Lecture 8: Advanced Training
Workflows

AC215

Pavlos Protopapas
SEAS/ Harvard

Outline

o ks w0bh -

Recap

Experiment Tracking

Tutorial: Experiment Tracking
Vertex Al, Serverless Training
Tutorial: Serverless Training
Multi GPU Training

Outline

o gk w0

Recap

Experiment Tracking

Tutorial: Experiment Tracking
Vertex Al, Serverless Training
Tutorial: Serverless Training
Multi GPU Training

Recap: Motivation

The 3 components for better Deep Learning

Q Better/Faster Models i Faster Hardware

e Extraction e SOTA Models e Scaling data

e Transformation e Transfer Learning processing

e Labeling e Distillation e GPU, TPU

e Versioning e Compression e Multi GPU Server
e Storage Training

e Processing

Input to Training

Recap: Project Workflow

POC Prototype MVP

Data Collection

Build Better Models

ML Workflow, Design & Build Mushroom App

Deployment, Scaling & Automation

Outline

o ks Wb~

Recap

Experiment Tracking
Tutorial: Experiment Tracking
Vertex Al, Serverless Training
Tutorial: Serverless Training
Multi GPU Training

Experiment Tracking

Why

* QOrganize your work(data collection/model training)
* Reproducibility
* Logging

Experiment Tracking

What

* Environments

« Scripts (Code)

« Data (version, train/validate/test split)

« Data pre-processing logic

* Model hyper parameters / configurations
« Evaluation metrics

 Model weights

* Performance results

« Sample predictions

Training Code

Training Params
learning rate = 0.001
batch size = 32

epochs = 10

Data
train _data, validation _data = get dataset(...)
Model

model = build model(...)

Train

training results = model.fit(...)

Training Code using WandB

Training Params
learning rate = 0.001
batch size = 32

Initialize wandb run
epochs = 10

Data

train data, validation data = get datasef(...)
Model

model = build model(...) Add a callback to monitor model
Initialize a W&B run
wandb.init(...)
Train
training results = model.fit(...,callbacks=[WandbCallback()])
Close the W&B run

Let wandb know to finish the run

wandb.run.finish()

A

10

Experiment Tracking using WandB

ac215 Projects & mushroom-app-demo Workspace

© | Runs = (s oavow®

Overview

’ Charts 5 Add panel
)

Workspace

.|||

val_accuracy
tfhub_mobilenetv2
= tfhub_mobi

B

Runs

® Name

& ® tfhub_mobilenetv2... . S 14

Jobs

® @ tfhub_mobilenetv2... 10
@\ 60

= ® @ mobilenetv2_train_...) \. 6

Automat. 40

e ® @ mobilenetv2_train_... s 2

Sweeps

@

Reports
accuracy val_loss

S

=z - +fhub

Artifacts

11

Tutorial: Experiment Tracking

Goals of the tutorial are

e Explore models for mushroom classifications
e https://colab.research.google.com/drive/TN6UDx3fFdz7_IDa7Xs

ax-V1KVN47ZxzZ-?usp=sharing
e Experiment Tracking using Weights & Bias

https://colab.research.goodgle.com/drive/TNP3crNooNnJZa1KLu

OKDba_SMLRDgTyG?usp=sharing

12

https://colab.research.google.com/drive/1N6UDx3fFdz7_IDa7Xsqx-V1KVN4ZxzZ-?usp=sharing
https://colab.research.google.com/drive/1N6UDx3fFdz7_IDa7Xsqx-V1KVN4ZxzZ-?usp=sharing
https://colab.research.google.com/drive/1NP3crNooNnJZa1KLuOKDba_SMLRDqTyG?usp=sharing
https://colab.research.google.com/drive/1NP3crNooNnJZa1KLuOKDba_SMLRDqTyG?usp=sharing

Outline

2N

Recap

Experiment Tracking

Tutorial: Experiment Tracking
Vertex Al, Serverless Training
Tutorial: Serverless Training
Multi GPU Training

13

Vertex Al

« Vertex Al is machine learning platform offered by Google in
GCP.

* Vertex Al combines data engineering, data science, and ML
engineering workflows, enabling your teams to collaborate

using a common toolset and scale your applications using the
benefits of Google Cloud.

14

ertex Al

Vertex Al: https://console.cloud.google.com/vertex-ai

CcC O @ console.cloud.google.com, I "

= Google Cloud

Vertex Al

Dashboard

Y Model Garden
& Pipelines
NOTEBOOKS
co Colab Enterprise
£ Workbench
GENERATIVE Al STUDIO
+ Overview
@% Language
[Vision
=% Speech
DATA
MODEL DEVELOPMENT
® Training
A Experiments
O Metadata

DEPLOY AND USE

® ac215-project ¥ ‘

Dashboard

vertex

Get started with Vertex Al

Vertex Al empowers machine learning
developers, data scientists and data
engineers to take their projects from
ideation to deployment, quickly and cost-
effectively.Learn more about Vertex Al (3

Colab Enterprise

A new notebook experience with enterprise-
grade privacy and security. Start coding in a
couple of clicks.

