
Pavlos Protopapas
SEAS/Harvard

AC215

Lecture 3: Containers I

Outline

1. Recap & Motivation
2. What is a Container
3. Why use Containers
4. How to use Containers

2

Outline

1. Recap & Motivation
2. What is a Container
3. Why use Containers
4. How to use Containers

3

Recap Virtual Machines: Pros and Cons

Cons
• Resource Intensive:
• Consumes hardware resources from the

host machine.

• Portability Issues:
• VMs are large in size, making them harder

to move between systems.

• Overhead:
• Requires additional resources to run the

hypervisor and manage multiple operating
systems.

Pros
• Full autonomy:

Complete control over the operating system and
applications, similar to a physical server.

• Very secure:
• Isolated environment helps in minimizing the risk

of system intrusion.

• Lower costs:
• Can be more cost-effective for applications that

need full OS functionality.

• Cloud Adoption:
• Offered by all major cloud providers for

on-demand server instances.

5

Recap: Virtual Environments

7

Cons
• Difficulty in Setup:
• Initial setup can be complex, especially

for those new to the concept.

• No Isolation from Host:
• Virtual environments share the host's

operating system, leading to potential
conflicts.

• OS Limitations:
• May not be compatible across different

operating systems, requiring additional
configuration.

Pros
• Reproducible Research:
• Easy to replicate experiments and share

research outcomes due to consistent
environments.

• Explicit Dependencies:
• Clear listing of all required packages

and versions, reducing ambiguity.

• Improved Engineering Collaboration:
• Team members can quickly set up the

same environment, streamlining
development.

Wish List

Automated Setup:
Automatically set up (installs) OS and extra libraries and set up the python
environment.

Isolation:
Complete separation from the host machine and other containers, ensuring a
consistent run-time environment.

Resource Efficiency:
Minimal use of CPU, Memory, and Disk resources, optimized for performance.

Quick Startups:
Near-instantaneous container initialization, reducing time to deployment.

8

Containers

Outline

1. Recap & Motivation
2. What is a Container
3. Why use Containers
4. How to use Containers

9

What is a CONTAINER

A container is a program that runs
on your machine, essentially
acting as a miniature computer
within your main computer. It uses
resources from the host machine
(CPU, Memory, Disk, etc.) but
behaves like its own operating
system with an isolated file system
and network.

10

CPU, Memory, Disk, …

Container Program

MacOS, Windows, …

Laptop, Desktop:

Operating System:

Software:

Containers:
Files

Apps

Files

Apps

Files

Apps

It packages code and all its dependencies to ensure that the
application behaves the same way, regardless of where it's
run.

Environments vs Virtualization vs Containerization

12

OS

Bins/lib

App2

Infrastructure

Hypervisor

Virtualization

OS OS

Bins/lib Bins/lib

App1 App3

Operating System

VM VM VM

Infrastructure

Docker

Containerization

Operating System

Bins/lib

App3

Container

Bins/lib

App1

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Bins/lib

App2

Container

Bins/lib

App3

Container

Infrastructure

Python

Virtual Environments

Operating System

Libs

App1

Venv

Libs

App2

Venv

Libs

App3

Venv

Outline

1. Recap & Motivation
2. What is a Container
3. Why use Containers
4. How to use Containers

13

Advantages of a CONTAINER

• Portability & Lightweight: Containers encapsulate everything
needed to run an application, making them easy to move
across different environments.

• Fully Packaged: Containers include the software and all its
dependencies, ensuring a consistent environment throughout
the development lifecycle.

• Versatile Usage: Containers can be used across various
stages, from development and testing to training and
production deployment

14

What Makes Containers so Small?

15

Container = User Space of OS

• User space refers to all of the code in an operating system that lives
outside of the kernel

User Space Kernel Space

Process Virtualization

Process

RAM

Disk

System Calls

Outline

1. Recap & Motivation
2. What is a Container
3. Why use Containers
4. How to use Containers

16

What is docker?

Open Source: Community-driven and

compatible.

Platform: Develop, ship, and run applications in

containers.

Portability: Consistent across various

environments.

Ecosystem: Docker Hub, Kubernetes, and more.

How to run a docker container

18

• We use a simple text file, the Dockerfile, to build the
Docker Image, which consists of an iso file and other files.

• We run the Docker Image to get Docker Container.

What is the difference between an image and container

19

Docker Image is a template aka a blueprint to create a
running docker container. Docker uses the information
available in the Image to create (run) a container.

Docker file is the hand written description of a recipe,
Image is like the formal recipe and ingredients, container is
like a dish.

