Lecture 14: APIs & Frontend

AC215

Pavlos Protopapas / Shivas Jayaram
SEAS/ Harvard

Outline

Recap

APIs

Frontend (Simple)
Model Serving

a & 0D e

Frontend Frameworks

Outline

Recap

APIs

Frontend (Simple)
Model Serving

a &~ Wb e

Frontend Frameworks

Recap: Mushroom App Status

POC Prototype

|
|
Data Collection :
:
|

Setup Experiment Tracking

Build Baseline Models
Build Better Models

ML Workflow

MVP

Deployment, Scaling & Automation

Recap: Mushroom App Development

ML Pipeline & App Dev
0 P .. @ . ©
e < —

3 Google Cloud Platform

i1 Cloud Storage £ Vertex Al =4: Compute Engine

T,.00;
oo

Frontend

Recap: Microservice Architecture

REST / JSON
¢

Browser Apps P
—
Database
D REST / JSON
B . API Service Reviews Module > Q
Cloud Store
Mobile Apps
a»
Orders Module 4> =
Database
:.:< REST / JSON
L |]
- : Recommendation O O
+—>

Edge Device Apps Module

Models

What we built so far

>—

Terminal

API exposes python functions

3

-

Browser

T

4

Ul on Browser

REST / JSON HTML
— API Service Frontend App —
Container Container
Mount T Mount T Mount
2 :_<_/; _S:)l: rc_:e_C_oae_ -: 1 :_<_/; _S:)l: rc_:e_C_oae_ -:

Mount other folders

'

Mount Source Code into Container

!

Persistent Folder

Secrets

5

Edit Code from VS Code

>—

Terminal

Outline

Recap

APls

App Frontend (Simple)
Model Serving

a & W0 Ddh e

Frontend Frameworks

Review: What is HTTP?

e HyperText Transfer Protocol: method for transporting
information where client (such as a web browser) makes
request and web server issues a response
o content can be anything from text to images to video

e HTTPS: encryption for secure communication over network

e Analogy: post office

HTTP Request

1 &P

HTTP Response

Review: What is a port?

e communication endpoint where network connections start
and end

e lets computers differentiate between different kinds of data
(emails, webpages, etc.)

o Port 22 = SSH

o Port 25 =SMTP (email)
o Port80=HTTP

o Port443 = HTTPS

What is an API

APl is Application Programming Interface

Web API is an API that can be access using HTTP/S

A REST APl is a Web API that follows the HTTP method
constraints - get, post, put, delete

We will use FastAPIl a Python framework to build REST APIs

11

APIs

We will be using the term API to refer to REST API, which will be used to connect to various
components

REST / JSON

O
Browser Apps

Cloud Stores

REST / JSON

| oo o &
< e °°h -“—r W
[oo - .
Mobile Apps Server Databases

REST 450N —0Q Q Q

Models

Edge Device Apps
12

How does an API work

() http://localhost:9000/experiments HTTP request made to localhost

Browser

localhost:9000

mushroom-app-api-service:9000

Container

Local computer / Server

13

How does an API work

® http://localhost:9000/experiments

Browser

HTTP request made to localhost

localhost:9000

Host machine forwards request
to port 9000 of docker services

mushroom-app-api-service:9000

Container

Local computer / Server

14

How does an API work

® http://localhost:9000/experiments

Browser

HTTP request made to localhost

localhost:9000

Host machine forwards request
to port 9000 of docker services

mushroom-app-api-service:9000

Port 9000 is mapped to 9000
inside the container

Container

Local computer / Server

15

How does an API work

® http://localhost:9000/experiments

Browser

HTTP request made to localhost

localhost:9000

Host machine forwards request
to port 9000 of docker services

mushroom-app-api-service:9000

Port 9000 is mapped to 9000
localhost:9000 inside the container

Container

Local computer / Server

16

How does an API work

() http://localhost:9000/experiments HTTP request made to localhost localhost:9000

