Lecture 18: APIs & Frontend

AC215

Shivas Jayaram

Announcements

e Showcase Info Form - due today - 11/12

https://forms.gle/CewUpMnmYqg2BxupW6

 Optional React Zoom Session -
Friday 11/15 - Time TBD (will be recorded)

« Late Days - 2 days maximum for Milestone 4 or HW3 (No
need to send an email) subject to your attendance record.

* No late days for final project Milestone 5

https://forms.gle/CewUpMnmYq2BxupW6

Outline

Recap

APls

Frontend (Simple)
Frontend Frameworks

a & 0D e

Frontend App (React)

Outline

Recap

APls

Frontend (Simple)
Frontend Frameworks

a &~ Wb e

Frontend App (React)

Recap: Cheese App Status

POC Prototype

|
|
Data Collection :
:
|

Setup Experiment Tracking

Build Baseline Models
Build Better Models

ML Workflow

MVP

Deployment, Scaling & Automation

Recap: Cheese App Development

ML Pipeline Q
l O 0 App Dev
e 9 < — 9 @

W
Data Collector Data Processor Model Training Model Deploy —
—_J
< Backend API Frontend
—
L
Vector DB

3 Google Cloud Platform

i1 Cloud Storage £ Vertex Al =4: Compute Engine

Recap: Microservice Architecture

REST / JSON
¢

Browser Apps P
—
Database
D REST / JSON
B . API Service Reviews Module > Q
Cloud Store
Mobile Apps
a»
Orders Module 4> =
Database
:.:< REST / JSON
L |]
- : Recommendation O O
+—>

Edge Device Apps Module

Models

Outline

Recap

APls

App Frontend (Simple)
Frontend Frameworks

a & W0 Ddh e

Frontend App (React)

Review: What is HTTP?

e HyperText Transfer Protocol: method for transporting
information where client (such as a web browser) makes
request and web server issues a response
o content can be anything from text to images to video

e HTTPS: encryption for secure communication over network

e Analogy: post office

HTTP Request

1 &P

HTTP Response

Review: What is a port?

e communication endpoint where network connections start
and end

e lets computers differentiate between different kinds of data
(emails, webpages, etc.)

o Port 22 = SSH

o Port 25 =SMTP (email)
o Port80=HTTP

o Port443 = HTTPS

What is an API

APl is Application Programming Interface

Web API is an API that can be access using HTTP/S

A REST APl is a Web API that follows the HTTP method
constraints - get, post, put, delete

We will use FastAPIl a Python framework to build REST APIs

11

APIs

We will be using the term API to refer to REST API, which will be used to connect to various
components

REST / JSON

O
Browser Apps

Cloud Stores

REST / JSON

| oo o &
< e °°h -“—r W
[oo - .
Mobile Apps Server Databases

REST 450N —0Q Q Q

Models

Edge Device Apps
12

Review: Screenflow & Wireframes

—— Cheese App

Newsletters

Welcome to Formaggio.me's Cheese
Chronicles, your weekly digest of all things
cheesel!

Exploring Alpine Cheeses

Discover the rich traditions of Alpine

cheesemaking, from Swiss

—— Cheese App

Podcasts

Welcome to The Cheese Podcast, where we
celebrate cheeses from around the world in
multiple languages!

Episode 1 Halloumi [EN]

Cheese App

What type of cheese
is this?

How can | help you?

13

How does an API work

() http://localhost:9000/newsletters HTTP request made to localhost

Browser

localhost:9000

cheese-app-api-service:9000

Container

Local computer / Server

14

How does an API work

® http://localhost:9000/newsletters

Browser

HTTP request made to localhost

localhost:9000

Host machine forwards request
to port 9000 of docker services

cheese-app-api-service:9000

Container

Local computer / Server

15

How does an API work

® http://localhost:9000/newsletters

Browser

HTTP request made to localhost

localhost:9000

Host machine forwards request
to port 9000 of docker services

cheese-app-api-service:9000

Port 9000 is mapped to 9000
inside the container

Container

Local computer / Server

16

How does an API work

® http://localhost:9000/newsletters

Browser

HTTP request made to localhost

localhost:9000

Host machine forwards request
to port 9000 of docker services

cheese-app-api-service:9000

Port 9000 is mapped to 9000
localhost:9000 inside the container

Container

Local computer / Server

17

How does an API work

() http://localhost:9000/newsletters HTTP request made to localhost localhost:9000

Host machine forwards request
to port 9000 of docker services
cheese-app-api-service:9000

Port 9000 is mapped to 9000
inside the container

localhost:9000

api-service
-api FastAPI is running on port
-service.py 9000 serving /newsletters
Container
Browser Local computer / Server