Alternatively, you can think of an image as a class and a
container is an instance of that class.

Anatomy of a Dockerfile

20

FROM: Specifies the base OS image (e.g., alpine,
Ubuntu) for building the Docker image.

RUN: Executes commands to build the image. Each
RUN creates a new layer.

ENTRYPOINT: Sets the default executable for the
container, making it behave like a standalone
application.

CMD: Sets default commands or parameters for
container startup, but can be overridden by the
`docker run` command.

ADD: Similar to COPY, but can also handle URLs and auto-extract compressed
files. https://docs.docker.com/engine/reference/builder/

https://docs.docker.com/engine/reference/builder/

Running Multiple Containers from a Single Image

21

How can you run multiple containers from the same image?
Yes, you could think of an image as instating a class. You can create multiple
instances (containers) from a single image.

Wouldn’t all these containers be identical?

Not necessarily. Containers can be instantiated with different parameters using the
CMD command, making them unique in behavior.

FROM ubuntu:latest
RUN apt-get update
ENTRYPOINT ["/bin/echo", "Hello"]
CMD ["world"]

> docker build -t hello_world_cmd -f Dockerfile .

> docker run -it hello_world_cmd
> Hello world
> docker run -it hello_world_cmd Pavlos
> Hello Pavlos

Docker Image as Layers

22

When we execute the build command, the daemon reads the
Dockerfile and creates a layer for every command.

Nmap (Network Mapper) is an open source utility
of network.

Image Layering - Example

23

Debian Linux

Kernel

Install Python & Pip

Upgrade Pip

Install Pipenv

Pipenv Sync

Docker layers for a container running debian and a python environment using
Pipenv

Why Layers

24

Why build an image with multiple layers when we can just build it in a single layer?

Efficiency
Reuse common layers across different images, saving storage and speeding
up image creation.

Incremental Updates
Update only the changed layer, reducing the time and bandwidth needed for
deployment.

Cache Utilization
Docker caches layers. If no changes are detected, subsequent builds are
faster.

Modularity
Break down complex setup into manageable pieces, making debugging easier.

Security
Smaller attack surface per layer and easier to scan for vulnerabilities.WE WILL SEE AN EXAMPLE LATER

Image Layering

25

Container
(Writable, running application)

Layered Image 2

Layered Image 1

Platform Image
(Runtime Environment)

Platform images define the runtime environment, packages
and utilities necessary for containerized application to run. It is
an Image that has no parent

A static snapshot Images are read-only and capture the
container's settings.
- Layer images are read-only
- Each image depends on one or more parent images

A application sandbox
- Each container is based on an image that holds necessary

config data
- When you launch a container, a writable layer is added on

top of the image

Docker Vocabulary

26

Docker Image
The basis of a Docker container. Represent a full application

Containers
How you run your

application

Images
How you store
your application

Docker Container
The standard unit in which the application service resides and
executes

Registry Service (Docker Hub or Docker Trusted Registry)
Cloud or server-based storage and distribution service for your
images

Docker Engine
Creates, ships and runs Docker containers deployable on a
physical or virtual, host locally, in a datacenter or cloud service
provider

Docker File
A text document with commands on how to create an Image

Tutorial: Installing Docker Desktop

27

● Install Docker Desktop. Use one of the links below to download the proper
Docker application depending on your operating system.
○ For Mac users, follow this link-

https://docs.docker.com/docker-for-mac/install/.
○ For Windows users, follow this link-

https://docs.docker.com/docker-for-windows/install/ Note: You will need
to install Hyper-V to get Docker to work.

○ For Linux users, follow this link-
https://docs.docker.com/install/linux/docker-ce/ubuntu/

● Once installed run the docker desktop.
● Open a Terminal window and type docker run hello-world to make

sure Docker is installed properly.

https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/install/linux/docker-ce/ubuntu/

Tutorial: Docker commands

Check what version of Docker

28

docker --version

docker command
Get version of Docker CLI

Tutorial: Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)

git clone https://github.com/dlops-io/simple-translate

29

https://github.com/dlops-io/simple-translate
https://github.com/dlops-io/simple-translate

Tutorial: Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)
○ Build a container

30

https://github.com/dlops-io/simple-translate

Tutorial: Docker commands

31

Build an image based on a Dockerfile

docker build -t ac215-test -f Dockerfile .

docker command
Build the image

Name the image
Name of docker file and “.” means look at

the current working directory

Use the official Debian-hosted Python image

FROM python:3.9-slim-buster

Tell pipenv where the shell is.

This allows us to use "pipenv shell" as a container entry point.

