
Pavlos Protopapas
SEAS/Harvard

AC215

Lecture 16: Automating Software
Development

 PROTOPAPAS

• Linters and formatters

• Testing

• Automating workflows

• Continuous Integration

Outline

2

 PROTOPAPAS

• Linters and formatters

• Testing

• Automating workflows

• Continuous Integration

Outline

3

 PROTOPAPAS

Linters and Formaters

Code is meant to be read more than it is executed. Clear,
readable code is easier to understand, maintain, and review.

This statement refers to the clarity of the code itself, but also
on the way it is written.

Python has standards (e.g., PEP8) for quality code. However,
each organization may have its own additional style and
formatting standards.

Good code should be well-written in both function and form.

 PROTOPAPAS

Linters

A linter is a tool that analyzes code for errors, style issues,
and compliance to coding standards.

It identifies issues for the developer to review and fix.

Linters help standardize code across teams, making it easier
to read, maintain, and collaborate within the organization.

 PROTOPAPAS

Why:
Code structure should comply with standards and

organizational guidelines.

When:
Linters should be used while coding, before committing

changes or during the CI stage.

How:
By executing the scripts manually, or triggered by an

automated pipeline.

Linters

 PROTOPAPAS

Example #1

In the following example, we will analyze the mega-pipeline
code with linters, in order to have the same style across all
the repositories.

Flake8 and pylint are popular Python linters.

Hadolint for Dockerfiles.

 PROTOPAPAS

Formatters

Formatters enforce code structure by automatically
adjusting code to meet style standards, improving
readability and consistency.

Linters detect and report style inconsistencies, while
formatters modify the code directly to correct these issues.

Popular formatters are Black, autopep8, and YAPF.

 PROTOPAPAS

Example #2

Running Black, autopep8 and YAPF with custom
configuration.

To ignore the limit of characters per line:

● black --line-length 200 . (entire directory)
● autopep8 --max-line-length 200 --in-place --recursive .
● yapf --style='{based_on_style: google, column_limit: 200}'

--in-place --recursive .

 PROTOPAPAS

• Linters and formatters

• Testing

• Automating workflows

• Continuous Integration

Outline

10

 PROTOPAPAS

Software testing is the process of checking that a program
works as expected and meets its requirements.

Testing can cover functionality, performance, security, and
more.

It helps to detect errors early in the development cycle,
improving code reliability and maintainability.

Testing

 PROTOPAPAS

Tests motivation

While developing new features is great, skipping tests to
speed up development is risky. It can lead to undetected
issues and fragile code. This will hurt you in the long term.

Testing ensures that code functions as expected, increasing
reliability and maintainability.

Effective testing often requires writing significantly more
code for tests than for the original functions. Around ten
times more!

 PROTOPAPAS

Don’t be like this

CrowdStrike, a security
firm, deployed an
update that disrupted
millions of systems,
affecting critical sectors
like airlines and banks.

Proper testing in the
deployment pipelines
could have helped
prevent this issue.

 PROTOPAPAS

Testing

Different types of test exist, designed to check different parts
of the entire pipeline.
Among them, we can find:

Unit tests: Tests individual components (like functions or
classes) in isolation.
Integration Tests: Checks how different components work
together. Unit tests alone cannot guarantee a correct
interdependency among units.
System Tests: Validates the entire system’s functionality as a
whole, simulating a production environment.

 PROTOPAPAS

Testing: As solid as the test code

 PROTOPAPAS

Testing

All the code must be tested. This includes:
● Python scripts
● Dockerfiles
● YAML files
● Any other configuration files

 PROTOPAPAS

Testing: A Python example with Pytest

Given the simple function

def multiply(a, b):
return a * b

We must test normal behavior, edge and extreme cases, as
well as incorrect inputs.

Ideally, your function should handle gracefully any errors, or
raise an informative exception.

 PROTOPAPAS

Testing: Python scripts

Pytest usage

 PROTOPAPAS

• Linters and formatters

• Testing

• Automating workflows

• Continuous Integration

• Additional tools

Outline

19

 PROTOPAPAS

Revisiting Git workflow

1. Make a copy of the code by
○ If you have write access to the repo. Cloning the repository.
○ If you don’t have write access to the repo. Fork the

repository.
2. Create a new branch
3. Develop your new feature

○ Write functions that do one thing and one thing only
○ Write multiple tests for each function. Test normal

behavior, edge cases and incorrect inputs, etc.
○ Document thoroughly all the code via docstrings and

comments.