18

How does an API work

() http://localhost:9000/newsletters HTTP request made to localhost localhost:9000

Host machine forwards request
to port 9000 of docker services
cheese-app-api-service:9000

Port 9000 is mapped to 9000
inside the container

localhost:9000

api-service
-api FastAPI is running on port
-service.py 9000 serving /newsletters

@app.get("/newsletters")
def get_newsletters():
Fetch newsletters
news_letters = []
. # Read data from json files

return news_letters

Browser Local computer / Server

19

How does an API work

() http://localhost:9000/newsletters HTTP request made to localhost localhost:9000

Host machine forwards request to port
< 9000 to of docker services

cheese-app-api-service:9000

/newsletters was requested so the

results of the /newsletters will be localhost:9000 Po_r(th(ir(])O is rr;a_pped to 9000
i i . . inside the container
sent back to browser. In this case is api-service
a list of objects . . .
-apl FastAPI is running on port
-service.py 9000 serving /newsletters

@app.get("/newsletters")
def get_newsletters():
Fetch newsletters
news_letters = []
. # Read data from json files

return news_letters

Browser Local computer / Server

20

How does an API work

() http://localhost:9000/newsletters HTTP request made to localhost localhost:9000
—> Host machine forwards request
L . < to port 9000 of docker services
tidte 1, cheese-app-api-service:9000
‘:::1617324;‘3125 EU—— /newsletters was requested so the .
"excerp‘lc": ETake a virtual touryt;\rough...", results of the /newsletters will be localhost:9000 Port 9000 is mapped to 9000
i o T Ee e sent back to browser. In this case is api-service inside the container
"category": "Regional Spotlight", a list of objects . . .
"image": "spanish-cheese.jpg" =apl FastAPl is running on port
i -service.py 9000 serving /newsletters
widUr MM, T T T T T T S T T T T S T S S ST T e e e e

"dts": 1729871905,
"title": "The Art of Blue Cheese",

@app.get("/newsletters")

"excerpt": "Dive into the fascinating...", i def get neWS].etterS() . E
"detail": "...", : B ' |
“readTime": "4 min read", ! !
"Z::eg::;": "ChZ;rs]ergiience", | # Fetch newsletters |
"i ": "blue-ch .jpg" | |
) image ue-cheese. jpg : news_letters - [] |
]| :) . |
: . # Read data from json files :
i return news_letters i

Browser Local computer / Server

21

How does an API work (In Production)

() http://formaggio.me/api/newsletters HTTP request made to server 12.12.12234.34:80
> Host machine forwards request
[i - to port 80 of docker services

"id": "1, cheese-app-api-service:80
:::E:Illfe"yﬁggﬁzgﬁlCheese — /newsletters was requested so the _
"excerp‘.c": "Take a virtual tour térough...", results of the /newsletters will be localhost:9000 POl't 80 is mapped to 9000
e T sent back to browser. In this case is api-service inside the container
"category"; "Regional Spc’Jtlight", a list of objects . . .
"image": "spanish-cheese.jpg" =apl FastAPl is running on port

i, -service.py 9000 serving /newsletters
L 2 I Y

"dts": 1729871905,
"title": "The Art of Blue Cheese",

@app.get("/newsletters")

| 1
"excerpt": "Dive into the fascinating...", i def get_newsletters() . E
"detail”: "...",)] i
Egig;'ﬂ; ..‘ghzggergi‘;e;ce.., # Fetch newsletters
el news_letters = []
! : . # Read data from json files
i return news_letters i

Browser GCP Server

22

Tutorial: APIs

API Service

>

Podcasts

LLM Chat

LLM + CNN Chat

RAG Chat

Agent Chat

23

Tutorial: APIs

Steps to build Cheese App APIs:
o Ensure vector database is running.
o Expose data using an API.
o For detailed instructions, please refer to the following link

| Cheese App APIS (https://github.com/dIops-io/cheese-apo-v2#setup-environments)

https://github.com/dlops-io/cheese-app-v2#setup-environments
https://github.com/dlops-io/cheese-app-v2#backend-apis

Outline

Recap

APls

App Frontend (Simple)
Frontend Frameworks

Sl AN

Frontend App (React)

25

App Frontend

HTML
 |s Hyper Text Markup Language (Remember Markdowns)

* Browsers use HTML to display web pages

CSS
« Cascading style sheets

« Used to format & style web pages

Javascript
* Programming language understood by browser

App Frontend

<!DOCTYPE html> / Browser Title
heac // Page Style
<head>
<title>g& Formaggio</title> // Web page details
<style>body{background-color: #efefef;}</style>
</head>

<body> / Web page scripts (Javascript)
Formaggio.me is here!

