
Pavlos Protopapas
SEAS/Harvard

AC215

Lecture 9: Models Compression
Techniques

Motivation

2

We want to process data (ideally a lot) and we do not have enough computing
resources. For example:

1. Your phone can’t run GoogleNet to assist you in some tasks

2. You can’t compress enormous number of images coming from space (8Kx8K pixels
from 3K satellites)

Using machine learning is resource intensive:

i. Computing power to train millions of parameters or predict for many observations

ii. Limited bandwidth

So what? Model compression techniques

Hannah Peterson and George Williams, An Overview of Model Compression Techniques
for Deep Learning in Space, August 2020

https://medium.com/gsi-technology/an-overview-of-model-compression-techniques-for-deep-learning-in-space-3fd8d4ce84e5
https://medium.com/gsi-technology/an-overview-of-model-compression-techniques-for-deep-learning-in-space-3fd8d4ce84e5

What is Model Compression?

3

The main idea is to simplify the model without diminishing accuracy. A
simplified model means reduced in size and/or latency from the original.
Both types of reduction are desirable.

• Size reduction can be achieved by reducing the model parameters and
thus using less RAM.

• Latency reduction can be achieved by decreasing the time it takes for the
model to make a prediction, and thus lowering energy consumption at
runtime (and carbon footprint).

Karen Hao, Training a single AI model can emit as much carbon as five
cars in their lifetimes, June 2019

https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/

Compression Techniques

• Knowledge distillation

• Pruning

• Quantization

• {Low-rank approximation and sparsity}

4

Compression Techniques

• Knowledge distillation

• Pruning

• Quantization

• {Low-rank approximation and sparsity}

5

Compression Technique: Distillation

6

https://docs.google.com/file/d/1UZRmETiYF7FnXJzzIzQBhAFiqaWx36HC/preview

Compression Technique: Distillation

7

Compression Technique: Distillation

8

Problem:

• During training, a model does not have to operate in real time and does not
necessarily face restrictions on computational resources, as its primary goal is
simply to extract as much structure from the given data as possible.

• But latency and resource consumption do become of concern if it is to be
deployed for inference.

So what? we must develop ways to compress model for inference.

Compression Technique: Distillation

9

Idea:

• In 2006, Buciluă et al. showed that it was possible to transfer knowledge from
a large trained model (or ensemble of models) to a smaller model for
deployment by training it to mimic the larger model’s output.

• In 2014 Hinton et al generalized the process and gave the name Distillation.

Main idea of distillation is that training and inference are 2 different tasks;
thus a different model should be used.

Buciluă et al., Model Compression, 2006
Hinton et al., Distilling the Knowledge in a Neural Network, 2014

https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf
https://arxiv.org/pdf/1503.02531.pdf

Distillation: Teacher Student

10

Loss

Teacher Model

Student Model

Distillation: Teacher Student

11

Assumption: if we can achieve similar convergence using a smaller network,
then the convergence space of the Teacher Network should overlap with the
solution space of the Student Network.

Teacher Model

Student Model

Teacher Convergence Space

Student Convergence Space

Teacher guided Student Convergence Space

Distillation: Teacher Student Loss

12

Modified softmax function with
Temperature:

Geoffrey Hinton, Oriol Vinyals & Jeff Dean, Dark Knowledge

https://www.ttic.edu/dl/dark14.pdf

Distillation: Teacher Student Training

13

Geoffrey Hinton, Oriol Vinyals & Jeff Dean, Dark Knowledge

Trained to minimize the sum
of two different cross entropy
functions:

• one involving the original
hard labels obtained using
a softmax with T=1

• one involving the softened
targets, T>1

https://www.ttic.edu/dl/dark14.pdf

Distillation: Teacher Student Training

14

Tutorial: Model Distillation

Colab Notebook

15

https://colab.research.google.com/drive/1neCym_e8dfpWZKbYPcqf_jIaXroShvXZ?usp=drive_link

What is next in Distillation?

16

1: Multiple teachers (i.e. converting an ensemble into a single
network).

2: Introducing a teaching assistant (the teacher first teaches the TA,
who then in turn teaches the student) etc.

3: Quite young field

A drawback of knowledge distillation as a compression technique,
therefore, is that there are many decisions that must be made
up-front by the user to implement it (student network doesn’t even
need to have a similar structure to the teacher).

Compression Techniques

• Knowledge distillation

• Pruning

• Quantization

• {Low-rank approximation and sparsity}

17

Compression Technique: Pruning

18

The main idea is to remove less impactful features of the neural network.

Pruning involves removing connections between neurons, and neurons from a
trained network. To prune a connection, we set a weight in the matrix to zero.