Host machine forwards request
to port 9000 of docker services

mushroom-app-api-service:9000

Port 9000 is mapped to 9000
inside the container

localhost:9000

api-service
-api FastAPI is running on port
-service.py 9000 serving /experiments
Container
Browser Local computer / Server

17

How does an API work

() http://localhost:9000/experiments HTTP request made to localhost localhost:9000

Host machine forwards request
to port 9000 of docker services

mushroom-app-api-service:9000

Port 9000 is mapped to 9000
inside the container

localhost:9000

api-service
-api FastAPI is running on port
-service.py 9000 serving /experiments

@app.get("/experiments")

def experiments_fetch():

df = pd.read_csv("experiments.csv")

return df.to_dict('records")

i # Fetch experiments i

Browser Local computer / Server

18

How does an API work

() http://localhost:9000/experiments HTTP request made to localhost localhost:9000

Host machine forwards request to port
< 9000 to of docker services

mushroom-app-api-service:9000

/experiments was requested so the

results of the /experiments will be localhost:9000 !30%9%(])0 is nlapped to 9000
i i . . inside the container
sent back to browser. In this case is api-service
a list of objects . . .
-apl FastAPI is running on port
-service.py 9000 serving /experiments

@app.get("/experiments")

def experiments_fetch():

df = pd.read_csv("experiments.csv")

return df.to_dict('records")

i # Fetch experiments i

Browser Local computer / Server

19

How does an API work

[

{

http://localhost:9000/experiments

"trainable_parameters': 2388227,
"execution_time": 2.8816089709599813,
"loss": 82.50713348388672,
"accuracy": 0.9333333373069764,
"model_size": 9914680,
"learning_rate": 0.001,

"batch_size": 32,

"epochs": 180,
"optimizer": "SGD",
"user": "shivasj@gmail.com",
"experiment": "experiment_1666648670",
"model_name": "mobilenetv2_train_base_True",
idts 8

Browser

HTTP request made to localhost

—>>

/experiments was requested so the
results of the /experiments will be
sent back to browser. In this case is
a list of objects

localhost:9000

Host machine forwards request
to port 9000 of docker services

mushroom-app-api-service:9000

localhost:9000

api-service
-api FastAPI is running on port
-service.py 9000 serving /experiments

inside the container

Port 9000 is mapped to 9000

@app.get("/experiments")

def experiments_fetch():

Fetch experiments

df = pd.read_csv("experiments.csv")

return

df.to_dict('records")

Local computer / Server

20

How does an API work (In Production)

() http://mushroom.com:80/experiments HTTP request made to localhost 12.12.12234.34:80
> Host machine forwards request
[< to port 9000 of docker services
{ - -
“trainable_parameters": 2388227, mushroom-app-api-service:9000
"execution_time": 2.8816089709599813, /experiments was requested so the Port 80 d to 9000
"loss": 82.50713348388672, : : ort is mapped to
waccuracy”: 0.9333333373069764, results of the /experlments.wnl be_ localhost:9000 e th r;p_
"model_size": 9914680, sent back to browser. In this case is . - Insige the container
"learning_rate": 0.001, a list of objects apl-S:el"Vlce .
"batC:-Si2§;= 32, -apl FastAPI is running on port
"epochs": , . H ;
woptimizer": "SGD", -service.py 9000 serving /experiments
"user": "shivasj@gmail.com", rC T T T T T T T T T TS T T T T T T T T T T T T T S S T T T T T ST T T T T e T T T T T T T T T T T
"experiment": "experiment_1666648670", i " . " !
"model_name": "mobilenetv2_train_base_True", 1 @app'get(/eXperlmentS) !
ekl ' def experiments_fetch():
. i # Fetch experiments i
i df = pd.read_csv("experiments.csv") i
] return df.to_dict('records") i
Browser GCP Server

21

Tutorial: APIs

GCS Bucket

>—

4

Expose experiments API D

Browser
Data & Models
REST / JSON HTML
1 Download experiments details
\/
— API Service Frontend App
Container Container

Terminal

Generate experiments.csv
Download best model

Read experiments csv

Persistent Folder

Secrets

>—

Terminal

22

Tutorial: APIs

Steps to create Mushroom App APIs:

O

O

O

Download experiments from GCS bucket.
Save best model in persistent store.
Read experiments.csv using pandas.
Expose data using an API.

