
Pavlos Protopapas
Institute for Applied Computational Science, Harvard

AC215

Lecture 11&12: ML Workflow
Management

1

Outline

1. Recap
2. Serverless: Cloud Functions
3. Serverless: Cloud Run
4. Serverless: Model Deployment
5. ML Workflow Management
6. Vertex AI Pipelines

2

Outline

3

1. Recap
2. Serverless: Cloud Functions
3. Serverless: Cloud Run
4. Serverless: Model Deployment
5. ML Workflow Management
6. Vertex AI Pipelines

Recap: Mushroom App Status
POC Prototype MVP

Data Collection

Build Baseline Models

ML Workflow

Deployment, Scaling & Automation

Setup Experiment Tracking

Build Better Models

4

Design & Build Mushroom App

Mushroom App Development

Google Cloud Platform

Cloud Storage Vertex AI

Data Collector

1

Data Processor

2

Model Training

3

Model Deploy

4

5

Outline

6

1. Recap
2. Serverless: Cloud Functions
3. Serverless: Cloud Run
4. Serverless: Model Deployment
5. ML Workflow Management
6. Vertex AI Pipelines

Serverless

7

What is serverless?
• Execute code on an as-need basis
• No setup of servers required
• Access GPU hardware only for the “training” step in a pipeline
• Brings down code execution cost

Serverless

Types of serverless:
• Cloud Function
• Cloud Run
• Training Job (Vertex AI)
• Model Deployment (Vertex AI)
• Pipeline (Vertex AI)

8

Deployment Options

Setup Translator

translator = Translator()

text = “Welcome to AC215”

src = “en”

dest = “es”

Run translation

results = translator.translate(text,src,dest)

Result

return = results.text

Simple Translate App

Virtual Machine

Dedicated Hardware

main.py

1

2 Virtual Machine

Dedicated Hardware

Container

3 Cloud Function

Serverless

main.py

Cloud Run

Serverless

Container
4

9

Cloud Function

What is a could function?
• Run your code in GCP with no servers or containers.
• Pay only for function execution time.
• Scale out easily

10

Tutorial: Cloud Function

11

Steps to deploy an app as a Cloud Function
○ Go to https://console.cloud.google.com/functions.
○ Enable GCP APIs.
○ Create a python code file.
○ Deploy code as Cloud Function.
○ For detailed instructions, please refer to the following link

■ Running App as Cloud Function. (https://github.com/dlops-io/serverless-deployment#running-app-as-cloud-function)

https://console.cloud.google.com/functions
https://github.com/dlops-io/serverless-deployment#running-app-as-cloud-function

Outline

12

1. Recap
2. Serverless: Cloud Functions
3. Serverless: Cloud Run
4. Serverless: Model Deployment
5. ML Workflow Management
6. Vertex AI Pipelines

Cloud Run

What is cloud run?
• Run your containerized apps with no servers.
• Run containers as service or job.
• Only pay when your code is running
• Scale out easily

13

Tutorial: Cloud Run

14

Steps to deploy an app in Cloud Run
○ Go to https://console.cloud.google.com/run.
○ Enable GCP APIs.
○ Deploy Docker Image in Cloud Run.
○ For detailed instructions, please refer to the following link

■ Running App in Cloud Run. (https://github.com/dlops-io/serverless-deployment#running-app-in-cloud-run)

https://console.cloud.google.com/run
https://github.com/dlops-io/serverless-deployment#running-app-in-cloud-run
https://github.com/dlops-io/serverless-deployment#running-app-in-cloud-run

Outline

15

1. Recap
2. Serverless: Cloud Functions
3. Serverless: Cloud Run
4. Serverless: Model Deployment
5. ML Workflow Management
6. Vertex AI Pipelines

Serverless Model Deployment

What is serverless model deployment?
• Deploy our trained model for predictions with no servers.
• Setup online or batch prediction modes
• For online predictions there is an ongoing cost
• Access GPU or CPU hardware for inference
• Scale out easily
• Alert: Continuous cost to keep endpoint up