Two types of pruning:

• Pruning weights

• Pruning neurons
pruning weights

pruning neurons

Learning Both Weights and Connections for Efficient Neural Network [Han et al.,
NeurlIPS 2015]

https://browse.arxiv.org/pdf/1506.02626.pdf

Compression Technique: Pruning

19

Make neural networks smaller by removing weights and neurons

Learning Both Weights and Connections for Efficient Neural Network [Han et al.,
NeurlIPS 2015]
MIT EfficientML.ai: Pruning and Sparsity

https://browse.arxiv.org/pdf/1506.02626.pdf
https://www.dropbox.com/scl/fi/2oxmtvoeccyuw47yfambb/lec03.pdf?rlkey=3ykm0g21ibsoqn7xnw43v7aaw&dl=0

Compression Technique: Pruning

20

Make neural networks smaller by removing weights and neurons

Learning Both Weights and Connections for Efficient Neural Network [Han et al.,
NeurlIPS 2015]
MIT EfficientML.ai: Pruning and Sparsity

https://browse.arxiv.org/pdf/1506.02626.pdf
https://www.dropbox.com/scl/fi/2oxmtvoeccyuw47yfambb/lec03.pdf?rlkey=3ykm0g21ibsoqn7xnw43v7aaw&dl=0

Compression Technique: Pruning

21

Make neural networks smaller by removing weights and neurons

Learning Both Weights and Connections for Efficient Neural Network [Han et al.,
NeurlIPS 2015]
MIT EfficientML.ai: Pruning and Sparsity

https://browse.arxiv.org/pdf/1506.02626.pdf
https://www.dropbox.com/scl/fi/2oxmtvoeccyuw47yfambb/lec03.pdf?rlkey=3ykm0g21ibsoqn7xnw43v7aaw&dl=0

Compression Technique: Pruning

22

Pruning Granularities

Simple 2-D weight matrix example

Fine-grained/Unstructured

- More flexible pruning index choice
- Hard to accelerate (hardware limitations)

Coarse-grained/Structured

- Less flexible pruning idex choice (a subset of the
fine-grained case)

- Easy to accelerate (just a smaller matrix!)

Exploring the Regularity of Sparse Structure in Convolutional Neural Networks
[Mao et al., CVPR-W]

https://browse.arxiv.org/pdf/1705.08922.pdf

Compression Technique: Pruning

23

Example using convolutional layers

- Commonly used pruning granularities

Irregular Regular

Fine-grained
Sparsity (0-D)

Vector-level
Sparsity (1-D)

Kernel-level
Sparsity (2-D)

Filter-level
Sparsity (3-D)

Exploring the Regularity of Sparse Structure in Convolutional Neural Networks
[Mao et al., CVPR-W]

https://browse.arxiv.org/pdf/1705.08922.pdf

Drawbacks of neural network pruning:

• Optimal Pruning Challenge: determining the optimal neurons or weights to prune
without detrimentally impacting model performance can be complex and time consuming
in practise.

• Fine-Tuning Requirement: after pruning, models typically require additional fine-tuning
to recover potential losses in predictive accuracy, which might consume additional
training resources and time.

• Hardware Dependency: pruned models might not always translate to proportional
computational or energy savings due to hardware inefficiencies or dependencies in
exploiting sparsity.

• Model Robustness: excessive or imprecise pruning may lead to a substantial decrease
in model accuracy or robustness, especially when encountering unseen or
out-of-distribution data.

Compression Technique: Pruning

24

Tutorial: Model Pruning

Colab Notebook

25

https://colab.research.google.com/drive/18FBb3MiV4IcPPcJmteLZvE727Ec2QAhA?usp=sharing

Model Compression Technique: Quantization

27

To implement quantization with Tensorflow: MC.AI, Quantization in Deep Learning
using TensorFlow 2.X, May 2020

Main idea is to map values from a continuous or a large discrete set to values in a
smaller discrete set without losing too much information in the process.

Reducing the number of pixels, while
maintaining the image content.

Reducing a continuous signal, while
maintaining the signal information.

Image is in the public domain. “Analog to digital converter”

https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/
https://mc.ai/quantization-in-deep-learning-using-tensorflow-2-x/
https://en.wikipedia.org/wiki/Quantization_(signal_processing)

Model Compression Technique: Quantization

28

Size of a Deep Neural Network (in bytes)

num_parameters = total number of weights and biases of NN
parameter_size = size of parameter in bytes (e.g. 4 bytes for float32)

Bottlenecks in Training and Inference of Deep Neural Networks

 Memory Limitations: Memory demands for training large models, storing parameters, and handling
intermediary computations challenge available GPU memory, restricting model complexity, and training
efficiency.

 Data Transfer Bottlenecks: Substantial data movement between storage (e.g., disks), CPUs, and GPUs,

generates bottlenecks that slow down training and make real-time processing strenuous.

