
HIGH PERFORMANCE COMPUTING
FOR SCIENCE AND ENGINEERING

LECTURE 1

Fabian Wermelinger
Harvard University

CS205

Tuesday, January 25th 2022

TODAY
CS205 introduction

Teaching staff

Important information

Introduction to parallel computing
Why do we need it?

Computer characterization

Basic Terminology

Classi�cation of parallel computers

Brief summary of reading for next class

Head instructor: Fabian Wermelinger (PhD, ETH Zürich)

Research interests: Fluid Mechanics, compressible
multiphase �ows, high performance computing, data
compression, software development

Of�ce: SEC 1.312-02 ()

TEACHING STAFF

fabianw@seas.harvard.edu

Teaching Fellows:

Erick Ruiz Jiahui Tang Javiera Astudillo Yuxin (Iris) Ye

eruiz@g.harvard.edu jiahuitang@g.harvard.edu jastudillo@g.harvard.edu yye@g.harvard.edu

mailto:fabianw@seas.harvard.edu
mailto:eruiz@g.harvard.edu
mailto:jiahuitang@g.harvard.edu
mailto:jastudillo@g.harvard.edu
mailto:yye@g.harvard.edu

SYLLABUS
Syllabus:
The class provides an introduction to parallel programming techniques and
programming models for applications in science, engineering as well as
data science. We focus on shared memory and distributed memory
programming paradigms which are the most useful paradigms when
developing software targeted for high performance computing (HPC)
platforms.

https://harvard-iacs.github.io/2022-CS205/pages/syllabus.html

Schedule and deadlines: The class schedule can be found . All deadlines
are listed in the schedule, it is your responsibility to meet them.

here

Prerequisites: You should be comfortable with the C and/or C++
programming languages. No thorough knowledge is required, examples in
class, homework and labs will be presented in C++. You can �nd lecture
slides for a C/C++ primer class at this link:

.
https://github.com/Harvard-

IACS/c_cpp_primer

https://harvard-iacs.github.io/2022-CS205/pages/syllabus.html
https://harvard-iacs.github.io/2022-CS205/pages/schedule_static.html
https://github.com/Harvard-IACS/c_cpp_primer

SYLLABUS
Class format:

Homework (5 total) 40%

Lab (6 total) 10%

Quiz (4 total) 10%

Project 35%

Mailing list contributions 5%

Bonus 5%

https://harvard-iacs.github.io/2022-
CS205/pages/syllabus.html#course-format

Homework: Homework solutions (and lab solutions) are submitted as a single
zip or tar archive on Canvas. Written homework (non-code) is expected to be
typeset using . See the README.md �les distributed with the handouts.LT XA E
Homework late days and regrading policy: You have 3 late days for the 5
homeworks. In case of grading errors, homeworks can be regraded once.

Homework will be regarded in full which may result in a higher or lower grade.

https://harvard-iacs.github.io/2022-CS205/pages/syllabus.html#course-format
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

SYLLABUS
Textbooks: The class does not follow a speci�c textbook. The topics
discussed in class are covered in the following texts:

"Introduction to High Performance Scienti�c Computing",
V. Eijkhout,

"Parallel Programming for Science and Engineering",
V. Eijkhout,

"An Introduction to Parallel Programming",
P. Pacheco, Morgan Kaufmann 2011

"Introduction to High Performance Computing for Scientists and Engineers",
G. Hager and G. Wellein, CRC Press 2011

"Computer Organization and Design",
D. Patterson and J. Hennessy, Morgan Kaufmann 2018 (RISC-V edition)

"Computer Architecture",
J. Hennessy and D. Patterson, Morgan Kaufmann 2019

"Programming Massively Parallel Processors",
D. Kirk and W. Hwu, Morgan Kaufmann 2017

free pdf 3rd edition 2020

free pdf 2nd edition 2020

https://web.corral.tacc.utexas.edu/CompEdu/pdf/stc/EijkhoutIntroToHPC.pdf
https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming.pdf

SYLLABUS
Project:
The CS205 project objective is to apply the techniques learned in class on a
concrete real application to gain hands-on experience with writing and
optimizing parallel code.