16

Serverless Model Deployment

Model Deployment
CLI Container

GCP

Vertex AI

Saved Model
Saved Model

+
Update Signatures

1 Get Saved Model 2 Update Model Signature

3 Upload to GCS

GCS Bucket

Model Registry Model Endpoints4 Upload to Model Registry

5 Deploy Model Endpoint

Serverless Model Deployment: Model Signature

Why do we need to update the model signature?
• Make model input to accept a raw image
• Perform data preprocessing steps prior to model inference
• Combine data preprocessing & model inference in one endpoint

18

Serverless Model Deployment: Update Model Signature

19

Preprocess Image

def preprocess_image(bytes_input):

 resized = ...

 return resized

Define tf functions

@tf.function(input_signature=[tf.TensorSpec([None], tf.string)])

def preprocess_function(bytes_inputs):

 decoded_images = tf.map_fn(

 preprocess_image, bytes_inputs, dtype=tf.float32, back_prop=False

)

 return {"model_input": decoded_images}

@tf.function(input_signature=[tf.TensorSpec([None], tf.string)])

def serving_function(bytes_inputs):

 images = preprocess_function(bytes_inputs)

 results = model_call(**images)

 return results

Update model signature and save

tf.saved_model.save(

 prediction_model,...,

 signatures={"serving_default": serving_function},

)

Define preprocessing function

Save Model with the new model signature

Define @tf.function for new model
signature

Tutorial: Serverless Model Deployment

20

Steps to perform Serverless Model Deployment on mushroom
classification model:

○ Create a GCS bucket to store saved model.
○ Update Model Serving Signature
○ Upload Model to Vertex AI Model Registry.
○ Deploy Model as an Endpoint.
○ For detailed instructions, please refer to the following link

■ Serverless Model Deployment. (https://github.com/dlops-io/model-deployment)

■ View Model Endpoints. (https://console.cloud.google.com/vertex-ai/online-prediction/endpoints)

■ View Model Registry. (https://console.cloud.google.com/vertex-ai/models)

https://github.com/dlops-io/model-deployment#mushroom-app-model-deployment-demo
https://console.cloud.google.com/vertex-ai/online-prediction/endpoints
https://console.cloud.google.com/vertex-ai/online-prediction/endpoints
https://console.cloud.google.com/vertex-ai/models
https://console.cloud.google.com/vertex-ai/models

Outline

21

1. Recap
2. Serverless: Cloud Functions
3. Serverless: Cloud Run
4. Serverless: Model Deployment
5. ML Workflow Management
6. Vertex AI Pipelines

ML Workflow Management

What is ML workflow management?
• Helps us efficiently manage end-to-end ML tasks from data

collection to model deployment
• Helps orchestrate various and automated pipeline execution
• Manages collaboration, integration, and scalability

22

ML Workflow: Mushroom App

23

Google Cloud Platform

Cloud Storage Vertex AI

Data Collector

1

Data Processor

2

Model Training

3

Model Deploy

4

How do we execute these steps?

CLI CLI CLI CLI

ML Workflow: Mushroom App

24

Google Cloud Platform

Cloud Storage Vertex AI

Data Collector

1

Data Processor

2

Model Training

3

Model Deploy

4

Can we automate this flow?

CLI CLI CLI CLI

Vertex AI Pipelines

Outline

25

1. Recap
2. Serverless: Cloud Functions
3. Serverless: Cloud Run
4. Serverless: Model Deployment
5. ML Workflow Management
6. Vertex AI Pipelines

Vertex AI Pipelines

26

What is Vertex AI Pipelines?
• Vertex AI is machine learning platform offered by Google in