ENV PYENV_SHELL=/bin/bash

Ensure we have an up to date baseline, install dependencies

RUN set -ex; \

 apt-get update && \

 apt-get upgrade -y && \

 apt-get install -y --no-install-recommends build-essential git && \

 pip install --no-cache-dir --upgrade pip && \

 pip install pipenv

Add Pipfile, Pipfile.lock + python code

ADD . /

RUN pipenv sync

Entry point

ENTRYPOINT ["/bin/bash"]

Get into the pipenv shell

CMD ["-c", "pipenv shell"]

Dockerfile

Docker Image as Layers

33

>docker build -t hello_world_cmd -f Dockerfile .

Sending build context to Docker daemon 34.3kB
Step 1/4 : FROM ubuntu:latest
latest: Pulling from library/ubuntu
54ee1f796a1e: Already exists
f7bfea53ad12: Already exists
46d371e02073: Already exists
b66c17bbf772: Already exists
Digest: sha256:31dfb10d52ce76c5ca0aa19d10b3e6424b830729e32a89a7c6eee2cda2be67a5
Status: Downloaded newer image for ubuntu:latest
 ---> 4e2eef94cd6b
Step 2/4 : RUN apt-get update
 ---> Running in e3e1a87e8d6e
Get:1 http://archive.ubuntu.com/ubuntu focal InRelease [265 kB]
Get:2 http://security.ubuntu.com/ubuntu focal-security InRelease [107 kB]
Get:3 http://security.ubuntu.com/ubuntu focal-security/universe amd64 Packages [67.5 kB]
Get:4 http://archive.ubuntu.com/ubuntu focal-updates InRelease [111 kB]
Get:5 http://archive.ubuntu.com/ubuntu focal-backports InRelease [98.3 kB]
Get:6 http://security.ubuntu.com/ubuntu focal-security/main amd64 Packages [231 kB]
Get:7 http://archive.ubuntu.com/ubuntu focal/restricted amd64 Packages [33.4 kB]
Get:8 http://archive.ubuntu.com/ubuntu focal/main amd64 Packages [1275 kB]
Get:9 http://security.ubuntu.com/ubuntu focal-security/multiverse amd64 Packages [1078 B]
…

Step1: Instruction 1

Step2: Instruction 2

FROM ubuntu:latest
RUN apt-get update
ENTRYPOINT ["/bin/echo", "Hello"]
CMD ["world"]

Docker Image as Layers

34

>docker build -t hello_world_cmd -f Dockerfile .

….
Step 3/4 : ENTRYPOINT ["/bin/echo", "Hello"]
 ---> Running in 52c7a98397ad
Removing intermediate container 52c7a98397ad
 ---> 7e4f8b0774de
Step 4/4 : CMD ["world"]
 ---> Running in 353adb968c2b
Removing intermediate container 353adb968c2b
 ---> a89172ee2876
Successfully built a89172ee2876
Successfully tagged hello_world_cmd:latest

Step3: Instruction 3

Step4: Instruction 4

FROM ubuntu:latest
RUN apt-get update
ENTRYPOINT ["/bin/echo", "Hello"]
CMD ["world"]

Docker Image as Layers

35

> docker image history hello_world_cmd
IMAGE CREATED CREATED BY SIZE COMMENT
a89172ee2876 8 minutes ago /bin/sh -c #(nop) CMD ["world"] 0B
7e4f8b0774de 8 minutes ago /bin/sh -c #(nop) ENTRYPOINT ["/bin/echo" "… 0B
cfc0c414a914 8 minutes ago /bin/sh -c apt-get update 22.8MB
4e2eef94cd6b 3 weeks ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B
<missing> 3 weeks ago /bin/sh -c mkdir -p /run/systemd && echo 'do… 7B
<missing> 3 weeks ago /bin/sh -c set -xe && echo '#!/bin/sh' > /… 811B
<missing> 3 weeks ago /bin/sh -c [-z "$(apt-get indextargets)"] 1.01MB
<missing> 3 weeks ago /bin/sh -c #(nop) ADD file:9f937f4889e7bf646… 72.9MB

> docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello_world_cmd latest a89172ee2876 7 minutes ago 96.7MB
ubuntu latest 4e2eef94cd6b 3 weeks ago 73.9MB

Why Layers

36

Why build an image with multiple layers when we can just build it in a single layer?
Let’s take an example to explain this concept better, let us try to change the Dockerfile_cmd we
created and rebuild a new Docker image.

