
Pavlos Protopapas
SEAS/Harvard

AC215

Lecture 4: Containers II

Outline

1. Recap: Review of Previous Material
2. Containers in Architecture: Microservices vs. Monolithic
3. Implementing Containers as Microservices

2

Outline

1. Recap: Review of Previous Material
2. Containers in Architecture: Microservices vs. Monolithic
3. Implementing Containers as Microservices

3

Recap: Environments vs Virtualization vs Containerization

4

OS

Bins/lib

App2

Infrastructure

Hypervisor

Virtualization

OS OS

Bins/lib Bins/lib

App1 App3

Operating System

VM VM VM

Infrastructure

Docker

Containerization

Operating System

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Infrastructure

Python

Virtual Environments

Operating System

Libs

App1

Venv

Libs

App2

Venv

Libs

App3

Venv

Environments

5

Physical Hardware

Language Runtime (Python)

Virtual Environments

Host Operating System

Libs

App1

Venv

Libs

App2

Venv

Libs

App3

Venv

Virtual Environment Manager (Conda)

● Dependency Isolation: Virtual environments modify the
PATH and other environment variables so that the
dependencies are loaded from the environment’s directory,
rather than system-wide directories

● No Kernel Isolation: Unlike VMs and containers, virtual
environments don't provide any kernel level isolation.

● Resource Utilization: Since virtual environments don't have
any additional OS or kernel, they are the most efficient in
terms of resource utilization among the three.

● Filesystem Boundaries: Virtual environments usually don't
provide isolation at the filesystem level; files written in one
environment are accessible from others.

Virtualization (Virtual Machines)

6

Guest OS

Bins/Libs

App2

Physical Hardware

Hypervisor

Virtualization

Guest OS

Bins/Libs

App1

Host Operating System

VM VM

Hardware
Virtualization

Hardware
Virtualization

● CPU Virtualization: VMs usually have a set number of virtual
CPU cores allocated by the hypervisor. These virtual CPUs
map to physical CPU cores, but the hypervisor adds a layer
of management and overhead, which can lead to
inefficiencies.

● Emulated Devices: VMs have emulated hardware devices,
meaning the VM sees virtual CPUs, virtual network adapters,
and virtual disks that the hypervisor translates to real
hardware resources.

● Full OS: Each VM runs its full guest OS. This means that
each VM has its own separate kernel space and user space,
making resource management fully independent but less
efficient.

● Resource Allocation: RAM and CPU are often (not always)
allocated in blocks, and disk space is generally pre-allocated,
making VMs less flexible in terms of resource utilization.

Containerization

7

Physical Hardware

Container Engine (Docker)

Containerization

Operating System

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

● Namespaces: Containers use kernel features like namespaces to provide
isolation of processes and resources. This allows each container to operate as
if it is the only application running on the system. Example namespaces
include:
○ PID Namespace: Isolates the process ID number space. In other words,

processes in different PID namespaces can have the same PID.
○ Mount Names: Isolates the file system tree so that each namespace can

have its own file system layout.

● Control Groups (cgroups): Complementary to namespaces, cgroups limit
resource usage, like CPU, memory, and IO, allowing for better resource
utilization compared to VMs.

● Process Virtualization: Namespaces and cgroups together enable process
virtualization by allowing processes to run in isolated environments with
controlled access to system resources.

● Shared Kernel: Containers share the host's OS kernel but have their own
filesystem, libraries, and bins, making them lightweight yet isolated.

● Direct Access: Containers can access host resources more directly, avoiding
much of the overhead introduced by hypervisors in VMs.

Pro Tips 1: multi-stage builds

Running commands can take up a lot of disk space. For example,
when installing and building packages, we download and
produce many files. This can make our image size very large.

Question: Does our app need all of these files?
Answer: Usually no! We just need the executable and its runtime
dependencies.

Multi-stage builds allow us to bring only what we need into the
final Docker image.

Pro Tips 1: multi-stage builds
Multi-stage builds in Docker allow the use of multiple FROM statements in a single
Dockerfile.
Each stage can bring in files from the previous stage using the COPY instruction.

COPY –-from=builder /bin/hello /bin/hello

Dockerfile command

Location where file(s) from previous image
should live on new image

Name of previous image you want to get
file(s) from

Location of file(s) from previous image

multi-stage builds

Multi-stage builds can
○ decrease container size
○ improve security (e.g., avoid sharing private keys from GitHub)
○ leverage different base images for each stage while preserving only the final image.

https://docs.docker.com/build/building/multi-stage/

Pro Tips 1: multi-stage builds: example

First Stage: Building the Python application

FROM python:3.8 AS build-env

WORKDIR /app

COPY BLAH BLAH

RUN BLAH BLAH

Second Stage: Copy the dependencies and run the application

FROM python:3.8-slim

COPY --from=build-env /usr/local/lib/python3.8/site-packages

/usr/local/lib/python3.8/site-packages

WORKDIR /app

COPY BLAH BLAH

CMD BLAH BLAH

When building a more complicated Docker image, there is a small chance the specific
platform (OS and CPU architecture) on your machine causes issues when sharing the
Docker image with someone on a different machine

Example: Building a complex image on M1 Mac (linux/arm64) and trying to run the
image on an older Macbook (linux/amd64)

Error message to look out for
The requested image's platform (linux/arm64) does not match the
detected host platform (linux/amd64) and nospecific platform was
requested

Solution:
○ Use the --platform flag within the FROM command in your Dockerfile to

specify the target OS and CPU architecture for the build output

Pro Tips 2: multi-platform images

multi-platform images

https://docs.docker.com/engine/reference/builder/#from
https://docs.docker.com/build/building/multi-platform/
https://docs.docker.com/build/building/multi-platform/

Outline

1. Recap: Review of Previous Material
2. Containers in Architecture: Microservices vs. Monolithic
3. Implementing Containers as Microservices

12

Why use Containers?