 PROTOPAPAS

Revisiting Git workflow

4. Run the tests. Ensure that all test pass.
○ Ensure enough code coverage. The metric is defined by the

organization.
5. Commit your code locally.

○ Write meaningful and detailed commit messages.
6. Push to the branch in the remote repository.

○ This action is permanent.
7. Create a pull request (PR)

○ Wait for colleagues or senior developers to approve your
request.

Enjoy!

 PROTOPAPAS

Revisiting Git workflow

A Git workflow is designed to create a systematic history,
enabling you to track bugs and individual features
effectively.

This process depends on running the test suite frequently to
catch issues early.

To avoid executing tests manually each time, tools like Git
Hooks can automate tasks like testing, formatting, and
linting during the workflow.

 PROTOPAPAS

Hooks are scripts that run automatically when specific
events occur in Git, such as commits, merges, or pushes.

They work similarly to TensorFlow callbacks, responding to
events to automate tasks.

Git hooks are classified into local hooks (running on your
machine) and server-side hooks (running on the remote
server).

Git hooks

 PROTOPAPAS

Local Git hooks

Local Hooks are scripts that run on your machine,
automating tasks within your workflow.
Some of them are:

pre-commit:Runs before a commit is finalized. Often used to
inspect code, run tests, and execute linters to ensure code quality.
Commit-msg: Checks if the commit message follows a specified
pattern, guaranteeing consistency in commit messages.
pre-push:Executes before pushing changes to the remote
repository. It can verify that all requirements are met, such as
passing tests or updating documentation.

 PROTOPAPAS

Remote Git hooks

Local Hooks are scripts that run on your machine,
automating tasks within your workflow.
Some of them are:

Pre-rebase: Runs before a rebase starts. This can warn the user or
halt the process if certain conditions aren’t met.
post-checkout: Executes after switching branches. It’s useful for
setting up environment variables or configuration specific to the
checked-out branch.
Post-merge: Runs after a successful merge. You can run integration
tests or update dependencies here to ensure everything is
compatible.

 PROTOPAPAS

Example #3: Local hooks

In this example, we will run a formatter during the
pre-commit stage.

Option A: Writing your hooks manually.

Option B: Using pre-commit framework. More YAML files!

https://pre-commit.com/

 PROTOPAPAS

Remote Git hooks

Remote Hooks are executed on the server side (e.g., GitHub
Actions, GitLab, or other remote servers). They are enforcers
across the entire organization.

pre-receive: Runs before code is accepted by the repository.
Commonly used to enforce standards, run tests, execute linters, or
send notifications.
update: Similar to pre-receive, but runs on a per-branch basis.
Useful for branch-specific policies or checks.
post-receive: Runs after code has been integrated into the
repository. Often used to run regression or integration tests, send
notifications, or perform maintenance tasks like purging large files.

 PROTOPAPAS

Example #4:

Setting up a pre-receive hook with GitHub Actions and Rules.

 PROTOPAPAS

Webhooks are similar to hooks in that they trigger actions
after specific events (e.g., a push).
Unlike hooks, webhooks communicate with external services
outside of GitHub.
Some examples include
● Triggering CI pipelines (i.e., Jenkins)
● Deploying code to a production server.
● Sending notifications (Slack, Discord, etc)

These automated actions support Continuous Deployment
(CD), enabling new features to be deployed automatically.

GitHub Webhooks

 PROTOPAPAS

• Linters and formatters

• Testing

• Automating workflows

• Continuous Integration

Outline

30

 PROTOPAPAS

Continuous Integration (CI)

In traditional software development CI implies faster release
cycles, improved code quality, and better collaboration

In MLOps: managing the unique challenges of ML model
development, testing, and deployment.

 PROTOPAPAS

Continuous Integration (CI)

Build ReleaseTestCodebase Deploy

Developers

Monitor

Commits

Notifications

 PROTOPAPAS

Continuous Integration (CI)

Continuous Integration (CI): run a series of scripts automatically,
anytime changes are pushed

● Continuously Integrate our changes
● Automated tests
● Ensure coding standards
● Static code analysis

 PROTOPAPAS

Continuous Integration (CI)

In AI/ML, CI involves regularly merging ML code, data, and
models into a shared repository and automatically testing
these integrations, ensuring that new features do not break
the system..
Quick detection of issues in data, code, or models is
paramount. It can cost time and money!

Challenges
Balancing need for frequent integration with the
computational demands of training and testing ML models.

It depends on the organization.

 PROTOPAPAS

CI/CD Providers and Tools

TeamCity Github GitLab Jenkins CircleCI TravisCI

just naming a few…

 PROTOPAPAS

CI example

Running simple_CI