-> Go to Colab Enterprise

Prepare data

[z Data sets
Store and manage training data.

Q. DNata lahellina

vV SHOW API LIST

\ 4

Model Garden

Browse, customise and deploy machine
learning models. Choose from Google or
popular open-source models.

- Trynow

Model development

Y Model Garden

Tune and deploy a Google or open-source
model.

15

https://console.cloud.google.com/vertex-ai

Vertex Al

Build ML Workflow

\/ Vertex Al
TOOLS

Ijl Dashboard

Y Model Garden

07 Pipelines
NOTEBOOKS

co Colab Enterprise

R

Workbench

GENERATIVE Al STUDIO

é_——‘§\\\\\\\\““————- JupyterLab notebooks

«___,,,/////””—‘—'Training pipelines and jobs

+ Overview
&% Language
[Vision
=% Speech
DATA
MODEL DEVELOPMENT
@) Training
A Experiments
Hul Metadata

16

Serverless Training

What is serverless training?

* EXxecute training on an as-need basis

* Access GPU hardware only for the “training” step in a pipeline
* No setup of servers required

* Brings down training cost

Serverless Training

1) Move Code to Python File

CO Notebook
def get_dataset():
def get model 1():

def get model 2():

Data

train data, val_data = get_dataset(...)
Model

model 1 = build model 1(...)

Train

training results = model 1.fit(...)

Pass Arguments:

¢ Python File
def get_dataset():
def get model 1():

def get model 2():

Data

train data, val _data = get_dataset(...)

Model

model = ...

Train

training results = model.fit(...)
model=model_1 epochs=25 batch_size=32

18

Serverless Training

2) Package & Upload to GCP “Y acp

CO Notebook @ Python File Packaged | |
Python files :

\

e A TAR.GZ : -
P B N\ | i
| i i

! B Vertex Al ;

| Job Job Job |

i Container Container Container i

Model Trainer CLI : - - !

Container CPU,RAM, GPU CPU, RAM, GPU CPU, RAM

3) Create & Run Training Jobs

Tutorial: Serverless Training

Steps to perform Serverless Training on mushroom classification
models:

o Create a GCS bucket to store packaged python training code.
o Get Weights & Bias API Key for experiment tracking.

o Package & Upload python code.

o Create Jobs in Vertex Al.

o For detailed instructions, please refer to the following link

| Server|eSS Tra|n|nq (httgs:[{github.com[dlogs—io[modeI—training)

[VleW Tra | n | nC] JObS . (https://console.cloud.qooqle.com/vertex-ai/traininq/custom-iobs)

| V|eW EXDeI’Iment MetnCS (https://wandb.ai/home)

20

https://github.com/dlops-io/model-training#mushroom-app-serverless-model-training-demo
https://github.com/dlops-io/model-training
https://console.cloud.google.com/vertex-ai/training/custom-jobs
https://console.cloud.google.com/vertex-ai/training/custom-jobs
https://wandb.ai/home
https://wandb.ai/home

Outline

o Ok w0~

Recap

Experiment Tracking

Tutorial: Experiment Tracking
Vertex Al, Serverless Training
Tutorial: Serverless Training
Multi GPU Training

21

Multi GPU Training

How do we perform distributed training?

* What type of distribution:

m Single Machine, Single GPU [One Device Strategy]
m Single Machine, Multiple GPUs [Mirrored Strategy]
m Multiple Machine, Multiple GPUs [Multi Worker Mirrored Strategy]

* QOrganize code to apply the appropriate Strategy
* Train as usual

22

Training Code

Training Params
learning rate = 0.001
batch size = 32

epochs = 10

Data
train _data, validation _data = get dataset(...)
Model

model = build model(...)

Train

training results = model.fit(...)

23

Training Code for Multi GPU

Training Params
batch size = 32 Create distribution Strategy

Create distribution strategy

strategy = tf.distribute.MirroredStrategy () Adjust dataset batch size
num workers = strategy.num replicas in sync

Data

train data, validation data = get dataset(...,batch size=batch size * num workers)

Wrap model creation and compilation within scope of strategy
with strategy.scope():
Model

del = build model(... : :
foae uild model{...) Create & Compile model in strategy scope

Train

training results = model.fit(...)

24

THANK YOU