13

Conceptual Scenario

• Picture building a comprehensive application, such as an online
store.

Traditional Approach

• Traditionality you would build this using a Monolithic Architecture

Monolithic Architecture

14

Browser Apps

Mobile Apps

Server

Database

Storefront UI Module

Catalog Module

Reviews Module

Orders Module

HTML / REST / JSON

REST / JSON

Java

Oracle

Monolithic Architecture - Advantages

15

Simplicity in Development:
Streamlined development process as most tools and IDEs
natively support monolithic applications.

Ease of Deployment:
Hassle-free deployment with all components bundled into a
single, unified package.

Scalability:
Easier to scale horizontally by replicating the entire
application as a whole.

Monolithic Architecture - Disadvantages

16

Maintenance Challenges:

Complexity increases over time, making it harder to implement
changes or find issues.

System Vulnerability:

A failure in a single component can lead to the collapse of the
entire system.

Patching Difficulties:

Patching or updating specific modules can be cumbersome due
to tightly-coupled components.

Monolithic Architecture - Disadvantages

17

Technology Lock-in:

Adopting new technologies or updating existing ones can be
problematic due to interdependencies.

Slow Startup:

Increased startup time as all components must be initialized
simultaneously.

Applications have changed dramatically

18

Today

Apps are constantly being developed
Build from loosely coupled components

Newer version are deployed often
Deployed to a multitude of servers

A decade ago

Apps were monolithic
Built on a single stack (e.g. .Net or Java)

Long lived
Deployed to a single server

Data Science

Apps are being integrated with various
data types/sources and models

Monolithic Architecture

19

Browser Apps

Mobile Apps

Server

Database

Storefront UI Module

Catalog Module

Reviews Module

Orders Module

HTML / REST / JSON

REST / JSON

Java

Oracle

Today: Microservice Architecture

20

Browser Apps

Mobile Apps

Edge Device Apps

API Service

REST / JSON

REST / JSON

REST / JSON

Storefront UI

Catalog Module

Reviews Module

Orders Module

HTML

Recommendation
Module

Cloud Store

Database

Database

Models

Microservice Architecture - Advantages

21

Simplified Maintenance:
Modular design makes it easier to manage, update, and debug individual services.

Fault Isolation:
Independent components ensure that failure in one service doesn't bring down the
entire application.

Streamlined Patching:
Easier to patch or update specific services without affecting the entire system.

Technological Flexibility:
Adapting to or adopting new technologies becomes seamless due to service
independence.

Quick Startup:
Reduced startup time as all components can be initialized in parallel.

Microservice Architecture - Disadvantages

22

Development Complexity:
Varied technologies across components can complicate the
development process.

Deployment Hurdles:
Multiple technologies and dependencies require a complex setup for
deployment.

Scaling Concerns:
Scaling the entire application can be intricate due to disparate
components.

Docker + Kubernetes

Why use Containers?

23

• Consider a software development team workflow for
developing an App

• Traditionality you would develop/build this independently in
various machines (dev, test, qa, prod)

Software Development Workflow (no Docker)

24

GitHub

Source Control

Windows

Node.js
Python

Linux

Node.js
Python

Mac

Node.js
Python

OS Specific installation in
every developer machine

Every team member moves
code to source control

Build server needs to be
installed with all required
softwares/frameworks

Production build is performed
by pulling code from source
control

Production / Test Servers

LinuxLinux

Production server needs to
be installed with all required
softwares/frameworks

Production server will be
different OS version than
development machines

Build Server

Linux

Software Development Workflow (with Docker)

25

GitHub

Source Control

Development machines only
needs Docker installed

Containers need to be setup
only once

Every team member moves
code to source control Build server only needs

Docker installed

Docker images are built for a
release and pushed to
container registry

Production server only needs
Docker installed

Production server pulls
Docker images from
container registry and runs
them

Windows

Linux

Mac

Build Server

Linux

Production/ Test Servers

LinuxLinux

Outline

1. Recap: Review of Previous Material
2. Containers in Architecture: Microservices vs. Monolithic
3. Implementing Containers as Microservices

26

Translate Text

Tutorial - Building the Mega Pipeline App

27

Record Audio Generate Text Synthesise AudioTranscribe Audio

GCS Bucket

Audio + Text Files

Synthesise Audio

1 2 3

4

6

5

Tutorial - Building the Mega Pipeline App

28

https://ac215-mega-pipeline.dlops.io/

Tutorial - Building the Mega Pipeline App

29

• App: https://ac215-mega-pipeline.dlops.io/

• Teams
– 📝Team A transcribe_audio:

– 🗒Team B generate_text:

– 🔊Team C synthesis_audio_en:

– 󰏃Team D translate_text:

– 🔊Team E synthesis_audio:

• Instructions: https://github.com/dlops-io/mega-pipeline

https://ac215-mega-pipeline.dlops.io/
https://github.com/dlops-io/mega-pipeline/tree/main/transcribe_audio
https://github.com/dlops-io/mega-pipeline/tree/main/generate_text
https://github.com/dlops-io/mega-pipeline/tree/main/synthesis_audio_en
https://github.com/dlops-io/mega-pipeline/tree/main/translate_text
https://github.com/dlops-io/mega-pipeline/tree/main/synthesis_audio
https://github.com/dlops-io/mega-pipeline

THANK YOU

