
Pavlos Protopapas
SEAS/Harvard

AC215

Lecture 6: Data -
Dask

Outline

1. Recap
2. Dask
3. Directed Acyclic Graph (DAGs)
4. Computational Resources
5. Task Scheduling
6. Tutorial

2

Outline

1. Recap
2. Dask
3. Directed Acyclic Graph (DAGs)
4. Computational Resources
5. Task Scheduling
6. Tutorial

3

Recap: Motivation

More Data Faster Hardware

The 3 components for better Deep Learning

Better/Faster Models

4

Recap: Motivation

More Data Faster Hardware

● Extraction
● Transformation
● Labeling
● Versioning
● Storage

● Processing
● Input to Training

● SOTA Models
● Transfer Learning
● Distillation
● Compression

● Scaling data
processing

● GPU, TPU
● Multi GPU Server

Training

The 3 components for better Deep Learning

Better/Faster Models

5

Motivation: Data Size

Dataset type Size range Fits in RAM? Fits on local disk?

Small dataset Less than 2-4 GB Yes Yes

Medium dataset Less than 2 TB No Yes

Large dataset Greater than 2 TB No No

6

Motivation: Data Size

Challenges:
• Medium datasets will not all fit in memory (RAM)
• Large datasets will not fit in disk (Hard drive)

7

Motivation: Data Size

Challenges:
• Medium datasets will not all fit in memory (RAM)
• Large datasets will not fit in disk (Hard drive)

Solution:
• Building data pipelines

– Read data in batches which can fit in RAM
– Feed data in batches to GPU
– Read data from big data store in batches, so not all data need to

be present in local hard drive
8

Motivation: Data Size

Tools:
• Google Cloud Storage (Big data store)
• Dask
• TensorFlow Data
• TensorFlow Records

9

Data Tools

Data Size:
• Google Cloud Storage
• Dask
• TensorFlow Data
• TensorFlow Records

10

Data Management:
• Label Studio
• DVC
• Kubeflow

Data Tools

Data Size:
• Google Cloud Storage
• Dask
• TensorFlow Data
• TensorFlow Records

11

Data Management:
• Label Studio
• DVC
• Kubeflow

Cloud Storage

Advantage of Cloud Storage:
• Unlimited capacity (Scalability)
• 99.99% uptime
• Distributed storage
• Data security
• Low cost

Examples:
• AWS S3
• Azure data lake
• GCS (Google Cloud Storage)

12

Outline

1. Recap
2. Dask
3. Directed Acyclic Graph (DAGs)
4. Computational Resources
5. Task Scheduling
6. Tutorial

14

What is Dask

read data using DataFrame API
df = dd.read_csv("path to csv")

print("Shape:", df.shape)
Shape: (Delayed('int-weyus...'), 43)

Display the top rows
df.head()

15

read data using DataFrame API
df = pd.read_csv("path to csv")

print("Shape:", df.shape)
Shape: (100000, 43)

Display the top rows
df.head()

Pandas Dask

Dask is a free and open-source library for parallel computing in Python. It allows you to
work on arbitrarily large datasets and dramatically increases the speed of your
computations.

Dask’s features

What is unique about Dask:

• It allows to work with larger datasets making it possible to
parallelize computation. At the same time, Dask can be used
effectively to work with both medium datasets on a single machine and
large datasets on a cluster.

• It simplifies the operation and therefore reducing the cost of using
more complex infrastructure.

16

Dask

• Dask is entirely built in Python and seamlessly scales libraries like
NumPy, Pandas, and scikit-learn. This makes it easy to learn for data
scientists familiar with Python's syntax, while also offering flexibility

• Dask can be used as a general framework for parallelizing most
Python objects.

• Additionally, Dask has minimal configuration and maintenance
requirements, simplifying its adoption and ongoing use.

17

Dask Usage Across Different Dataset Sizes

• Small Datasets:Not particularly advantageous for small datasets due to the
overhead it introduces. Complex operations can often be performed without
needing to spill data to disk, which avoids slowing down the process.

• Medium Datasets:Highly beneficial for medium-sized datasets as it enables
local machine processing. However, leveraging parallelism can be challenging
since Pandas doesn't easily distribute work across multicore systems.

• Large Datasets:Great for handling large datasets. Traditional libraries like
Pandas, NumPy, and scikit-learn are not optimized for these volumes, as they
were not originally designed for distributed computing.

18

Dask Architecture

Dask Subsystem

Low-level APIs

High-level APIs

Dask Array
Parallel Numpy

Dask Bag
Parallel lists

Dask DataFrame
Parallel Pandas

Dask ML
Parallel scikit-learn

Dask Delayed
Lazy parallel objects

Dask Futures
Eager parallel objects

Scheduler
Creates and manages DAGs
Distributes tasks to workers

19

Outline

1. Recap
2. Dask
3. Directed Acyclic Graph (DAGs)
4. Computational Resources
5. Task Scheduling
6. Tutorial

20

Directed Acyclic Graph (DAGs)

A graph is a representation of a set of objects that have a
relationship with one another. It is used to representing a wide variety
of information.

 A graph consists of:
• node: a function, an object or an action
• line: symbolize the relationship among the nodes

In a directed acyclic graph there is one logical way to traverse the
graph. No node is visited twice.

In a cyclic graph: exist a feedback loop that allow to revisit and repeat
the actions within the same node.

