems like Linux and Windows without needing an agent, 
using SSH or Windows Remote Management.

• The control node runs on any system with Python.

• System setup is defined in a simple domain specific language written 
in files called playbooks.

12



Ansible : Principles

14



Ansible: Concepts

• Ansible commands
• Playbooks
• Inventory
• Fact Gathering
• Plays
• Tasks
• Modules

15



Ansible: Concepts

Ansible connects to managed nodes 
and pushes out small programs — 
called modules — to them. 

Ansible executes these modules 
remotely (over SSH by default) and 
removes them when finished. 

16

ANSIBLE MANAGED HOSTS DON’T NEED ANY 
INSTALLED AGENTS



Ansible :  Commands  

Running Ad-Hoc Commands with Ansible

ansible <target> -m <module> -a "<arguments>" -i <inventory>

• <target>: Specifies the host(s) or group(s) to run the command on.

• -m <module>: Defines the module to use (e.g., ping, shell, yum).

• -a "<arguments>": Provides arguments for the module (e.g., commands for 
shell).

• -i <inventory>: Points to the inventory file listing the hosts.



Ansible :  Commands  

Some useful adhoc commands

# ping all your managed hosts
ansible all -m ping

# list all  managed hosts
ansible all --list-hosts

# gather facts on managed hosts
ansible webservers -m gather_facts



Ansible :  Commands  

More useful adhoc commands

# gather facts on specific host
ansible webservers -m gather_facts – limit 172.16.250.132

# install apache2 on webservers with privilege escalation
ansible webservers -m apt -a name=apache2 --become --ask-become-pass

# update apt cache on all servers with privilege escalation
ansible all -m apt -a update_cache=true --become --ask-become-pass



Ansible Playbook command  

Running Playbooks with Ansible

ansible-playbook <playbook_file.yml> -i <inventory> [options]

• <playbook_file.yml>: YAML file with tasks and configurations to automate.

• -i <inventory>: Inventory file listing hosts or groups.

• [options]: Additional options, such as --check (dry-run) or --limit (run on 
specific hosts).



Ansible :  Commands  

Adhoc commands become tasks in plays/playbook

We run plays/playbooks via ansible command
 ansible-playbook --ask-become-pass site.yml



Ansible : Playbooks

• Ansible Playbooks manage 
system behavior written  in a 
Domain Specific Language (DSL) 
based on YAML (Yet Another 
Markup Language)

• The declarative syntax is easy to 
read and supports modular design.

• Playbooks are highly sensitive to 
indentation.

22



Ansible : Inventory

• The inventory file lists hosts and organizes them into groups.
• Hosts are identified by domain names or IP addresses.
• Groups are defined by headers in the file.
• Hosts outside any group are placed in the “ungrouped” group.
• Ansible also includes a default group named “all,” containing all hosts.

23



Ansible : Modules

• Modules represent the desired 
state of the system.

• These modules are designed to be 
idempotent when possible, only 
making changes to a system when 
necessary.

24

You can find Ansible modules in the Ansible 
Documentation, which lists all available 
modules by category. Additionally, modules are 
included in the standard Ansible installation 
and can be browsed directly on your system, 
typically located in 
/usr/share/ansible/plugins/modules.

https://docs.ansible.com/ansible/latest/collections/index_module.html
https://docs.ansible.com/ansible/latest/collections/index_module.html


Ansible : Fact Gathering

# gather facts on specific host
ansible webservers -m gather_facts – 
limit 172.16.250.132

info can be used to define 
variables or conditions later on

25



---

- name: Configure webserver on the server instance

 hosts: appserver

 connection: ssh

 become: true

 tasks:

   # Create and Setup Nginx

   - name: Copy nginx config files

     copy:

       src: "./nginx-conf/nginx"

       dest: "/conf"

   - name: Create nginx container

     docker_container:

       name: "nginx"

       image: "nginx:stable"

       state: started

       recreate: yes

       published_ports:

         - 80:80

         - 443:443

       networks:

         - name: "{{docker_network_name}}"

       volumes:

         - /conf/nginx/nginx.conf:/etc/nginx/nginx.conf

   - name: "Restart nginx container"

     shell: "docker container restart nginx"

Anatomy of a playbook

‘-’ at the lowest level of 
indentation  represent 
plays Plays

Tasks

Modules

hosts apply plays to host 
groups defined in the 
inventory file 

becomes determines 
privilege escalation

tasks are defined for 
each play

each task has a name
each task has a module 
that defines what the task 
doe



Deployment Steps (Ansible / Automation)