> docker build -t hello_world_cmd -f Dockerfile_cmd .
Sending build context to Docker daemon 34.3kB
Step 1/4 : FROM ubuntu:latest
 ---> 4e2eef94cd6b
Step 2/4 : RUN apt-get update
 ---> Using cache
 ---> cfc0c414a914
Step 3/4 : ENTRYPOINT ["/bin/echo", "Hello"]
 ---> Using cache
 ---> 7e4f8b0774de
Step 4/4 : CMD ["world"]
 ---> Using cache
 ---> a89172ee2876
Successfully built a89172ee2876
Successfully tagged hello_world_cmd:latest

Have seen this before. Use
cache

As you can see that the image was built using the existing layers from our previous docker image
builds. If some of these layers are being used in other containers, they can just use the existing layer
instead of recreating it from scratch.

Tutorial: Docker commands

37

List all docker images

docker image ls

docker command
Docker command for image

Docker command option to list all images

Tutorial: Docker commands

38

List all running docker containers

docker container ls

docker command
Docker command for container

Docker command option to list all containers

Tutorial: Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)
○ Build a container
○ Run a container

39

https://github.com/dlops-io/simple-translate

Tutorial: Docker commands

40

Run a docker container using an image from Docker Hub

docker run --rm --name ac215-test -ti --entrypoint /bin/bash ac215-test

Run the container

automatically clean up the container and
remove the file system when the container

exit

Name of the container

‘t’ is to give us a terminal and ‘i’ is for
interactive mode

Default command to execute on
startup

Name of the image to use

Tutorial: Docker commands

41

Open another command prompt and check how many container
and images we have

docker container ls

docker image ls

Tutorial: Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)
○ Build a container
○ Run a container
○ Push container on Docker Hub

42

https://github.com/dlops-io/simple-translate

Tutorial: Docker commands

43

Sign up in Docker Hub and create an Access Token. Use that
token to authenticate with the command below

docker login -u <USER NAME> -p <ACCESS TOKEN>

Command used to
authenticate to a Docker
registry

 Specifies the username for authentication

Utilizes an access token
instead of a password for

secure authentication.

https://hub.docker.com/settings/security

Tutorial: Docker commands

44

Tag the Docker Image

docker tag <SOURCE IMAGE NAME>[:TAG] <USER NAME>/<TARGET_IMAGE[:TAG]>

Command used to
authenticate to a Docker
registry

 Specifies the username for authentication

Utilizes an access token
instead of a password for

secure authentication.

Tutorial: Docker commands

45

● Push to Docker Hub

docker push <USER NAME>/<TARGET_IMAGE[:TAG]>

Command used to upload a
Docker image from your local
machine to a remote registry
like Docker Hub

The name of the image you
want to push to the registry.

User name can be included as
part of the name

Tutorial: Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)
○ Build a container
○ Run a container
○ Push container on Docker Hub
○ Pull the new container and run it

46

https://github.com/dlops-io/simple-translate

Tutorial: Docker commands

47

● Pull from Docker Hub

docker pull [OPTIONS] <USER NAME>/<TARGET_IMAGE[:TAG]>

Command used to download
a Docker image from a
registry to your local
machine

The name of the image you
want to pull and TAG

Tutorial: Developing App using Containers

● Let us build the simple-translate app using Docker
● For this we will do the following:

○ Clone or download code (https://github.com/dlops-io/simple-translate)
○ Build a container
○ Run a container
○ Push container on Docker Hub
○ Pull the new container and run it

● For detail instruction go here
(https://github.com/dlops-io/simple-translate#developing-app-using-containers)

48

https://github.com/dlops-io/simple-translate
https://github.com/dlops-io/simple-translate#developing-app-using-containers

Tutorial: Docker commands

49

Exit from all containers and let us clear of all images

docker system prune -a

docker command
Docker command for system

Docker command option to remove all images not
referenced by any containers

Tutorial: Docker commands

50

Check how many containers and images we have currently

docker container ls

docker image ls

Tutorial: Running App on VM using Docker

● Let us run the simple-translate app using Docker
● For this we will do the following:

○ Create a VM Instance
○ SSH into the VM
○ Install Docker inside the VM
○ Run the containerized simple-translate app

● Full instructions can be found here
(https://github.com/dlops-io/simple-translate#running-app-on-vm-using-docker)

51

https://github.com/dlops-io/simple-translate#running-app-on-vm-using-docker

Recap: How do we build an App?

Development

Python: pipenv
Chromium: Mac install,
Windows install
OS: Mac, Windows

Python: Colab provided env
OS: Linux

Python: pipenv
OS: Mac, Windows

Multiple developers, Using Mac and Windows OS

Python: pipenv
OS: Linux

Deployment

Server

Isolate work into containers

Container Container

Container

THANK YOU