21

Directed Acyclic Graph [Cooking example]

Dice onion

Mince
garlic

Heat olive
oil

Sauté
ingredients
(8 minutes)

Sauté
guanciale

No dependencies.
These tasks can be started in

any order

These tasks can only be started when all
nodes connected to them have been

completed.
22

Directed Acyclic Graph [Real Time Twitter Analysis]

Login to
X

Call API
to read
tweets

Analyse

These two tasks are connected to each
other in an infinite feedback loop. There is
no logical termination point in this graph.

Send an
alert

23

Outline

1. Recap
2. Dask
3. Directed Acyclic Graph (DAGs)
4. Computational Resources
5. Task Scheduling
6. Tutorial

24

Managing Computational Resources with Dask

Two Main Strategies:

Scale Up

● Description: Increase the size of the available resource by investing in

more efficient technology.

● Pros: Immediate boost in performance.

● Cons: Diminishing returns on investment.

Scale Out (Dask's Approach)

● Description: Add more, often cheaper, resources to the existing pool.

● Pros: Easier to manage; Cost-effective.

● Cons: Need to distribute workload efficient
25

Computational Resources

Scale up /
Vertical Scaling

Scale out /
Horizontal Scaling

26

Concurrency & Resource Management in Dask

 What is Concurrency?

When the volume of tasks increases, some computational
resources may be underutilized, resulting in inefficiencies.

 Resource Starvation
A situation where certain computational elements are idle due to
insufficient availability of shared resources.

 Role of Schedulers
Schedulers in Dask tackle this issue by dynamically allocating
appropriate resources to different tasks, maximizing efficiency.

27

Computational Resources

Dicing onions

Mincing garlic

Shared resources

This cook must wait and remain idle until either a knife becomes available or a new
task that does not require a knife is available.
This is an example of a resource-starved worker.

28

Dask's Resilience to Failures

Fault Tolerance in Dask

Dask is designed to recover from node failures gracefully, ensuring minimal
disturbance to the ongoing process.

Types of Failures

○ Worker Failures

When a worker exits unexpectedly, Dask reassigns its tasks to another
worker. This may cause delays but prevents data loss.

○ Data Loss Failures

In extreme cases, where data is lost, the scheduler halts and restarts the
entire process from the beginning.

29

Outline

1. Recap
2. Dask
3. Directed Acyclic Graph (DAGs)
4. Computational Resources
5. Task Scheduling
6. Tutorial

30

Task Scheduling

Dask performs a so called lazy computation. Until you run the method
.compute(), Dask only splits the process into smaller logical pieces.

Even though the process is defined, the number of resources assigned and
the place where the result will be stored are not assigned because the
scheduler assigns them dynamically. This allow to recover from worker
failure.

31

Dynamic Scheduling in Dask

 Centralized Scheduling

Dask employs a central scheduler that coordinates task distribution
across multiple workers.

 Load Imbalances

Task distribution may vary due to server capabilities and data access,
leading to imbalances in workload, power, and data access.

 Adaptive Scheduling

To mitigate bottlenecks and improve performance, the Dask scheduler
continuously adapts to changes, optimizing runtime.

32

Dask's Versatile Scheduling Options

 Multi-threaded scheduler='threads’
● Ideal for I/O-bound tasks or tasks that benefit from shared memory.
● Note: May not be efficient for CPU-bound tasks due to Python's GIL.

 Multi-process scheduler='processes’
● Suitable for CPU-bound tasks.
● Overcomes Python's GIL limitations.

 Distributed Scheduler client
● Scalable to multiple servers.
● Offers advanced functionalities like data locality and worker constraints.

 Single-threaded (Debugging) scheduler='single-threaded’
● Executes tasks in a single thread.
● Useful for debugging and profiling.

33

Task Scheduling

Assuming there are two nodes for computation.

Data needs to be replicated for each node in order to perform computation
across nodes.

Node 1

Local disk

Node 2

Local disk

34

Task Scheduling

Assuming there are two nodes for computation.

Data needs to be replicated for each node in order to perform computation
across nodes.

The remedy is to split data minimizing the number of data to broadcast
across different local nodes.

Node 1

Local disk

Node 2

Local disk

Node 1 Node 2

35

Task Scheduling

Assuming there are two nodes for computation.

Data needs to be replicated for each node in order to perform computation
across nodes.

The remedy is to split data minimizing the number of data to broadcast
across different local nodes.

Node 1

Local disk

Node 2

Local disk

Node 1 Node 2

For best performance, a Dask cluster should use a
distributed file system (S3, HDFS, GCS) as a data storage. 36

Dask Review

• Dask can be used to scale popular Python libraries such as Pandas
and NumPy allowing to analyze dataset with greater size (>8GB).

• Dask uses directed acyclic graph to coordinate execution of
parallelized code across processors.

• Upstream actions are completed before downstream nodes.

• Scaling out (i.e. add workers) can improve performances of
complex workloads, however, create overhead that can reduces
gains.

• In case of failure, the step to reach a node can be repeated from
the beginning without disturbing the rest of the process.

37

Dask Limitations

• Dask dataframe are immutable. Functions such as pop and insert
are not supported.

• Dask does not allow for functions with a lot of data shuffling like
stack/unstack and melt.
• Do major filter and preprocessing in Dask and then dump the

final dataset into Pandas.
• Join, merge, groupby, and rolling are supported but

expensive due to shuffling.
• Do major filter and preprocessing in Dask and then dump the

final dataset into Pandas or limit operations only on index which
can be pre-sorted.

38

Tutorial

Goals of the tutorial are

● Familiarize with Dask API
● Use Dask to compute dataset metrics
● 03_tutorial_data_dask.ipynb

39

https://colab.research.google.com/drive/1WDMDlbf5IcbhjTFPe-D1JY9lwVx-ufwW?usp=sharing

THANK YOU

40

