
Pavlos Protopapas
SEAS/Harvard

AC215

Lecture 10: Model Monitoring

The Situation

Data Store

Model Training Model
Optimization Model Serving Web AppData Pipeline

Model Registry Model Endpoint

The Situation

We trained and deployed an amazing model. Time to….

But…

Your boss emails you saying:
• Your postcard-generating app is encountering massive demand spikes during

the holiday season.

• Your volcanic eruption model is receiving abnormal readings from sensors on
the mountain's south side.

• Your model for forecasting Mass General’s Personal Protective Equipment is
not keeping up with the demand from COVID.

• Your loan approval model has been deployed for a month, and performance
between demographic groups is degrading while recall remains the same.

But…

The NEW Situation

Data Store

Model Training Model
Optimization Model Serving Web AppData Pipeline

Model Registry Model Endpoint

MODEL
MONITORING

Two Perspectives of Model Monitoring

 Data Scientist MLOps Engineer

● Monitor for changes in prediction quality

● Continuously assess input data quality

● Check for fairness and prevent bias

● Evaluate API latency and load

● Manage production variants and deployments

● Configure and oversee retraining pipelines

Two Perspectives of Model Monitoring

 Data Scientist MLOps Engineer

● Monitor for changes in prediction quality

● Continuously assess input data quality

● Check for fairness and prevent bias

● Evaluate API latency and load

● Manage production variants and deployments

● Configure and oversee retraining pipelines

THESE CAN OFTEN BE THE SAME TEAM

Preparation Steps for Data Drift and Model Monitoring

 Key Components for Monitoring:

 Baseline Model

● Definition: The original model deployed in production.

● Best Practice: Always archive the model artifacts for traceability.

● Purpose: Serves as a benchmark for retraining and performance comparison.

● Tip: Version your models to easily roll back in case of issues.

 Reference Dataset

● Definition: A dataset used as a point of reference for monitoring.

● Purpose: To compare the model's performance on new data against this baseline.

● Tip: Version your data to easily roll back in case of issues.

Additional Considerations for Monitoring

● Monitoring Tools: Consider using specialized software for automated
monitoring.

● Alerts: Set up alerting mechanisms for significant deviations in model
performance or data statistics.

● Retraining Strategy: Plan how and when the model will be retrained. Will it be
manual, scheduled, or triggered by performance metrics?

● Documentation: Keep detailed records of all versions of datasets and models,
as well as any changes to pre-processing steps, features, and hyperparameters.

Production Dataset

What constitutes the production dataset?
• Incoming traffic is sporadic and ongoing
• To track metrics we need to group sequential requests
• This grouping will be considered our production dataset

To do this, we use windowing

Production Dataset

Tumbling Window:
Slide = WindowSize

Request

ENDPOINT

Request Request Request Request Request Request Request

Prod_Dataset @ TProd_Dataset @ T-1

➔ WindowSize: Defined in term of buffer size, or a time period
➔ The windows don’t overlap, and always start at the end of the preceding one

Production Dataset

Sliding Window:
Slide < WindowSize

Request

ENDPOINT

Request Request Request Request Request Request Request

Prod_Dataset @ T

Prod_Dataset @ T-1

Prod_Dataset @ T-2

➔ WindowSize: Defined in term of buffer size, or a time period
➔ More common with early detection methods

Evaluating Model: Baseline vs. Production Datasets

We now have our Baseline and Production datasets.

• Compare Baseline vs Production:
– See if training assumptions hold in production

• Compare Production @ T w/ Production @ T-1:
– Look for gradual shifts happening in production

DS Perspective

Model pre-production:
- 99% Accuracy and “Everything is Awesome!”

Model @production:
- 99% Accuracy and “Oh… Why? What? This is horrible!”

Models can and will degrade in production, and it is usually the
result of data issues.

Outliers in Production Data: Causes and Implications

Outliers: Data points that deviate significantly from the norm.
The data a model consumes in production can be riddled with
outliers which can skew model predictions and affect overall
performance.
These outliers can result from various causes, such as sensor
problems, malicious actors, and even your inference
preprocessing pipeline.

Why do we care? Model Integrity, decision-making

Outliers in Production Data: Causes and Implications

Detecting Outliers:
• Classical methods like column-wise IQR

– Can be challenging with streaming data

• Use ML to create anomaly scores for each observation:
– Isolation Forest
– Random Cut Forest

Data Drift: Covariate Shift

Covariate Shift:
Refers to the phenomenon when the distribution of the
features - P(X) - used to train the model are different than the
distributions seen in production.

Data Drift: Concept Drift

Concept Drift:
Sometimes called class drift or posterior probability shift, this
problem arises when the task the model was designed to perform
changes. It is a change in P(Y|X) or P(Y).