1. Setup local container to connect to GCP 

2. Build and push docker images to GCR

3. Create Compute Instance (VM) in GCP

4. Provision the server (Installed required softwares)

5. Setup Docker containers in VM Instance

6. Setup a web server to expose our app to the outside world

27



Setup local container /GCP 

Setup required GCP
• Enable APIs
• Create service accounts

– deployment (To deploy everything to GCP)
– gcp-service (To read containers from GCR in VM)

Setup local deployment container
• Add secret keys
• Set GCP project we want to connect to

28



Build & Push Docker Images to GCR

29

GCP

Developers - Deployment Containers

IDE/ CLI
Containers

Google Container Registry (GCR)

API Service Image

Cheese App Image



Create Compute Instance (VM)

30

GCP

Google Container Registry (GCR)

API Service Image

Cheese App Image

Compute Instance (Virtual Machine)

GCS Bucket

Models

GCE Persistent Volume

Local Models, 
Leaderboard

NFS
HTTPS 443

Developers - Deployment Containers

IDE/ CLI
Containers



Setup Docker Containers in VM

31

GCP

Google Container Registry (GCR)

API Service Image

Cheese App Image

Compute Instance (Virtual Machine)

GCS Bucket

Models

GCE Persistent Volume

NFS
HTTPS 443

API Service 
Container

HTTP 9000

Cheese App 
Container

HTTP 80

Local Models, 
Leaderboard

Developers - Deployment Containers

IDE/ CLI
Containers

Vector DB 
Container

HTTP 8000



Setup Web Server to expose App

32

GCP

Google Container Registry  (GCR)

API Service Image

Cheese App Image

Compute Instance (Virtual Machine)

GCS Bucket

Models

GCE Persistent Volume

NFS
HTTPS 443

API Service 
Container

NGINX ContainerHTTP 9000

Cheese App 
Container

HTTP 3000

HTTP 80

Local Models, 
Leaderboard

Developers - Deployment Containers

IDE/ CLI
Containers

Vector DB 
Container

HTTP 8000



Why did we need 2 service accounts?

Why do we need the following service accounts?
• deployment

– Has admin access to your group GCP project
• gcp-service

– Has read access to your group GCP projects GCR
– Has access to Vertex AI to perform inference

33



Why did we need 2 service accounts?

34

GCP

Google Container Registry

API Service Image

Cheese App Image

Compute Instance (Virtual Machine)

GCS Bucket

Models

GCE Persistent Volume

NFS
HTTPS 443

API Service 
Container

NGINX ContainerHTTP 9000

TCP/IP 5432

Cheese App 
Container

HTTP 3000

HTTP 80

1 Need admin access to create 
VM, SSH etc

2 Need read access to GCR

3 Need read access to 
models from class bucket

deployment.json

gcp-service.json

gcr-service.json

Local Models, 
Leaderboard

Developers - Deployment Containers

IDE/ CLI
Containers

Vector DB 
Container

HTTP 8000



Test the App

35

GCP

Google Container Registry

API Service Image

Cheese App Image

Compute Instance (Virtual Machine)

GCS Bucket

Models

GCE Persistent Volume

NFS
HTTPS 443

API Service 
Container

NGINX ContainerHTTP 9000

Cheese App 
Container

HTTP 3000

HTTP 80

Local Models, 
Leaderboard

Developers - Deployment Containers

IDE/ CLI
Containers

Vector DB 
Container

HTTP 8000



Tutorial: Deployment to GCP (Ansible)

Cheese App - Deployment to GCP (Ansible)

Build & Push Images: Use deploy-docker-images.yml to build and push 
Docker containers to Google Container Registry (GCR)

Create VM Instance: Deploy a Compute Engine VM using 
deploy-create-instance.yml with the specified configuration in 
inventory.yml

Provision Instance: Install required dependencies and setup environment 
using deploy-provision-instance.yml

Deploy Application: Configure and launch Docker containers (API, Frontend, 
Nginx) using deploy-setup-containers.yml and 
deploy-setup-webserver.yml

36

https://github.com/dlops-io/cheese-app-v3?tab=readme-ov-file#deployment-to-gcp


DON’T FORGET TO DELETE



THANK YOU