The �nal report is written in the form of a proposal (in) that could be
submitted to a high performance computing center to request compute
hours on a supercomputer.

https://harvard-iacs.github.io/2022-CS205/pages/project.html

LT XA E

The project should be oriented on a compute/data intensive problem, either
from your research area or build something from scratch that interests you
(given that it �ts into the time frame of the class)

Project groups are teams of 3-4 students, you free to choose your team mates.
Ideally you have similar interests. Use the class mailing list to exchange ideas
and look for team mates.

Milestones: There are further described on the project homepage.
The �rst is dedicated to the team formation and is due on February 8th.

5 milestones

https://harvard-iacs.github.io/2022-CS205/pages/project.html
https://harvard-iacs.github.io/2022-CS205/pages/project.html#project-milestones

IMPORTANT INFORMATION
You can �nd the following information on the class website as well:

Canvas:
Administrative matters for the class are carried out through Canvas (e.g.
grades). Solutions for homework and labs are submitted on Canvas in a zip
or tar archive. See the for all deadlines.

https://harvard-iacs.github.io/2022-CS205/#important

https://canvas.harvard.edu/courses/100601

class schedule

Class material:
All handouts are distributed to the class through the main class git
repository, hosted at the link above.

https://code.harvard.edu/CS205/main

https://harvard-iacs.github.io/2022-CS205/#important
https://canvas.harvard.edu/courses/100601
https://harvard-iacs.github.io/2022-CS205/pages/schedule_static.html
https://code.harvard.edu/CS205/main

IMPORTANT INFORMATION
You can �nd the following information on the class website as well:

Class material:
All handouts are distributed to the class through the main class git
repository, hosted at the link above.

You must be a member of the CS205 organization on
 to clone and pull from this repository. You can

request membership by sending an email to
 (include your in the body of

the email. Note: your NetID is also your username on
). Please use your .harvard.edu email address

when sending email to the address above. Other email addresses will be
rejected. Please contact me directly if you are attending from another
school.

https://harvard-iacs.github.io/2022-CS205/#important

https://code.harvard.edu/CS205/main

https://code.harvard.edu
cs205-

staff@lists.fas.harvard.edu Harvard NetID

https://code.harvard.edu

https://harvard-iacs.github.io/2022-CS205/#important
https://code.harvard.edu/CS205/main
https://code.harvard.edu/
mailto:cs205-staff@lists.fas.harvard.edu
https://harvard.service-now.com/ithelp?id=kb_article&sys_id=507aca5a1b653700efd8a79b2d4bcb59
https://code.harvard.edu/

IMPORTANT INFORMATION
Class mailing list:
CS205 will use a mailing list for all questions and knowledge exchange regarding the
class. We will not use Piazza, why:

Piazza is no longer entirely free to use and ads suck!

Email is a powerful communication tool (often used poorly, we practice in CS205)

You can easily archive all class communication in your email client and keep it forever

You can reply to the list and the original poster or establish a private communication by
replying to the original poster only

Main communication in open-source software projects (Linux kernel, git, python, etc.)

The class mailing list is

https://harvard-iacs.github.io/2022-CS205/#class-mailinglist

cs205@lists.fas.harvard.edu

Before you can send emails to the list, you must sign-up by sending a (blank) email to
. You will receive an email where you are asked to con�rm your

registration by simply replying to email. Use the email address associated with your HarvardID.

cs205-
join@lists.fas.harvard.edu

Mailing list etiquette: Please see this link for information on how to post on the list.

Teaching staff only: (use your .harvard.edu email)cs205-staff@lists.fas.harvard.edu

https://harvard-iacs.github.io/2022-CS205/#class-mailinglist
mailto:cs205@lists.fas.harvard.edu
mailto:cs205-join@lists.fas.harvard.edu
https://harvard-iacs.github.io/2022-CS205/#mailinglist-etiquette
mailto:cs205-staff@lists.fas.harvard.edu

MAILING LIST EXAMPLE

John Doe has a question for homework 1. He
pre�xes [HW1] to his subject and writes:

Assume you have a question related to homework 1 and you want to post it to
the mailing list. Your post might look like this:

From: John Doe <john.doe@harvard.edu>
To: cs205@lists.fas.harvard.edu
Subject: [HW1] Implicit barrier at end of omp parallel
 for loop?

