
Pavlos Protopapas / Shivas Jayaram
SEAS/ Harvard

AC215

Lecture 14: APIs & Frontend

Outline

1. Recap
2. APIs
3. Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

2

Outline

1. Recap
2. APIs
3. Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

3

Recap: Mushroom App Status
POC Prototype MVP

Data Collection

Build Baseline Models

ML Workflow

Deployment, Scaling & Automation

Setup Experiment Tracking

Build Better Models

4

Design & Build Mushroom App

Recap: Mushroom App Development

Google Cloud Platform

Cloud Storage Vertex AI

5

ML Pipeline

Data Collector Data Processor Model Training Model Deploy

Compute Engine

App Dev

Backend API Frontend

Recap: Microservice Architecture

6

Browser Apps

Mobile Apps

Edge Device Apps

API Service

REST / JSON

REST / JSON

REST / JSON

Storefront UI

Catalog Module

Reviews Module

Orders Module

HTML

Recommendation
Module

Cloud Store

Database

Database

Models

What we built so far

7

API Service
Container

Frontend App
Container

Browser

Terminal

HTMLREST / JSON

Persistent Folder

Mount

Source Code

Mount

Source Code

Mount

Secrets

Terminal

1

Mount Source Code into Container

2

Mount other folders

3

API exposes python functions

4

UI on Browser

5 Edit Code from VS Code

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

8

● HyperText Transfer Protocol: method for transporting
information where client (such as a web browser) makes
request and web server issues a response
○ content can be anything from text to images to video

● HTTPS: encryption for secure communication over network
● Analogy: post office

Review: What is HTTP?

HTTP Request

HTTP Response

Review: What is a port?

● communication endpoint where network connections start
and end

● lets computers differentiate between different kinds of data
(emails, webpages, etc.)
○ Port 22 = SSH
○ Port 25 = SMTP (email)
○ Port 80 = HTTP
○ Port 443 = HTTPS

What is an API

• API is Application Programming Interface

• Web API is an API that can be access using HTTP/S

• A REST API is a Web API that follows the HTTP method

constraints - get, post, put, delete

• We will use FastAPI a Python framework to build REST APIs

11

APIs

12

Browser Apps

Mobile Apps

Edge Device Apps

Server Databases

Models

Cloud Stores

We will be using the term API to refer to REST API, which will be used to connect to various
components

REST / JSON

REST / JSON

REST / JSON

How does an API work

13

http://localhost:9000/experiments

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

How does an API work

14

http://localhost:9000/experiments

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

How does an API work

15

http://localhost:9000/experiments

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the container

How does an API work

16

http://localhost:9000/experiments

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerlocalhost:9000

How does an API work

17

http://localhost:9000/experiments

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /experiments

How does an API work

18

http://localhost:9000/experiments

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

@app.get("/experiments")

def experiments_fetch():

 # Fetch experiments

 df = pd.read_csv("experiments.csv")

 return df.to_dict('records')

FastAPI is running on port
9000 serving /experiments

How does an API work

19

http://localhost:9000/experiments

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request to port
9000 to of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /experiments

/experiments was requested so the
results of the /experiments will be
sent back to browser. In this case is
a list of objects

@app.get("/experiments")

def experiments_fetch():

 # Fetch experiments

 df = pd.read_csv("experiments.csv")

 return df.to_dict('records')

How does an API work

20

http://localhost:9000/experiments

Browser Local computer / Server

localhost:9000HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /experiments

/experiments was requested so the
results of the /experiments will be
sent back to browser. In this case is
a list of objects

@app.get("/experiments")

def experiments_fetch():

 # Fetch experiments

 df = pd.read_csv("experiments.csv")

 return df.to_dict('records')

How does an API work (In Production)

21

http://mushroom.com:80/experiments

Browser GCP Server

12.12.12234.34:80HTTP request made to localhost

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 80 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /experiments

/experiments was requested so the
results of the /experiments will be
sent back to browser. In this case is
a list of objects

@app.get("/experiments")

def experiments_fetch():

 # Fetch experiments

 df = pd.read_csv("experiments.csv")

 return df.to_dict('records')

Tutorial: APIs

22

API Service
Container

Frontend App
Container

Browser

Terminal

HTMLREST / JSON

Persistent Folder

Mount

Source Code

Mount

Source Code

Mount

Secrets

Terminal

GCS Bucket

Data & Models

1 Download experiments details

2

Generate experiments.csv
Download best model

Read experiments csv

3

4

Expose experiments API

Tutorial: APIs

23

Steps to create Mushroom App APIs:
○ Download experiments from GCS bucket.
○ Save best model in persistent store.
○ Read experiments.csv using pandas.
○ Expose data using an API.
○ For detailed instructions, please refer to the following link

