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Motivation
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We want to process data (ideally a lot) and we do not have enough computing 
resources. For example:

1. Your phone can’t run GoogleNet to assist you in some tasks

2. You can’t compress enormous number of images coming from space (8Kx8K pixels 
from 3K satellites) 

Using machine learning is resource intensive: 

i. Computing power to train millions of parameters or predict for many observations

ii. Limited bandwidth  

So what? Model compression techniques

Hannah Peterson and George Williams, An Overview of Model Compression Techniques 
for Deep Learning in Space, August 2020

https://medium.com/gsi-technology/an-overview-of-model-compression-techniques-for-deep-learning-in-space-3fd8d4ce84e5
https://medium.com/gsi-technology/an-overview-of-model-compression-techniques-for-deep-learning-in-space-3fd8d4ce84e5


What is Model Compression?

3

The main idea is to simplify the model without diminishing accuracy. A 
simplified model means reduced in size and/or latency from the original. 
Both types of reduction are desirable.

• Size reduction can be achieved by reducing the model parameters and 
thus using less RAM.

• Latency reduction can be achieved by decreasing the time it takes for the 
model to make a prediction, and thus lowering energy consumption at 
runtime (and carbon footprint).

Karen Hao, Training a single AI model can emit as much carbon as five 
cars in their lifetimes, June 2019

https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/


Compression Techniques 

• Knowledge distillation

• Pruning

• Quantization

• {Low-rank approximation and sparsity} 
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Compression Technique: Distillation
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https://docs.google.com/file/d/1UZRmETiYF7FnXJzzIzQBhAFiqaWx36HC/preview


Compression Technique: Distillation
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Compression Technique: Distillation
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Problem: 

• During training, a model does not have to operate in real time and does not 
necessarily face restrictions on computational resources, as its primary goal is 
simply to extract as much structure from the given data as possible.

• But latency and resource consumption do become of concern if it is to be 
deployed for inference.

So what? we must develop ways to compress model for inference.



Compression Technique: Distillation
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Idea:

• In 2006, Buciluă et al. showed that it was possible to transfer knowledge from 
a large trained model (or ensemble of models) to a smaller model for 
deployment by training it to mimic the larger model’s output.

• In 2014 Hinton et al generalized the process and gave the name Distillation.

Main idea of distillation is that training and inference are 2 different tasks; 
thus a different model should be used.

Buciluă et al., Model Compression, 2006
Hinton et al., Distilling the Knowledge in a Neural Network, 2014

https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf
https://arxiv.org/pdf/1503.02531.pdf


Distillation: Teacher Student
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Loss

Teacher Model

Student Model



Distillation: Teacher Student
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Assumption: if we can achieve similar convergence using a smaller network, 
then the convergence space of the Teacher Network should overlap with the 
solution space of the Student Network.  

Teacher Model

Student Model

Teacher Convergence Space

Student Convergence Space

Teacher guided Student Convergence Space



Distillation: Teacher Student Loss
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Modified softmax function with 
Temperature:

 

Geoffrey Hinton, Oriol Vinyals & Jeff Dean, Dark Knowledge

https://www.ttic.edu/dl/dark14.pdf


Distillation: Teacher Student Training
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Geoffrey Hinton, Oriol Vinyals & Jeff Dean, Dark Knowledge

Trained to minimize the sum 
of two different cross entropy 
functions: 

• one involving the original 
hard labels obtained using 
a softmax with T=1

• one involving the softened 
targets, T>1

https://www.ttic.edu/dl/dark14.pdf


Distillation: Teacher Student Training
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Tutorial: Model Distillation

Colab Notebook
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https://colab.research.google.com/drive/1neCym_e8dfpWZKbYPcqf_jIaXroShvXZ?usp=drive_link


What is next in Distillation?
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1: Multiple teachers (i.e. converting an ensemble into a single 
network).

2: Introducing a teaching assistant (the teacher first teaches the TA, 
who then in turn teaches the student) etc. 

3: Quite young field

A drawback of knowledge distillation as a compression technique, 
therefore, is that there are many decisions that must be made 
up-front by the user to implement it (student network doesn’t even 
need to have a similar structure to the teacher).



Compression Techniques 
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Compression Technique: Pruning
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The main idea is to remove less impactful features of the neural network. 

Pruning involves removing connections between neurons, and neurons from a 
trained network. To prune a connection, we set a weight in the matrix to zero.  

Two types of pruning:

• Pruning weights

• Pruning neurons
pruning weights

pruning neurons

Learning Both Weights and Connections for Efficient Neural Network [Han et al., 
NeurlIPS 2015]

https://browse.arxiv.org/pdf/1506.02626.pdf


Compression Technique: Pruning
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Make neural networks smaller by removing weights and neurons

Learning Both Weights and Connections for Efficient Neural Network [Han et al., 
NeurlIPS 2015]
MIT EfficientML.ai: Pruning and Sparsity

https://browse.arxiv.org/pdf/1506.02626.pdf
https://www.dropbox.com/scl/fi/2oxmtvoeccyuw47yfambb/lec03.pdf?rlkey=3ykm0g21ibsoqn7xnw43v7aaw&dl=0


Compression Technique: Pruning
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Make neural networks smaller by removing weights and neurons

Learning Both Weights and Connections for Efficient Neural Network [Han et al., 
NeurlIPS 2015]
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https://browse.arxiv.org/pdf/1506.02626.pdf
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Compression Technique: Pruning
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Make neural networks smaller by removing weights and neurons

Learning Both Weights and Connections for Efficient Neural Network [Han et al., 
NeurlIPS 2015]
MIT EfficientML.ai: Pruning and Sparsity

https://browse.arxiv.org/pdf/1506.02626.pdf
https://www.dropbox.com/scl/fi/2oxmtvoeccyuw47yfambb/lec03.pdf?rlkey=3ykm0g21ibsoqn7xnw43v7aaw&dl=0


Compression Technique: Pruning
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Pruning Granularities

Simple 2-D weight matrix example

Fine-grained/Unstructured

- More flexible pruning index choice
- Hard to accelerate (hardware limitations)

Coarse-grained/Structured

- Less flexible pruning idex choice (a subset of the 
fine-grained case)

- Easy to accelerate (just a smaller matrix!)