Dear All,

I am writing a #pragma omp parallel for loop and am
not sure whether there is an implicit barrier at the
end of the loop. I could not find the answer in the
documentation.

Thanks,
JD

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Jane Smith knows the answer and clicks the
"Reply" button in her email client:

From: Jane Smith <jane.smith@harvard.edu>
To: CS205 class mailing list <cs205@lists.fas.harvard.edu>
Subject: Re: [cs205] [HW1] Implicit barrier at end of omp
 parallel for loop?

On Sun, 09 Jan 2022 17:15:32 +0000, John Doe wrote:
>I am writing a #pragma omp parallel for loop and am not
>sure whether there is an implicit barrier at the end of
>the loop.

There is an implicit barrier if you haven't specified the
nowait clause.

Best,
JS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Jane received the message from the list, which always prepends [cs205] to the
subject line of messages. Her email client adds the standard Re: for a reply.

You can view the mailing list archive online at https://web.lists.fas.harvard.edu

Your posting frequency on the mailing list is worth 5% of the �nal grade.

https://web.lists.fas.harvard.edu/

CLASS POLICIES
Attendance: It is expected that when you decide to take the class that you
also attend the lectures as well as the labs. These are core parts of the
class and therefore mandatory to attend. The 5% bonus outlined in the
grading section can only be exploited via lecture attendance.
https://harvard-iacs.github.io/2022-CS205/pages/syllabus.html#attendance-policy

Collaboration: You are welcome to discuss the course material and
homework with others in order to better understand it, but the work you
turn in must be your own (with exception of the project where
collaborative work is permitted). Any work that is not your own, without
properly citing the original author(s), is considered plagiarism. Failure to
follow the academic integrity and dishonesty guidelines outlined in the

 will have an adverse effect on your �nal grade.Harvard Student Handbook
https://harvard-iacs.github.io/2022-CS205/pages/syllabus.html#collaboration-policy

https://harvard-iacs.github.io/2022-CS205/pages/syllabus.html#attendance-policy
https://handbook.college.harvard.edu/
https://harvard-iacs.github.io/2022-CS205/pages/syllabus.html#collaboration-policy

ROADMAP
Wk Tuesday Thursday Labs Events

1(4) Lecture 1: 2022-01-25
Class introduction/organization

Moore's Law

Transistor density and power limit

Parallel computing

Flynn's taxonomy

Overview of parallelism treated in class: DLP, ILP, TLP, shared
memory and distributed memory

Lecture 2: 2022-01-27
Computer architecture

von Neumann architecture

Memory pyramid

Linux process anatomy

Introduction to compute cluster: access, job submission

Reading: Leiserson paper

Sign-up:
Select one of the
offered lab
session days
according to
your schedule

Note:
The "Reading"
assignments are relevant
for the lecture and due on
the day of the lecture!
Questions may be asked
to individual students.

1. Doodle for lab day
selection due
(2022-01-28)

2(5) Lecture 3: 2022-02-01
Cache memories: why are they there, how they work

Cache lines and the 3 C's

What is temporal and spatial locality

Cache associativity: fully, -way, direct mapped

Memory access patterns (differences row-major / column-
major)

Lecture 4: 2022-02-03
Shared memory introduction

Examples of concurrency and concurrent memory access

Why is shared memory programming hard: what is a race
condition and why/how does it happen

Quiz 1

Lab 1:
Accessing
cluster, SLURM,
Linux, compiler
and C++
tutorials.