For detailed instructions, please refer to the following link
m Mushroom App APISs. (htps:

23

https://github.com/dlops-io/mushroom-app-v2#backend-apis

Outline

Recap

APIs

App Frontend (Simple)
Model Serving

Sl AN

Frontend Frameworks

24

App Frontend

HTML
 |s Hyper Text Markup Language (Remember Markdowns)

* Browsers use HTML to display web pages

CSS
« Cascading style sheets

« Used to format & style web pages

Javascript
* Programming language understood by browser

App Frontend

<IDOCTYPE html> > BrowserTitle

<html> / Page Style
<head>
M

<title>® Mushroom Identifier</

Web page details
<style>body{background-color: #efefef;}</style> ///////)V'
</head>

<body> / / Web page scripts (Javascript)

& Welcome to the mushroom identification App!

</body> -
2 Mushroom Identifier
<script>
. . C 0 @ localhost:808C
var input_file =
document. getElementById("input_file”) ; % Welcome to the mushroom identification App!
</script>

</html>

How does the App work

® http://localhost:8080/experiments.html HTTP request made to localhost

Browser

localhost:8080

mushroom-app-frontend-simple:8080

Container

Local computer / Server

27

How does the App work

http://localhost:8080/experiments.html

Browser

HTTP request made to localhost

localhost:8080

Host machine forwards request
to port 8080 of docker services

mushroom-app-frontend-simple:8080

Container

Local computer / Server

28

How does the App work

() http://localhost:8080/experiments.html HTTP request made to localhost localhost:8080

Host machine forwards request
to port 8080 of docker services

mushroom-app-frontend-simple:8080

localhost:8080 Port 8080 is mapped to 8080

frontend-simple inside the container

-experiments.htmi
P http-server is running on port

8080 serving /experiments.html

Container

Browser Local computer / Server

29

How does the App work

() http://localhost:8080/experiments.html HTTP request made to localhost localhost:8080

Host machine forwards request
to port 8080 of docker services

mushroom-app-frontend-simple:8080

localhost:8080 Port 8080 is mapped to 8080

frontend-simple inside the container

-experiments.htmi
P http-server is running on port

Container

Browser Local computer / Server

30

How does the App work

() http://localhost:8080/experiments.html HTTP request made to localhost localhost:8080

Host machine forwards request
< to port 8080 of docker services

mushroom-app-frontend-simple:8080

/experiments.html was requested so

the content of the /experiments.html localhost:8080 Port 8080 is mapped to 8080

will be sent back to browser. The frontend-simple inside the container

HTML is sent back to the browser .
-experiments.html

http-server is running on port

Container

Browser Local computer / Server

31

How does the App work

® http://localhost:8080/experiments.html HTTP request made to localhost

= ‘@ Mushroom ldentifier

Trainable Training Time Model Size Learning

Parameters (mins) Loss Acuracy) Rate /experiments.html was requested so
the content of the /experiments.html
will be sent back to browser. The
HTML is sent back to the browser