Exploring the Regularity of Sparse Structure in Convolutional Neural Networks 
[Mao et al., CVPR-W]

https://browse.arxiv.org/pdf/1705.08922.pdf


Compression Technique: Pruning
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Example using convolutional layers

- Commonly used pruning granularities

Irregular Regular

Fine-grained
Sparsity (0-D)

Vector-level
Sparsity (1-D)

Kernel-level
Sparsity (2-D)

Filter-level
Sparsity (3-D)

Exploring the Regularity of Sparse Structure in Convolutional Neural Networks 
[Mao et al., CVPR-W]

https://browse.arxiv.org/pdf/1705.08922.pdf


Drawbacks of neural network pruning:

• Optimal Pruning Challenge: determining the optimal neurons or weights to prune 
without detrimentally impacting model performance can be complex and time consuming 
in practise.

• Fine-Tuning Requirement: after pruning, models typically require additional fine-tuning 
to recover potential losses in predictive accuracy, which might consume additional 
training resources and time.

• Hardware Dependency: pruned models might not always translate to proportional 
computational or energy savings due to hardware inefficiencies or dependencies in 
exploiting sparsity.

• Model Robustness: excessive or imprecise pruning may lead to a substantial decrease 
in model accuracy or robustness, especially when encountering unseen or 
out-of-distribution data.

Compression Technique: Pruning
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Tutorial: Model Pruning

Colab Notebook
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https://colab.research.google.com/drive/18FBb3MiV4IcPPcJmteLZvE727Ec2QAhA?usp=sharing


Model Compression Technique: Quantization
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To implement quantization with Tensorflow: MC.AI, Quantization in Deep Learning 
using TensorFlow 2.X, May 2020

Main idea is to map values from a continuous or a large discrete set to values in a 
smaller discrete set without losing too much information in the process.

Reducing the number of pixels, while 
maintaining the image content.

Reducing a continuous signal, while 
maintaining the signal information.

Image is in the public domain. “Analog to digital converter”

https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/
https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/
https://en.wikipedia.org/wiki/Quantization_(signal_processing)


Model Compression Technique: Quantization
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Size of a Deep Neural Network (in bytes)

num_parameters = total number of weights and biases of NN
parameter_size = size of parameter in bytes (e.g. 4 bytes for float32)

Bottlenecks in Training and Inference of Deep Neural Networks

 Memory Limitations: Memory demands for training large models, storing parameters, and handling 
intermediary computations challenge available GPU memory, restricting model complexity, and training 
efficiency.

 
 Data Transfer Bottlenecks: Substantial data movement between storage (e.g., disks), CPUs, and GPUs, 

generates bottlenecks that slow down training and make real-time processing strenuous.
 
 I/O Constraints: Input/output operations, involving reading and preprocessing data, often become 

bottlenecks, affecting GPU utilization and elongating training times, especially with voluminous and 
complex datasets.

deep_nn_size ~ num_parameters * parameter_size



Neural Networks Quantization
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Deep Compression: Compressing Deep Neural Networks with Pruning, 
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf


Neural Networks Quantization
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2.09 -0.98 1.48 0.09
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weights 32-bit float

Weight Quantization

2.09, 2.12, 1.92, 1.87

2.0

Deep Compression: Compressing Deep Neural Networks with Pruning, 
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf


Neural Networks Quantization
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weights 32-bit float

K-Means-based Weight Quantization

Deep Compression: Compressing Deep Neural Networks with Pruning, 
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf


Neural Networks Quantization
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Neural Networks Quantization
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Neural Networks Quantization
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K-Means-based Weight Quantization: Centroids Initialization

Centroid initialization impacts the quality of clustering and thus the network’s prediction accuracy.

Three types of initialization:

Forgy (random): Randomly choose k observations from the data set and use these as initial 
centroids.

- Tends to concentrate around the highest mass of the weights’ PDF

Density-based: Space points linearly on the range of CDF values [0, 1]. Then finds horizontal 
intersection with the CDF of the weights’ distribution.

- Makes the centroids dense around the highest mass, but more scattered than Forgy

Linear: Space points linearly on the range of weights’ values [min_weight_val, max_weight_val].
- This method is invariant to the distribution of the weights - most scattered

Deep Compression: Compressing Deep Neural Networks with Pruning, 
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf


Neural Networks Quantization
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K-Means-based Weight Quantization: Centroids Initialization

Three different methods for centroids initialization Initial distribution of weights, distribution of codebook before 
fine-tuning (greencross), and after fine-tuning (red dot)

Deep Compression: Compressing Deep Neural Networks with Pruning, 
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf


Neural Networks Quantization
K-Means-based Weight Quantization
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Deep Compression: Compressing Deep Neural Networks with Pruning, 
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf


Drawbacks of neural network quantization:

● Proficiency in Hardware Architecture: Necessitates a in-depth 
understanding of hardware intricacies and bitwise computations.

● Hardware Limitations: Efficiency gains are intrinsically linked to the 
characteristics and capabilities of the utilized hardware.

● Optimization Difficulties: Maintaining balance between reducing 
model size through quantization and preserving predictive capabilities 
could be tricky requiring careful management of the trade-off between 
model size and accuracy.

Compression Technique: Quantization
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