1. HW1 release

(2022-02-01)

3(6) Lecture 5: 2022-02-08
Memory model for shared memory programming and its
implications on compilers

Sequential consistency

Mutual exclusion / critical sections / locks

Overview of thread libraries

Lecture 6: 2022-02-10
Introduction to OpenMP: why OpenMP and how to use it in
new or existing codes

OpenMP: fork/join parallel regions

OpenMP: work sharing constructs

OpenMP: data environment

Reading: OpenMP speci�cation 5.2 Chap. 1 (until 1.4 inclusive)

1. Lab 1 due

(2022-02-11)

2. Project team
formation due
(2022-02-08)

n

ROADMAP
Wk Tuesday Thursday Labs Events

4(7) Lecture 7: 2022-02-15
OpenMP: synchronization constructs

OpenMP: library routines

OpenMP: environment variables

OpenMP: processor binding

Lecture 8: 2022-02-17
UMA/NUMA memory architectures

What is cache coherency and why is it required in shared
memory programming

Cache coherency protocols (focus on MESI)

False sharing

Quiz 2

Lab 2:
OpenMP locks,
critical sections
and atomic
clauses.

1. HW1 due

(2022-02-15)

2. HW2 release
(2022-02-15)

5(8) Lecture 9: 2022-02-22
Performance analysis (single node)

Relationship of compute performance (�op) to memory
bandwidth

Roo�ine model

Reading: Williams paper

Lecture 10: 2022-02-24
Introduction to distributed programming (recap Flynn's
taxonomy)

What is the Message Passing Interface (MPI)

Simple parallel MPI program example

Lab 3:
False sharing
and cache
thrashing.

1. Lab 2 due

(2022-02-25)

2. Project high-level
description due
(2022-02-22)

6(9) Lecture 11: 2022-03-01
MPI: blocking point-to-point

MPI: blocking collective

Reading: MPI 4.0 Standard 3.1, 3.2, 3.4, 3.5

Lecture 12: 2022-03-03
MPI: non-blocking point-to-point

MPI: non-blocking collective

Reading: MPI 4.0 Standard 3.7

1. Lab 3 due

(2022-03-04)

7(10) Lecture 13: 2022-03-08
MPI: I/O �le management

MPI: I/O read and write routines

Parallel I/O for data compression example

Lecture 14: 2022-03-10
Hybrid MPI and OpenMP

Overhead associated with sending messages

Message packing

Working with scienti�c libraries (BLAS/LAPACK/Eigen)

Quiz 3

Lab 4:
MPI reductions
and scans.

1. HW2 due

(2022-03-08)

2. HW3 release
(2022-03-08)

ROADMAP
Wk Tuesday Thursday Labs Events

8(11) Spring break: 2022-03-15 Spring break: 2022-03-17

9(12) Presentations for project proposals:
2022-03-22

Presentations for project proposals:
2022-03-24

1. Lab 4 due

(2022-03-25)

2. Project proposals due

10(13) Lecture 15: 2022-03-29
Parallel scaling analysis

Strong scaling / Amdahl's law

Weak scaling

Lecture 16: 2022-03-31
Instruction set architecture (ISA) / RISC / CISC

Assembly language (x86_64)

Processor pipelining (ILP)

Reading: Hennessy and Patterson Turing lecture

Lab 5:
Linking your
code with third
party libraries.
Examples for
BLAS and
LAPACK.

1. HW3 due

(2022-03-29)

2. HW4 release
(2022-03-29)

11(14) Lecture 17: 2022-04-05
Recap Flynn's taxonomy: SIMD

Instruction set architecture extensions

What is vectorization and why is it important

Memory alignment and relation to cache lines

Lecture 18: 2022-04-07
Manual vectorization

Intel intrinsics

Bit masking/shuf�ing

Examples for manual vectorization and performance impact
(DLP in roo�ine)

1. Lab 5 due

(2022-04-08)

12(15) Presentations for project designs:
2022-04-12

Presentations for project designs:
2022-04-14

1. Project designs due

ROADMAP
Wk Tuesday Thursday Labs Events

13(16) Lecture 19: 2022-04-19
Compiler auto vectorization

SPMD programming model

Intel ISPC compiler

Reading: Pharr paper

Quiz 4

Lecture 20: 2022-04-21
GPU computing I:

Streaming processors

Main difference between CPU and GPU architectures

SIMD and SIMT

Introduction to CUDA

Lab 6:
Understanding
machine
instructions by
learning how to
debug code.

