
Shivas Jayaram

AC215

Lecture 18: APIs & Frontend

Announcements

• Showcase Info Form - due today - 11/12

https://forms.gle/CewUpMnmYq2BxupW6

• Optional React Zoom Session -
Friday 11/15 - Time TBD (will be recorded)

• Late Days - 2 days maximum for Milestone 4 or HW3 (No
need to send an email) subject to your attendance record.

• No late days for final project Milestone 5
2

https://forms.gle/CewUpMnmYq2BxupW6

Outline

1. Recap
2. APIs
3. Frontend (Simple)
4. Frontend Frameworks
5. Frontend App (React)

3

Outline

1. Recap
2. APIs
3. Frontend (Simple)
4. Frontend Frameworks
5. Frontend App (React)

4

Recap: Cheese App Status
POC Prototype MVP

Data Collection

Build Baseline Models

ML Workflow

Deployment, Scaling & Automation

Setup Experiment Tracking

Build Better Models

5

Design & Build Cheese App

Recap: Cheese App Development

Google Cloud Platform

Cloud Storage Vertex AI

6

Compute Engine

App Dev

Backend API Frontend

ML Pipeline

Data Collector Data Processor Model Training Model Deploy

Vector DB

Recap: Microservice Architecture

7

Browser Apps

Mobile Apps

Edge Device Apps

API Service

REST / JSON

REST / JSON

REST / JSON

Storefront UI

Catalog Module

Reviews Module

Orders Module

HTML

Recommendation
Module

Cloud Store

Database

Database

Models

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Frontend Frameworks
5. Frontend App (React)

8

● HyperText Transfer Protocol: method for transporting
information where client (such as a web browser) makes
request and web server issues a response
○ content can be anything from text to images to video

● HTTPS: encryption for secure communication over network
● Analogy: post office

Review: What is HTTP?

HTTP Request

HTTP Response

Review: What is a port?

● communication endpoint where network connections start
and end

● lets computers differentiate between different kinds of data
(emails, webpages, etc.)
○ Port 22 = SSH
○ Port 25 = SMTP (email)
○ Port 80 = HTTP
○ Port 443 = HTTPS

What is an API

• API is Application Programming Interface

• Web API is an API that can be access using HTTP/S

• A REST API is a Web API that follows the HTTP method

constraints - get, post, put, delete

• We will use FastAPI a Python framework to build REST APIs

11

APIs

12

Browser Apps

Mobile Apps

Edge Device Apps

Server Databases

Models

Cloud Stores

We will be using the term API to refer to REST API, which will be used to connect to various
components

REST / JSON

REST / JSON

REST / JSON

Review: Screenflow & Wireframes

13

Cheese App

Newsletters

Welcome to Formaggio.me's Cheese
Chronicles, your weekly digest of all things
cheese!

Exploring Alpine Cheeses

Discover the rich traditions of Alpine

cheesemaking, from Swiss

Cheese App

Podcasts

Welcome to The Cheese Podcast, where we
celebrate cheeses from around the world in
multiple languages!

Episode 1 Halloumi [EN]

Cheese App

How can I help you?

What type of cheese
is this?

Brie

How does an API work

14

http://localhost:9000/newsletters

Browser Local computer / Server

localhost:9000HTTP request made to localhost

cheese-app-api-service:9000

Container

How does an API work

15

http://localhost:9000/newsletters

Browser Local computer / Server

localhost:9000HTTP request made to localhost

cheese-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

How does an API work

16

http://localhost:9000/newsletters

Browser Local computer / Server

localhost:9000HTTP request made to localhost

cheese-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the container

How does an API work

17

http://localhost:9000/newsletters

Browser Local computer / Server

localhost:9000HTTP request made to localhost

cheese-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerlocalhost:9000

How does an API work

18

http://localhost:9000/newsletters

Browser Local computer / Server

localhost:9000HTTP request made to localhost

cheese-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /newsletters

How does an API work

19

http://localhost:9000/newsletters

Browser Local computer / Server

localhost:9000HTTP request made to localhost

cheese-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

@app.get("/newsletters")

def get_newsletters():