@0

< /bOdy> i & # Formaggio X +

<SCI"ip't> C Mm @® localhost:8080/index-simple.html

var input_file =
document.getElementById("input_file");

#* Formaggio.me is here!

</script>
</html>

27

How does the App work

® http://localhost:8080/newsletters.html HTTP request made to localhost

Browser

localhost:8080

cheese-app-frontend-simple:8080

Container

Local computer / Server

28

How does the App work

http://localhost:8080/newsletters.html

Browser

HTTP request made to localhost

localhost:8080

Host machine forwards request
to port 8080 of docker services

cheese-app-frontend-simple:8080

Container

Local computer / Server

29

How does the App work

() http://localhost:8080/newsletters.html HTTP request made to localhost localhost:8080

Host machine forwards request
to port 8080 of docker services

cheese-app-frontend-simple:8080

localhost:8080 Port 8080 is mapped to 8080

frontend-simple inside the container

-newsletters.html : :
http-server is running on port

8080 serving /newsletters.html

Container

Browser Local computer / Server

30

How does the App work

® http://localhost:8080/newsletters.html HTTP request made to localhost

Browser

localhost:8080

Host machine forwards request
to port 8080 of docker services

cheese-app-frontend-simple:8080

localhost:8080 Port 8080 is mapped to 8080

frontend-simple inside the container

-newsletters.html : :
http-server is running on port

Container

Local computer / Server

31

How does the App work

() http://localhost:8080/newsletters.html HTTP request made to localhost localhost:8080

Host machine forwards request
< to port 8080 of docker services

cheese-app-frontend-simple:8080

/newsletters.html was requested so
the content of the /newsletters.html localhost:8080 Port 8080 is mapped to 8080
will be sent back to browser. The inside the container

HTML is sent back to the browser ORI

-newsletters.html : :
http-server is running on port

Container

Browser Local computer / Server

32

How does the App work

® http://localhost:8080/newsletters.html HTTP request made to localhost

JFormaggio Home About Podcasts Newsletters ~ Cheese Assistant

/newsletters.html was requested so
the content of the /newsletters.html
will be sent back to browser. The
HTML is sent back to the browser

Browser renders the HTML content
received from the server

Browser

localhost:8080

Host machine forwards request
to port 8080 of docker services

cheese-app-frontend-simple:8080

localhost:8080 Port 8080 is mapped to 8080

frontend-simple inside the container

-newsletters.html : :
http-server is running on port

Container

Local computer / Server

33

How does the App work

® http://localhost:8080/newsletters.html

& Formaggio Home About Podcasts Newsletters Cheese Assistant

Javascript in the Browser is executed HTTP request made to
http://localhost:9000/newsletters

// API URL
axios.defaults.baseURL = 'http://localhost:9000/";

// Call the API
axios.get('/newsletters)
.then((response) => {
newsletters = response.data;
// Build the grid

Browser

Container

Local computer / Server

34

How does the App work

® http://localhost:8080/newsletters.html localhost:9000

Host machine forwards request
JFormaggio Home About Podcasts Newsletters Cheese Assistant to port 9000 of docker SerViceS
cheese-app-api-service:9000

Port 9000 is mapped to 9000
inside the container

localhost:9000

Javascript in the Browser is executed HTTP request made to apl-s_erwce _ _
http://localhost:9000/newsletters apt FastAP! is running on port
> -service.py 9000 serving /newsletters

@app.get("/newsletters")

// API URL
axios.defaults.baseURL = 'http://localhost:9000/";

/newsletters was requested so the def get_newsletters():

results of the /newsletters will be
sent back to browser. In this case is
a list of objects

Fetch newsletters
// Call the API

axios.get('/newsletters) news_letters = []

-then((response) => { . # Read data from json files

newsletters = response.data;

// Build the grid return news_letters

Browser Local computer / Server

35

How does the App work

® http://localhost:8080/newsletters.html localhost:9000

to port 9000 of docker services

cheese-app-api-service:9000

4 localhost:9000 Port 9000 is mapped to 9000
b . . inside the container
4 apli-service
W HTTP request made to P . FastAP! is runni it
- http://localhost:9000/newsletters <[] as S running on po
oo i -service.py 9000 serving /newsletters
Spanish Cheese Journey The Art of Blue Cheese Exploring Alpine Cheeses > ___TTTTT e N s Wl
Take a virtual tour through Spains diverse Dive into the fascinating world of blue Discover the rich traditions of Alpine " "
vty [iemmemry | [e -+ @app.get("/newsletters”)
Idiazabal of the Basque Country. Penicillium roqueforti and how it creates seasonal grazing practices influence the
those distinctive blue-green veins... unigue flavors of these mountain cheeses..,

/newsletters was requested so the def get_newsletters():

results of the /newsletters will be
sent back to browser. In this case is
a list of objects

Fetch newsletters
news_letters = []

Read data from json files
Javascript displays the newsletters data

in the html page. return news_letters

Browser Local computer / Server

36

How does the App work (Chat)

® http://localhost:8080/chat.html

which cheese goes well with figs?