1. HW4 due

(2022-04-19)

2. HW5 release
(2022-04-19)

14(17) Lecture 21: 2022-04-26
GPU computing II (CUDA):

CUDA warps and threads

Streaming multiprocessor and Little's Law

Example CUDA kernel for vector addition

Class summary

Reading period: 2022-04-28
1. HW5 due

(2022-05-01)

2. Lab 6 due
(2022-04-29)

15(18) Reading period: 2022-05-03 Exam period: 2022-05-05

16(19) Exam period: 2022-05-10
Project �nal presentations (date TBD)

Exam period: 2022-05-12
Project �nal presentations (date TBD)

1. Project deliverables

due

2. Project �nal
presentations due

WHAT I WISH THAT YOU GET OUT OF CS205
1. Think parallel and know parallel computing

2. Understand fundamental computer hardware and its link to
performance

3. Foundations of shared memory (OpenMP) and distributed memory
(MPI) paradigms

4. Performance analysis and optimization options

5. Enjoy writing code and appreciate large computing systems

WHAT IS COMPUTING?
Computing is a domain of knowledge dealing with

the study of information processing, both what can
be computed and how to compute it.

Joseph Sifakis

information is data

processing is transformation

Traditionally, the information is transformed by a single processor
which we call serial computing.

SERIAL COMPUTING

A serial program consists of a series of instructions

Instructions are processed in sequential order (one after the other)

They are executed on a single processor (entity that can perform work)

Only one instruction can be executed at any time

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

PARALLEL COMPUTING

A problem is divided into discrete chunks that can be solved concurrently

Each chunk is processed in sequentially, but many chunks run
simultaneously on different processors

Requires a control/communication/coordination mechanism

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial

A problem is divided into discrete chunks that can
be solved concurrently

Can any problem be divided into such discrete
chunks (trivially)?

PARALLEL COMPUTING

Programs = Algorithms + Data Structures

Both, algorithms and data structures need be
suitable for dividing a problem into discrete
chunks

An algorithm may be inherently sequential,
offering little or no parallelism

There might be data dependencies that limit
parallel execution

PARALLEL COMPUTING
We should be able to break down a computational problem into:

discrete pieces of work that can be solved simultaneously (the size
of these pieces determine the parallel granularity of the problem)

the discrete pieces should allow to execute multiple instructions at
any moment in time

the problem should be solved faster than with a single processor

The most typical compute resources are:

A single entity with multiple processors such as CPUs, GPUs, TPUs,
etc. We call such an entity a node. Examples: laptop, desktop, cell
phone, Raspberry Pi

An arbitrary number of nodes connected by a local network. We call
such an entity a cluster. Examples: supercomputers, cloud (with local
network)

TECHNOLOGY TRENDS: MICROPROCESSOR CAPACITY

Moore's Law states that integrated
circuit resources double every 18-
24 months. It resulted from a 1965

prediction of such growth in IC
capacity made be Gordon Moore,

one of the founders of Intel.

Every two years you get a ~2x
performance boost without doing
anything in your code

Achieved by reducing the transistor
size and therefore place more
transistors on the dye (increase
transistor density)

MOORE'S LAW

Can this go on forever?

THE POWER WALL
Moore's Law in principle can grow like that

The problem when transistors get smaller is a different one:
Dominant technology for integrated circuits is CMOS (complementary metal oxide
semiconductor)

For CMOS the primary source of energy consumption is when the transistor switches
states:

Power ∝ Capacitive load × × Frequency switchesVoltage2

Patterson and Hennessy, 2017

THE POWER WALL
The capacitive load is related to the number of transistors on the chip

The switch frequency is related to the clock rate

How can the power consumption only grow by 30x while the clock
rate increased by 1000x?