 # Fetch newsletters

 news_letters = []

 ... # Read data from json files

 return news_letters

FastAPI is running on port
9000 serving /newsletters

How does an API work

20

http://localhost:9000/newsletters

Browser Local computer / Server

localhost:9000HTTP request made to localhost

cheese-app-api-service:9000

Container

Host machine forwards request to port
9000 to of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /newsletters

/newsletters was requested so the
results of the /newsletters will be
sent back to browser. In this case is
a list of objects

@app.get("/newsletters")

def get_newsletters():

 # Fetch newsletters

 news_letters = []

 ... # Read data from json files

 return news_letters

How does an API work

21

http://localhost:9000/newsletters

Browser Local computer / Server

localhost:9000HTTP request made to localhost

cheese-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /newsletters

@app.get("/newsletters")

def get_newsletters():

 # Fetch newsletters

 news_letters = []

 ... # Read data from json files

 return news_letters

/newsletters was requested so the
results of the /newsletters will be
sent back to browser. In this case is
a list of objects

How does an API work (In Production)

22

http://formaggio.me/api/newsletters

Browser GCP Server

12.12.12234.34:80HTTP request made to server

cheese-app-api-service:80

Container

Host machine forwards request
to port 80 of docker services

Port 80 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /newsletters

@app.get("/newsletters")

def get_newsletters():

 # Fetch newsletters

 news_letters = []

 ... # Read data from json files

 return news_letters

/newsletters was requested so the
results of the /newsletters will be
sent back to browser. In this case is
a list of objects

Tutorial: APIs

23

API Service

Newsletters

Podcasts

LLM Chat

LLM + CNN Chat

RAG Chat

Agent Chat

Tutorial: APIs

24

Steps to build Cheese App APIs:
○ Ensure vector database is running.
○ Expose data using an API.
○ For detailed instructions, please refer to the following link

■ Cheese App APIs. (https://github.com/dlops-io/cheese-app-v2#setup-environments)

https://github.com/dlops-io/cheese-app-v2#setup-environments
https://github.com/dlops-io/cheese-app-v2#backend-apis

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Frontend Frameworks
5. Frontend App (React)

25

App Frontend

HTML
• Is Hyper Text Markup Language (Remember Markdowns)

• Browsers use HTML to display web pages

CSS
• Cascading style sheets

• Used to format & style web pages

Javascript
• Programming language understood by browser

26

App Frontend

<!DOCTYPE html>
<html>
<head>
 <title>🧀 Formaggio</title>

<style>body{background-color: #efefef;}</style>
</head>
<body>
 🧀 Formaggio.me is here!
</body>
<script>

var input_file =
document.getElementById("input_file");
</script>
</html>

27

Browser Title

Web page details

Page Style

Web page scripts (Javascript)

How does the App work

28

http://localhost:8080/newsletters.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

cheese-app-frontend-simple:8080

Container

How does the App work

29

http://localhost:8080/newsletters.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

cheese-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 of docker services

How does the App work

30

http://localhost:8080/newsletters.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

cheese-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 of docker services

frontend-simple
 -newsletters.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

http-server is running on port
8080 serving /newsletters.html

How does the App work

31

http://localhost:8080/newsletters.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

cheese-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 of docker services

frontend-simple
 -newsletters.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port
8080 serving /newsletters.html

How does the App work

32

http://localhost:8080/newsletters.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

cheese-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 of docker services

frontend-simple
 -newsletters.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port
8080 serving /newsletters.html

/newsletters.html was requested so
the content of the /newsletters.html
will be sent back to browser. The
HTML is sent back to the browser

How does the App work

33

http://localhost:8080/newsletters.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

cheese-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 of docker services

frontend-simple
 -newsletters.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port
8080 serving /newsletters.html

/newsletters.html was requested so
the content of the /newsletters.html
will be sent back to browser. The
HTML is sent back to the browser

Browser renders the HTML content
received from the server

How does the App work

34

http://localhost:8080/newsletters.html

Browser Local computer / Server

Container

// API URL

axios.defaults.baseURL = 'http://localhost:9000/';

// Call the API

axios.get('/newsletters)

 .then((response) => {

 newsletters = response.data;

 // Build the grid

 ...