" Figs, with their sweet, jammy character and subtle floral notes, pair beautifully with a range of cheeses, depending on the
desired balance of sweetness and sharpness. Here are some excellent choices, categorized for clarity:

For a Sweet & Balanced Pairing:

+ Goat Cheese (chévre): The tangy, sometimes slightly grassy notes of goat cheese provide a lovely contrast to the
fig's sweetness. A soft, fresh chévre works particularly well, as its creamy texture complements the fig's softness.
Consider a honey-infused chévre for an even more decadent pairing.

« Brie: The creamy, buttery texture and mild, mushroomy flavor of Brie create a harmonious blend with figs. The richness
of the Brie balances the sweetness of the figs, resulting in a sophisticated combination. A ripe Brie, with its slightly
runnier center,is ideal.

For a Sharp & Sweet Contrast:

« Blue Cheese (e.g., Gorgonzola, Roquefort): The pungent, salty, and sometimes earthy flavors of blue cheese offer a
striking counterpoint to the figs' sweetness. The creamy texture of a good biue cheese also works well. This pairing is

best for those who enjoy bolder flavor combinations. A milder blue cheese like a Danish blue might be a better starting
point for those less familiar with the intensity of blue cheeses.

« Sharp Cheddar: A well-aged, sharp cheddar, with its complex nutty and sometimes slightly fruity notes, provides a
robust contrast to the figs' sweetness. The firm texture of the cheddar offers a textural counterpoint to the soft figs.

Formaggio Assistant (LLM)

Javascript displays the chat details in
the html page.

Browser

localhost:9000
Host machine forwards request
to port 9000 of docker services
cheese-app-api-service:9000

Port 9000 is mapped to 9000

localhost:9000 Lo !
inside the container

HTTP request made to apl-s:erwce FastAP! i . it
http://localhost:9000/chat =api astArlIs running on po

-service.py 9000 serving /chat

@app.get("/chats")

/chat was requested so the results def start_chat_with_l1m():
of the /chat will be sent back to ! # Chat with LLM / RAG / Agent
browser. In this case it is the chat

. # Use Gemini to generate text
details

return chat

Local computer / Server

37

Tutorial: Frontend Simple

Steps to run Cheese App Frontend:

O https://sithub.com/dlops-io/cheese-app-v2#frontend-app-simple

https://github.com/dlops-io/cheese-app-v2#frontend-app-simple

Outline

Recap

APls

App Frontend (Simple)
Frontend Frameworks

a k~ OD ek

Frontend App (React)

39

Frontend

When we build our frontend we need a page for each component:
* Index.html

* newsletters.html

« podcasts.html

e chat.html

40

Frontend

When we build our frontend we need a page for each component:
* Index.html

* newsletters.html

e podcasts.html

e chat.html

Problems:

« Each of these had its own HTML, Javascript, CSS
 How do we share/reuse code across pages?
« Each page is loaded separately in browser (Slow)

41

Frontend

Problems:

« Each of these had its own HTML, Javascript, CSS
 How do we share/reuse code across pages
« Each page is loaded separately in browser (Slow)

Solution:

« Create a single page app that manages HTML, Javascript,
CSS as components
« Use frontend App Frameworks

42

Frontend Frameworks

The common frontend app frameworks are:
* Angular (Google)

 React (Facebook)

* Vue

 Svelte

43

React

Everything is a Component
« Uses JSX instead of Javascript
JSX is an extension to JavaScript

« JSX s like a template language, but it comes with the full
power of JavaScript

44

React App

Content

Footer

React App

Header defined only once

Formaggio

& Formaggio

‘ Formaggio A Home o About @ Podcasts Newsletters Q Cheese Assistant

Cheese Assistant %

M Formaggio.me is here!

Discover the world of cheese through Al

Spanish Cheese Journey The Art of Blue Cheese

How can Formaggio help you today?

Formaggio Assistant (LLM) v

Content block switched for each page

46

Tutorial: Frontend React

Steps to run Cheese App React Frontend:

O https://github.com/dlops-io/cheese-app-v2#frontend-app-react

https://github.com/dlops-io/cheese-app-v2#frontend-app-react

THANK YOU