Browser renders the HTML content
received from the server

Browser

localhost:8080

Host machine forwards request
to port 8080 of docker services

mushroom-app-frontend-simple:8080

localhost:8080
frontend-simple

-experiments.html

Container

Local computer /

Port 8080 is mapped to 8080
inside the container

http-server is running on port

Server

32

How does the App work

() http://localhost:8080/experiments.html

2 Mushroom ldentifier

Javascript in the Browser is executed HTTP request made to

http://localhost:9000/experiments

' // APT URL
i axios.defaults.baseURL = 'http://localhost:9000/";
i // Our experiments list
E var experiments = [];

i // Call the API

i axios.get('/experiments)
E .then((response) => {

i experiments = response.data;
! // Build the table

buildExperimentsTable(experiments);

Browser

-

Container

Local computer / Server

33

How does the App work

() http://localhost:8080/experiments.html

‘2 Mushroom Identifier

Trainable Training Time Model Size Learning

Parameters (mins)

Loss Accuracy (Mb) Rate

Javascript in the Browser is executed

// API URL

axios.defaults.baseURL = 'http://localhost:9000/";

// Our experiments list
var experiments = [];
// Call the API
axios.get('/experiments)
.then((response) => {
experiments = response.data;
// Build the table

buildExperimentsTable(experiments);

Browser

HTTP request made to
http://localhost:9000/experiments

—>>

/experiments was requested so the
results of the /experiments will be
sent back to browser. In this case is
a list of objects

localhost:9000

Host machine forwards request
to port 9000 of docker services

mushroom-app-api-service:9000

localhost:9000

inside the container

api-service
-api FastAPI is running on port
-service.py 9000 serving /experiments

Port 9000 is mapped to 9000

@app.get("/experiments")

def experiments_fetch():

Fetch experiments
df = pd.read_csv("experiments.csv")

return df.to_dict('records")

Local computer / Server

34

How does the App work

() http://localhost:8080/experiments.html

2 Mushroom Identifier

Trainable

Model
Parameters

build_idk_model1 2306246

densenet121 6962054

efficient_b4_train_baseTrue 6023446

efficientB0_train_base_True 4089922
teacher_model 6023446
student_effnet_distill 5941078
teacher_model 2306246

Training

Time Loss
(mins)

1" 0

2 1

6 3

6 2

5 1

6 0

Accuracy

99

91

86

82

82

78

75

Model
Size
(Mb)

29

25

25

24

Javascript displays the experiments
data in the html page.

Browser

Learning

Rate

0.0001

0.001

0.0001

0.0001

0.0001

0.001

0.001

HTTP request made to
http://localhost:9000/experiments

-

/experiments was requested so the
results of the /experiments will be
sent back to browser. In this case is
a list of objects

localhost:9000
Host machine forwards request
to port 9000 of docker services
mushroom-app-api-service:9000

Port 9000 is mapped to 9000

localhost:9000 Lo !
inside the container

api-service
-api FastAPI is running on port
-service.py 9000 serving /experiments

@app.get("/experiments")

def experiments_fetch():

df = pd.read_csv("experiments.csv")

return df.to_dict('records")

! # Fetch experiments

Local computer / Server

35

Tutorial: Frontend Simple

GCS Bucket

Data & Models

>—

Terminal

—>

2
3
Expose experiments API —_—
Browser Display experiments Ul
REST / JSON HTML
API Service Frontend App
Container Container

Mount

Read experiments csv

Persistent Folder

Secrets

Mushroom Identifier

Experiments

Model 1, 96.5%
Model 2, 95.3%
Model 3, 93.4%

Model 4, 90.4%
Model 5, 90.3%

>—

Terminal

36

Tutorial: Frontend Simple

Steps to run Mushroom App Frontend:

O https://github.com/dlops-io/mushroom-app-v2#frontend-app-simple

37

Outline

Recap

APIs

App Frontend (Simple)
Model Serving

a k~ OD ek

Frontend Frameworks

38

How does Model Serving work

http://localhost:8080

Click to take a picture or upload...