■ Mushroom App APIs. (https://github.com/dlops-io/mushroom-app-v2#backend-apis)

https://github.com/dlops-io/mushroom-app-v2#backend-apis

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

24

App Frontend

HTML
• Is Hyper Text Markup Language (Remember Markdowns)

• Browsers use HTML to display web pages

CSS
• Cascading style sheets

• Used to format & style web pages

Javascript
• Programming language understood by browser

25

App Frontend

<!DOCTYPE html>
<html>
<head>
 <title>🍄 Mushroom Identifier</title>

<style>body{background-color: #efefef;}</style>
</head>
<body>
 🍄 Welcome to the mushroom identification App!
</body>
<script>

var input_file =
document.getElementById("input_file");
</script>
</html>

26

Browser Title

Web page details

Page Style

Web page scripts (Javascript)

How does the App work

27

http://localhost:8080/experiments.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

How does the App work

28

http://localhost:8080/experiments.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 of docker services

How does the App work

29

http://localhost:8080/experiments.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 of docker services

frontend-simple
 -experiments.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

http-server is running on port
8080 serving /experiments.html

How does the App work

30

http://localhost:8080/experiments.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 of docker services

frontend-simple
 -experiments.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port
8080 serving /experiments.html

How does the App work

31

http://localhost:8080/experiments.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 of docker services

frontend-simple
 -experiments.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port
8080 serving /experiments.html

/experiments.html was requested so
the content of the /experiments.html
will be sent back to browser. The
HTML is sent back to the browser

How does the App work

32

http://localhost:8080/experiments.html

Browser Local computer / Server

localhost:8080HTTP request made to localhost

mushroom-app-frontend-simple:8080

Container

Host machine forwards request
to port 8080 of docker services

frontend-simple
 -experiments.html

localhost:8080 Port 8080 is mapped to 8080
inside the container

<!DOCTYPE html>

<html>

...
</html>

http-server is running on port
8080 serving /experiments.html

/experiments.html was requested so
the content of the /experiments.html
will be sent back to browser. The
HTML is sent back to the browser

Browser renders the HTML content
received from the server

How does the App work

33

http://localhost:8080/experiments.html

Browser Local computer / Server

Container

// API URL

axios.defaults.baseURL = 'http://localhost:9000/';

// Our experiments list

var experiments = [];

// Call the API

axios.get('/experiments)

 .then((response) => {

 experiments = response.data;

 // Build the table

 buildExperimentsTable(experiments);

 });

Javascript in the Browser is executed HTTP request made to
http://localhost:9000/experiments

How does the App work

34

http://localhost:8080/experiments.html

Browser

// API URL

axios.defaults.baseURL = 'http://localhost:9000/';

// Our experiments list

var experiments = [];

// Call the API

axios.get('/experiments)

 .then((response) => {

 experiments = response.data;

 // Build the table

 buildExperimentsTable(experiments);

 });

Javascript in the Browser is executed HTTP request made to
http://localhost:9000/experiments

Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /experiments

/experiments was requested so the
results of the /experiments will be
sent back to browser. In this case is
a list of objects

@app.get("/experiments")

def experiments_fetch():

 # Fetch experiments

 df = pd.read_csv("experiments.csv")

 return df.to_dict('records')

How does the App work

35

http://localhost:8080/experiments.html

Browser

HTTP request made to
http://localhost:9000/experiments

Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

Host machine forwards request
to port 9000 of docker services

Port 9000 is mapped to 9000
inside the containerapi-service

 -api
 -service.py

localhost:9000

FastAPI is running on port
9000 serving /experiments

/experiments was requested so the
results of the /experiments will be
sent back to browser. In this case is
a list of objects

Javascript displays the experiments
data in the html page.

@app.get("/experiments")

def experiments_fetch():

 # Fetch experiments

 df = pd.read_csv("experiments.csv")

 return df.to_dict('records')

Tutorial: Frontend Simple

36

API Service
Container

Frontend App
Container

Browser

Terminal

HTMLREST / JSON

Persistent Folder

Mount

Source Code

Mount

Source Code

Mount

Secrets

Terminal

GCS Bucket

Data & Models

Read experiments csv

1

2

Expose experiments API

Mushroom Identifier

Experiments

Model 1 , 96.5%
Model 2, 95.3%
Model 3, 93.4%
Model 4, 90.4%
Model 5, 90.3%

3

Display experiments UI

Tutorial: Frontend Simple

37

Steps to run Mushroom App Frontend:

○ https://github.com/dlops-io/mushroom-app-v2#frontend-app-simple

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

38

How does Model Serving work

39

http://localhost:8080

Browser Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

api-service
 -api
 -service.py

localhost:9000

How does Model Serving work

40

http://localhost:8080

Browser Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

api-service
 -api
 -service.py

localhost:9000

HTTP request made to
http://localhost:9000/predict

How does Model Serving work

41

http://localhost:8080

Browser Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

api-service
 -api
 -service.py

localhost:9000

@app.get("/predict")

def predict(

file: bytes = File(...)):

 # Save image
 with TemporaryDirectory() as image_dir:

 image_path = os.path.join(image_dir, "test.png")

 with open(image_path, "wb") as output:

 output.write(file)

 # Make a prediction
 prediction_results = model.make_prediction(image_path)

 return prediction_results

HTTP request made to
http://localhost:9000/predict

How does Model Serving work

42

http://localhost:8080

Browser Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

api-service
 -api
 -service.py

localhost:9000

@app.get("/predict")

def predict(

file: bytes = File(...)):

 # Save image
 with TemporaryDirectory() as image_dir:

 image_path = os.path.join(image_dir, "test.png")

 with open(image_path, "wb") as output:

 output.write(file)

 # Make a prediction
 prediction_results = model.make_prediction(image_path)

 return prediction_results

HTTP request made to
http://localhost:9000/predict

/predict was requested so the
results of the /predict will be sent
back to browser

How does Model Serving work

43

http://localhost:8080

Browser Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

api-service
 -api
 -service.py

localhost:9000

@app.get("/predict")

def predict(

file: bytes = File(...)):

 # Save image
 with TemporaryDirectory() as image_dir:

 image_path = os.path.join(image_dir, "test.png")

 with open(image_path, "wb") as output:

 output.write(file)

 # Make a prediction
 prediction_results = model.make_prediction(image_path)

 return prediction_results

HTTP request made to
http://localhost:9000/predict

/predict was requested so the
results of the /predict will be sent
back to browser

How does Model Serving work - Vertex AI

44

http://localhost:8080

Browser Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

api-service
 -api
 -service.py

localhost:9000

HTTP request made to
http://localhost:9000/predict

How does Model Serving work - Vertex AI

45

http://localhost:8080

Browser Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

api-service
 -api
 -service.py

localhost:9000

HTTP request made to
http://localhost:9000/predict

@app.get("/predict")

def predict(

file: bytes = File(...)):

 endpoint = aiplatform.Endpoint("...)

 # Encode image to base64 string

 b64str =

base64.b64encode(file).decode("utf-8")

 instances = [{"bytes_inputs": {"b64": b64str}}]

 result = endpoint.predict(instances=instances)

 return result

How does Model Serving work - Vertex AI

46

http://localhost:8080

Browser Local computer / Server

localhost:9000

mushroom-app-api-service:9000

Container

api-service
 -api
 -service.py

localhost:9000

HTTP request made to
http://localhost:9000/predict

@app.get("/predict")

def predict(

file: bytes = File(...)):

 endpoint = aiplatform.Endpoint("...)

 # Encode image to base64 string

 b64str =

base64.b64encode(file).decode("utf-8")

 instances = [{"bytes_inputs": {"b64": b64str}}]

 result = endpoint.predict(instances=instances)

 return result

/predict was requested so the
results of the /predict will be sent
back to browser

Tutorial: Model Serving

47

Steps to run Mushroom App Model Serving:

○ https://github.com/dlops-io/mushroom-app-v2#model-serving

https://github.com/dlops-io/mushroom-app-v2#model-serving

Outline

1. Recap
2. APIs
3. App Frontend (Simple)
4. Model Serving
5. Frontend Frameworks

48

Frontend

When we build our frontend we had a page for each component:
• index.html
• experiments.html
• model.html

49

Frontend

When we build our frontend we had a page for each component:
• index.html
• experiments.html
• model.html

50

Problems:
• Each of these had its own HTML, Javascript, CSS
• How do we share/reuse code across pages?
• Each page is loaded separately in browser (Slow)

Frontend

Problems:
• Each of these had its own HTML, Javascript, CSS
• How do we share/reuse code across pages
• Each page is loaded separately in browser (Slow)

Solution:
• Create a single page app that manages HTML, Javascript,

CSS as components
• Frontend App Frameworks to the rescue

51

Frontend Frameworks

There major frontend app frameworks are:
• Angular (Google)
• React (Facebook)
• Vue

52

React

• Everything is a Component
• Uses JSX instead of Javascript
• JSX is an extension to JavaScript
• JSX is like a template language, but it comes with the full

power of JavaScript

53

React App

54

Header

Footer

Content

React App

55

Header defined only once

Content block switched for each page

Tutorial: React Frontend

56

Steps to run Mushroom App React Frontend:

○ https://github.com/dlops-io/mushroom-app-v2#frontend-app-react

https://github.com/dlops-io/mushroom-app-v2#frontend-app-react

THANK YOU