GCP.
• Vertex AI Pipelines helps you to automate, monitor, and govern

your ML components by orchestrating your ML workflow in a
serverless manner

Building Vertex AI Pipelines

27

Import Kubeflow Pipelines

from kfp import dsl

Define Components

@dsl.component

def square(x: float) -> float:

 return x**2

@dsl.component

def add(x: float, y: float) -> float:

 return x + y

@dsl.component

def square_root(x: float) -> float:

 return x**0.5

Define Pipeline

@dsl.pipeline

def sample_pipeline(a: float = 3.0, b: float = 4.0) -> float:

 a_sq_task = square(x=a)

 b_sq_task = square(x=b)

 sum_task = add(x=a_sq_task.output, y=b_sq_task.output)

 return square_root(x=sum_task.output).output

Import kubeflow pipeline SDK

Define pipeline components

Define Pipeline, an orchestration of how
you want your component tasks to run

Building Vertex AI Pipelines

28

...

Define Pipeline

@dsl.pipeline

def sample_pipeline(a: float = 3.0, b: float = 4.0) -> float:

 a_sq_task = square(x=a)

 b_sq_task = square(x=b)

 sum_task = add(x=a_sq_task.output, y=b_sq_task.output)

 return square_root(x=sum_task.output).output

Build yaml file for pipeline

compiler.Compiler().compile(

 sample_pipeline, package_path="sample-pipeline.yaml"

)

Define Pipeline, an orchestration of how
you want your component tasks to run

Compile pipeline into a yaml file

Running Vertex AI Pipelines

29

Initialize GCP

import google.cloud.aiplatform import aip

Create a Pipeline Job in Vertex AI

job = aip.PipelineJob(

 display_name=DISPLAY_NAME,

 template_path="sample-pipeline1.yaml",

 pipeline_root=PIPELINE_ROOT,

 enable_caching=False,

)

Run the Pipeline Job

job.run()

Import Google Cloud SDK

Create a pipeline job

Run pipeline job in Vertex AI

Building Vertex AI Pipelines

30

Steps to build pipelines for your custom containers
• Make your containers callable
• Build & Push Container Images to a Container Registry
• Define a sequence of steps using a directed acyclic graph (DAG)

Building Vertex AI Pipelines

31

Data Collector

Data Processor

Model Training

Model Deploy

1. Download images
2. Uploads to GCP

1. Verify images
2. Check for duplicates
3. Convert to TF Records

1. Train model
2. Save model

1. Upload to Registry
2. Deploy model Endpoint

Making Container Callable

32

Use the official Debian-hosted ...

FROM python:3.9-slim-buster

.

.

.

Add the rest of the source code.

RUN --chown=app:app . /app

Entry point

ENTRYPOINT ["pipenv", “shell”]

Dockerfile
Use the official Debian-hosted ...

FROM python:3.9-slim-buster

.

.

.

Add the rest of the source code.

RUN --chown=app:app . /app

Entry point

ENTRYPOINT ["/bin/bash","./docker-entrypoint.sh"]

Dockerfile

Change entrypoint to a shell file

Making Container Callable

33

#!/bin/bash

args = "$@"

if [[-z ${args}]];

then

 # Authenticate gcloud using service account

 gcloud auth activate-service-account --key-file $GOOGLE_APPLICATION_CREDENTIALS

 # Set GCP Project Details

 gcloud config set project $GCP_PROJECT

 pipenv shell

else

 pipenv run python $args

fi

docker-entrypoint.sh

Development mode:
Authenticated to GCP
pipenv shell to test cli inside container

Production mode:
Run container using “docker run ... cli.py —search”

Tutorial: Vertex AI Pipelines

34

Steps to build Vertex AI Pipelines on the mushroom app ML
workflow components:

○ Make Containers Callable.
○ Build & Push Image.
○ Build ML Pipeline.
○ Run Pipeline in Vertex AI
○ For detailed instructions, please refer to the following link

■ Mushroom App Workflows. (https://github.com/dlops-io/ml-workflow#mushroom-app-ml-workflow-management)

■ View Vertex AI Pipelines. (https://console.cloud.google.com/vertex-ai/pipelines/runs)

https://github.com/dlops-io/ml-workflow#mushroom-app-ml-workflow-management
https://console.cloud.google.com/vertex-ai/pipelines/runs

THANK YOU

35