Browser

localhost:9000

mushroom-app-api-service:9000

localhost:9000
api-service
-api
-service.py

Container

Local computer / Server

39

How does Model Serving work

http://localhost:8080

Browser

HTTP request made to
http://localhost:9000/predict

localhost:9000

mushroom-app-api-service:9000

localhost:9000
api-service
-api
-service.py

Container

Local computer / Server

40

How does Model Serving work

® http://localhost:8080 localhost:9000

mushroom-app-api-service:9000

localhost:9000

HTTP request made to apl-s_erwce
http://localhost:9000/predict =R
> -service.py

@app.get("/predict")

def predict(
file: bytes = File(...)):
Save image

with TemporaryDirectory() as image_dir:

with open(image_path, "wb") as output:
output.write(file)
Make a prediction

image_path = os.path.join(image_dir, "test.png") i
prediction_results = model.make_prediction(image_path) E

Browser

return prediction_results

How does Model Serving work

® http://localhost:8080

Browser

HTTP request made to
http://localhost:9000/predict

i

/predict was requested so the
results of the /predict will be sent
back to browser

"input_image_shape": "(None, 224, 224, 3)",
"prediction_shape":

1,
3
]

"prediction":
[

0.0015741393435746431,
0.001133422483690083,
0.9972924590110779

]
]

[

"accuracy": 99.73,

"poisonous": true

[

'
"prediction_label": "amanita",

@app.get("/predict")

localhost:9000

mushroom-app-api-service:9000

localhost:9000
api-service
-api
-service.py

def predict(

file: bytes = File(...)):

Save image
with TemporaryDirectory() as image_dir:

image_path = os.path.join(image_dir, "test.png")

with open(image_path, "wb") as output:

output.write(file)
Make a prediction
prediction_results = model.make_prediction(image_path)

return prediction_results

How does Model Serving work

® http://localhost:8080

HTTP request made to
http://localhost:9000/predict

-

/predict was requested so the
results of the /predict will be sent
back to browser

amanita (99.73%) Poisonous

{

"input_image_shape": "(None, 224, 224, 3)",
"prediction_shape":
1,

3
]

[

]
]

Browser ";ccuracy": 99.773,

"poisonous": true

i

'
"prediction_label": "amanita",
"prediction":

0.0015741393435746431,
0.001133422483690083,
0.9972924590110779

@app.get("/predict")

localhost:9000

mushroom-app-api-service:9000

localhost:9000
api-service
-api
-service.py

def predict(

file: bytes = File(...)):

Save image
with TemporaryDirectory() as image_dir:

image_path = os.path.join(image_dir, "test.png")

with open(image_path, "wb") as output:

output.write(file)
Make a prediction
prediction_results = model.make_prediction(image_path)

return prediction_results

How does Model Serving work - Vertex Al

http://localhost:8080

Browser

HTTP request made to
http://localhost:9000/predict

localhost:9000

mushroom-app-api-service:9000

localhost:9000
api-service
-api
-service.py

Container

Local computer / Server

44

How does Model Serving work - Vertex Al

® http://localhost:8080 localhost:9000

mushroom-app-api-service:9000

localhost:9000

HTTP request made to apl-s_erwce
http://localhost:9000/predict =R
> -service.py

@app.get("/predict")

idef predict(i
i file: bytes = File(...)): i
i endpoint = aiplatform.Endpoint("...) i
E # Encode image to base64 string i
i b64str = E
ibase64.b64encode(file).decode("utf—8") i
i instances = [{"bytes_inputs": {"b64": b64str}}] i

result = endpoint.predict(instances=instances)

Browser

return result

How does Model Serving work - Vertex Al

® http://localhost:8080 localhost:9000

mushroom-app-api-service:9000

localhost:9000
HTTP request made to apl-s_erwce
http://localhost:9000/predict =R
. -service.py

-

@app.get("/predict")
def predict(

/predict was requested so the file: bytes = File(...)):

results of the /predict will be sent

amanita (99.73%) Poisonous back {6 browser

1

|

endpoint = aiplatform.Endpoint("...) !