 I/O Constraints: Input/output operations, involving reading and preprocessing data, often become

bottlenecks, affecting GPU utilization and elongating training times, especially with voluminous and
complex datasets.

deep_nn_size ~ num_parameters * parameter_size

Neural Networks Quantization

29

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

Weight Quantization Techniques

- K-Means-based Quantization

- Linear Quantization

- Binary/Ternary Quantization

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

2.00

1.50

0.00

-1.00

3:

2:

1:

0:

Full Model K-Means
Quantized
Model

Storage Floating-Point
Weights

Integer Weights;
Floating-Point
Codebook

Computation Floating-Point
Arithmetic

Floating-Point
Arithmetic

Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf

Neural Networks Quantization

30

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

weights 32-bit float

Weight Quantization

2.09, 2.12, 1.92, 1.87

2.0

Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf

Neural Networks Quantization

31

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

weights 32-bit float

K-Means-based Weight Quantization

Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf

Neural Networks Quantization

32

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

weights (32-bit float)
K-Means-based Weight Quantization

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

2.00 -1.00 1.50 0.00

0.00 0.00 -1.00 2.00

-1.00 2.00 0.00 -1.00

2.00 0.00 1.50 1.50

cluster index (2-bit int) reconstructed weights (32-bit float)

0.09 0.02 0.02 0.09

0.05 0.14 0.08 0.12

0.09 0.08 0 0.03

0.13 0 0.03 0.01

quantization error

cluster

2.00

1.50

0.00

-1.00

centroids

3:

2:

1:

0:

storage 32 bit * 16
= 512 bit = 64B

2 bit * 16
= 32 bit = 4B

32 bit * 4
=128 bit = 16B+ = 20B

Assume N-bit quantization, and num_parameters = M >> 2N.

32 bit * M
= 32M bit

N bit * M
= NM bit

32 bit * 2N

= 2N+5 bit

3.2 x smaller

32/N x smaller

Neural Networks Quantization

33

2.09 -0.98 1.48 0.09

0.05 -0.14 -1.08 2.12

-0.91 1.92 0 -1.03

1.87 0 1.53 1.49

weights (32-bit float)
K-Means-based Weight Quantization

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index (2-bit int)

-0.03 -0.01 0.03 0.02

-0.01 0.01 -0.02 0.12

-0.01 0.02 0.04 0.01

-0.07 -0.02 0.01 -0.02

gradient

cluster

2.00

1.50

0.00

-1.00

centroids

3:

2:

1:

0:

-0.03 0.12 0.02 -0.07

0.03 0.01 -0.02

0.02 -0.01 0.01 0.04 -0.02

-0.01 -0.02 -0.01 0.01

0.04

0.02

0.04

-0.03

1.96

1.48

-0.04

-0.97

group by reduce

+

fine-tuned centroids

learning_rate

Neural Networks Quantization

34

K-Means-based Weight Quantization: Centroids Initialization

Centroid initialization impacts the quality of clustering and thus the network’s prediction accuracy.

Three types of initialization:

Forgy (random): Randomly choose k observations from the data set and use these as initial
centroids.

- Tends to concentrate around the highest mass of the weights’ PDF

Density-based: Space points linearly on the range of CDF values [0, 1]. Then finds horizontal
intersection with the CDF of the weights’ distribution.

- Makes the centroids dense around the highest mass, but more scattered than Forgy

Linear: Space points linearly on the range of weights’ values [min_weight_val, max_weight_val].
- This method is invariant to the distribution of the weights - most scattered

Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf

Neural Networks Quantization

35

K-Means-based Weight Quantization: Centroids Initialization

Three different methods for centroids initialization Initial distribution of weights, distribution of codebook before
fine-tuning (greencross), and after fine-tuning (red dot)

Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf

Neural Networks Quantization
K-Means-based Weight Quantization

3 0 2 1

1 1 0 3

0 3 1 0

3 1 2 2

cluster index (2-bit int)

decode

2.00

1.50

0.00

-1.00

centroids

3:

2:

1:

0:

2.00 -1.00 1.50 0.00

0.00 0.00 -1.00 2.00

-1.00 2.00 0.00 -1.00

2.00 0.00 1.50 1.50

ReLU

+

Conv

bias

weights

decode

- quantized weights
- codebook (float)

inputs

outputs

float

float
float

float

float

float

float

int

quantized weights (32-bit float)

During Computation In Storage

Deep Compression: Compressing Deep Neural Networks with Pruning,
Trained Quantization and Huffman Coding [Han et al., ICLR 2016]

https://browse.arxiv.org/pdf/1510.00149.pdf
https://browse.arxiv.org/pdf/1510.00149.pdf

Drawbacks of neural network quantization:

● Proficiency in Hardware Architecture: Necessitates a in-depth
understanding of hardware intricacies and bitwise computations.

● Hardware Limitations: Efficiency gains are intrinsically linked to the
characteristics and capabilities of the utilized hardware.

● Optimization Difficulties: Maintaining balance between reducing
model size through quantization and preserving predictive capabilities
could be tricky requiring careful management of the trade-off between
model size and accuracy.

Compression Technique: Quantization

37

THANK YOU