 });

Javascript in the Browser is executed HTTP request made to
http://localhost:9000/newsletters

How does the App work

35

http://localhost:8080/newsletters.html

Browser

Javascript in the Browser is executed HTTP request made to
http://localhost:9000/newsletters

Local computer / Server

localhost:9000

cheese-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /newsletters

/newsletters was requested so the
results of the /newsletters will be
sent back to browser. In this case is
a list of objects

@app.get("/newsletters")

def get_newsletters():

 # Fetch newsletters

 news_letters = []

 ... # Read data from json files

 return news_letters

// API URL

axios.defaults.baseURL = 'http://localhost:9000/';

// Call the API

axios.get('/newsletters)

 .then((response) => {

 newsletters = response.data;

 // Build the grid

 ...

 });

How does the App work

36

http://localhost:8080/newsletters.html

Browser

HTTP request made to
http://localhost:9000/newsletters

Local computer / Server

localhost:9000

cheese-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /newsletters

/newsletters was requested so the
results of the /newsletters will be
sent back to browser. In this case is
a list of objects

Javascript displays the newsletters data
in the html page.

@app.get("/newsletters")

def get_newsletters():

 # Fetch newsletters

 news_letters = []

 ... # Read data from json files

 return news_letters

How does the App work (Chat)

37

http://localhost:8080/chat.html

Browser

HTTP request made to
http://localhost:9000/chat

Local computer / Server

localhost:9000

cheese-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /chat

/chat was requested so the results
of the /chat will be sent back to
browser. In this case it is the chat
details

@app.get("/chats")

def start_chat_with_llm():

 # Chat with LLM / RAG / Agent

 ... # Use Gemini to generate text

 return chatJavascript displays the chat details in
the html page.

Tutorial: Frontend Simple

38

Steps to run Cheese App Frontend:

○ https://github.com/dlops-io/cheese-app-v2#frontend-app-simple

https://github.com/dlops-io/cheese-app-v2#frontend-app-simple

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Frontend Frameworks
5. Frontend App (React)

39

Frontend

When we build our frontend we need a page for each component:
• index.html
• newsletters.html
• podcasts.html
• chat.html

40

Frontend

When we build our frontend we need a page for each component:
• index.html
• newsletters.html
• podcasts.html
• chat.html

41

Problems:
• Each of these had its own HTML, Javascript, CSS
• How do we share/reuse code across pages?
• Each page is loaded separately in browser (Slow)

Frontend

Problems:
• Each of these had its own HTML, Javascript, CSS
• How do we share/reuse code across pages
• Each page is loaded separately in browser (Slow)

Solution:
• Create a single page app that manages HTML, Javascript,

CSS as components
• Use frontend App Frameworks

42

Frontend Frameworks

The common frontend app frameworks are:
• Angular (Google)
• React (Facebook)
• Vue
• Svelte

43

React

• Everything is a Component
• Uses JSX instead of Javascript
• JSX is an extension to JavaScript
• JSX is like a template language, but it comes with the full

power of JavaScript

44

React App

45

Header

Footer

Content

React App

46

Header defined only once

Content block switched for each page

Tutorial: Frontend React

47

Steps to run Cheese App React Frontend:

○ https://github.com/dlops-io/cheese-app-v2#frontend-app-react

https://github.com/dlops-io/cheese-app-v2#frontend-app-react

THANK YOU