1

T , # Encode image to base64 string !

"input_image_shape": "(None, 224, 224, 3)", i
"prediction_shape": [

e b64str = |

1

] . 1

"prediction_label": "amanita", :

"prediction": [1

[|

|

|

base64.b64encode(file) .decode("utf-8")
instances = [{"bytes_inputs": {"b64": b64str}}]

0.0015741393435746431,
0.001133422483690083,
0.9972924590110779
]
1,
Browser waccuracy: 99,73,
"poisonous": true
b

result = endpoint.predict(instances=instances)

return result

Tutorial: Model Serving

Steps to run Mushroom App Model Serving:

O https://github.com/dlops-io/mushroom-app-v2#model-serving

47

https://github.com/dlops-io/mushroom-app-v2#model-serving

Outline

Recap

APIs

App Frontend (Simple)
Model Serving

a K 0 b ke

Frontend Frameworks

48

Frontend

When we build our frontend we had a page for each component:
* Index.html

e experiments.html

* model.html

49

Frontend

When we build our frontend we had a page for each component:
* Index.html

e experiments.html

* model.html

Problems:

« Each of these had its own HTML, Javascript, CSS
 How do we share/reuse code across pages?
« Each page is loaded separately in browser (Slow)

50

Frontend

Problems:

« Each of these had its own HTML, Javascript, CSS
 How do we share/reuse code across pages
« Each page is loaded separately in browser (Slow)

Solution:

« Create a single page app that manages HTML, Javascript,
CSS as components
* Frontend App Frameworks to the rescue

51

Frontend Frameworks

There major frontend app frameworks are:
* Angular (Google)

 React (Facebook)

* Vue

52

React

Everything is a Component

« Uses JSX instead of Javascript

JSX is an extension to JavaScript

JSX is like a template language, but it comes with the full

power of JavaScript

53

React App

Content

Footer

React App

Header defined only once

A Home Experiments (g) Model

Mushroom Identifier A Home Experiments (g) Model

= % Mushroom ldentifier

A Home Experiments () Model

*Experiments c . i Current Model Details L
Click to take a picture or upload... - . . Name tihub_mobilenetv2_train_base_True .
. Traingbh Training Model Lo Saich " .
rainable earnin atct . - "
. Model Time Loss Accuracy Size 9 Epochs Optimizer . Trainable Parameters 2,306,051 .
o Parameters Rate Size .

(mins) (Mb) . . :
= - - Training Time (mins) 251 !
. 1 tfhub_mobilenetv2_train_base_True 2,306,051 251 427 9273% 960 0.001 32 10 SGD . " 1
" 2 mobilenetv_train_base_True 2,388,227 374 706 0273% 991 0.001 32 15 sab) . Loss hod .
. 3 tfhub_mobilenetv2_train_base_False 82,179 220 425 8970% 9.60 0.001 32 10 SGD . " Accuracy 92.73% 1
"4 mobilenetv2_train_base_False 164,355 3.67 %4 89.70% 9.91 0.001 32 15 SGD ° - . -
- - Model Si 9.60 |
o 5 tthub_mobilenetv2_train_base_True 2,306,051 277 89.09% 9.60 0.001 32 10 SGD . - i
. = - Learning Rate 0.001
= 6 mobilenetv2_train_base_True 2,388,227 393 W8 8848% 991 0.001 32 15 SGD * .
o Batch Size 32 i

7 mobilenetv2_train_base_True 2,388,227 4.09 P 8788% 991 0.001 32 15 SGD 1
tihub_mobilenetv2_train_base_False 87.88% N Bpochs L e e m e e m e s s [

Content block switched for each page

55

Tutorial: React Frontend

Steps to run Mushroom App React Frontend:

O https://eithub.com/dlops-io/mushroom-app-v2#frontend-app-react

56

https://github.com/dlops-io/mushroom-app-v2#frontend-app-react

THANK YOU