Example:
• Facial recognition models suddenly encounter masks due to COVID
• All new phishing techniques are used to get around spam filters

DS Perspective

Concept Drift Patterns:

SUDDEN DRIFT
Pandemic

GRADUAL DRIFT
New Phishing Technique

INCREMENTAL DRIFT
Home Prices w/ High Inflation

REOCCURING DRIFT
Holiday Shopping

TIME

TA
R

G
E

T
D

IS
TR

IB
U

TI
O

N

Data Drift Metrics

Data Drift Metrics:
The problem is a change in two distributions, namely the training
P(Y,X) and production P(Y, X). So we test the similarity between
these two.
• Kullback-Leibler Divergence
• Jensen-Shannon Divergence
• Earth Mover’s Distance / Wasserstein
• Hellinger Distance
• Classifier-Based Distance

Concept Drift Detection Strategies

Detecting Concept Drift:

• Performance Monitoring: Track key performance indicators (KPIs) like
accuracy, precision, and recall.

• Statistical Tests: Use tests like Chi-Squared or Kolmogorov-Smirnov to
compare distributions.

• Classifier-Based: Train a model to distinguish between old and new
data; high accuracy indicates drift.

Fairness and Bias

Why Fairness Matters: Unfair models can perpetuate societal
biases, causing harm and creating ethical dilemmas.

Monitoring your model for unfair outcomes between facets or
subgroups is important. To be successful, thought and
evaluation must happen during the entire machine learning
lifecycle.

So, quick review…

Fairness and Bias

ML Lifecycle:

Problem Formation

Is machine learning an ethical
solution to the problem?

Dataset Construction

Does the training data properly
represent different groups?

Should the data by changed to
address bias?

Algorithm Selection

Should the objective function
be modified to include fairness
constraints?

Monitoring

Does the production data differ
from what was expected?

Is there an increase in unfair
outcomes?

Deployment

Will the model be used for a
population it wasn’t trained or
evaluated on?

Train / Test Process

Have we evaluated the model
using fairness metrics?

Fairness and Bias

Fairness Metrics:
This is an active area of research and discussion. New metrics
are being proposed frequently. However, some older metrics such
as DPPL are currently used.

Bias Metrics

DPPL:
Difference in Positive Proportions in Predicted Labels

• Assess disparities in predicted positive outcomes between facets.
• Useful for classification problems

• DPPL = q’a - q’b
– q'a = n'a

(1)/na : proportion of facit a that get positive outcomes of 1
– q'b = n'b

(1)/nb : proportion of facit b that get positive outcomes of 1

Interpretation of DPPL:

• Positive DPPL: Facet a has more predicted positive outcomes (positive bias).
• DPPL near zero: Equal outcomes between facets (demographic parity).
• Negative DPPL: Facet b has more predicted positive outcomes (negative bias).

MLOps Perspective

You’ve discovered that your model and/or data is wonky!

MLOps Perspective

Enter the MLOps Engineer:

• Handles the retraining pipeline
• Monitors model and endpoint performance
• Manages new deployments, production variants, and shadow

testing

MLOps Perspective

Fix Drift Issues w/ Retraining:
• Periodic Retraining

– Schedule based on time or number of predictions
– Easy, but usually inefficient

• Performance Trigger:
– Use a metric such as accuracy or Prior Probability Shift

(PPI) to kick off retraining pipeline

Simplified Retraining Pipeline

Data Store

Model Training Model
Optimization Model Serving Web AppData Pipeline

MODEL
MONITORINGDrift Trigger

Capture Production
Data for Retraining

MLOps Metrics

Beyond the retraining pipeline, MLOps Engineers monitor their
own set of metrics related to system performance.

• GPU/CPU/RAM Utilization
Look for bottlenecks or underutilized resources

• Model Latency
The time it takes for the model to make a prediction

• Overhead Latency
Time between when the web app sends a request and receives a
response

• Invocations
The number request being received

MLOps Metrics

Handling High Model Latency
• Increase power of compute instance hosting endpoint
• Shrink model using quantization or distillation

Handling Bottlenecks or High Load
• Scale the endpoint by using more container instances

Coming soon to a lecture near you

Tutorial: Model Monitoring & Data Drift

38

Steps to perform Model Monitoring & Data Drift on mushroom
classification models:

○ Download best model from WandB.
○ Setup model for inference.
○ Monitoring Input Data and Predictions on WhyLabs.
○ For detailed instructions, please refer to this notebook

■ Model Monitoring & Data Drift.
(https://colab.research.google.com/drive/1kCEx_u_vPNA-dGv7gOsRgJIKZMma2dNY?usp=sharing)

https://colab.research.google.com/drive/1kCEx_u_vPNA-dGv7gOsRgJIKZMma2dNY?usp=sharing
https://colab.research.google.com/drive/1kCEx_u_vPNA-dGv7gOsRgJIKZMma2dNY?usp=sharing

THANK YOU