Voltage is reduced by about 15% per generation (from 5V to 1V)

Lowering the voltage makes transistors more leaky (dissipate energy,
even today about 40% of power consumption is due to leakage)

Two alternatives to satisfy Moore's Law in the next generations (as
transistor density reaches limit):

1. Increase clock rate but must invest in sophisticated cooling
solutions (can run current code without modi�cation)

2. Operate at the power wall but increase number of processor
cores (can not run current code without modi�cation)

TRANSISTORS AND HEAT

Power density is a function of the number of transistors on the chip. Cooling large computer systems is associated with
huge cost! Source article: https://cns.utexas.edu/news/researchers-tackle-the-dark-side-of-moore-s-law

https://cns.utexas.edu/news/researchers-tackle-the-dark-side-of-moore-s-law

MULTICORE ERA
Since 2006 all microprocessor manufacturers ship multicore chips

Moore's Law now is: double the number of cores per microprocessor
generation about every 24 months

Moore's Law reinterpreted:

Number of cores per chip double every
two years

Clock speed will not increase (possibly
decrease)

Need to deal with systems with Millions
of concurrent threads (GPUs)

Need to deal with intra-chip and inter-
chip parallelism (shared memory,
distributed memory)

WHY USE PARALLEL COMPUTING?
We have no choice 🤣

All major processor vendors produce multicore chips

Do existing programs have to be rewritten? Yes (most have been
since 2006)

Will all programmers have to be parallel programmers?
There are software models that try to hide the complexity. It is dif�cult to gain
full ROI with these models because hiding the complexities and being generic
comes at a cost (e.g. ,)

You could entirely rely on such software models instead

The better approach is to understand how parallel architectures really work
(learning high-level software abstraction layers after you understood it is
trivial)

OpenCL OpenACC

https://www.khronos.org/opencl/
https://www.openacc.org/

Cameron et al., IEEE 2005

Hardware performance is following
Moore's Law in the parallel era

Software needs to be designed for
parallel architectures

Gap in domain knowledge (programmers
lack suf�cient parallel programming
knowledge) generates an ef�ciency gap
where energy, performance and money
is wasted

WHY USE PARALLEL COMPUTING?
The problem is illustrated in this graph:

One of the learning outcomes
of CS205 is to address this gap.

WHO IS USING PARALLEL COMPUTING?
The real world is massively complex! Tackling these problems (in

academia or industry) is not possible without going parallel.

(parallel computing was high-end science in the past, it is ubiquitous today!)

Science and Engineering
Atmosphere, earth, environment, bioscience, biotechnology, genetics, chemistry,
molecular sciences

Physics: applied, nuclear, particle, condensed matter, high pressure, fusion, quantum

Mechanical/Electrical Engineering: �uid mechanics, circuit design, microelectronics

Industrial and commercial
"Big Data", databases, data mining, arti�cial intelligence (AI), oil exploration, web search
engines

Medical imaging and diagnosis

Pharmaceutical design, �nancial and economic modeling

Collapse of bubble array in water

Many bubbles collapse in a cloud

Microjet formation in bubble collapse
and cloud cavitation

Presence of bubbles nearby cause non-
spherical collapse with formation of a high-
energy microjet

Impact on nearby surfaces of such microjets
cause material erosion

Used in cancer treatment (tissue
penetration for precise drug placement),
kidney stones, dental cleansing, mantis
shrimp to stun prey, marine applications

Cloud cavitation collapse with 12'500
bubbles can not be investigated without

parallel computing. 232 Billion computational
cells at 12 Million core hours.

AIR BUBBLE COLLAPSE IN LIQUID WATER

0:00 / 0:47

https://journals.aps.org/pr�uids/abstract/10.1103/PhysRevFluids.4.063602

https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.4.063602

REASONS FOR USING PARALLEL COMPUTING
Save time and money

Solve larger / more complex problems
Many problems are so large or complex that solving them in serial is not possible (especially from
the memory perspective)

Examples:

Provide concurrency
A single compute resource can only do one thing at a time. Multiple compute resources can do
many things simultaneously

Take advantage of non-local resources
Must be able to work on a remote machine and exploit remote resources

Make better use of underlying parallel hardware
Modern computers, even laptops, are parallel in architecture with multiple processors/cores

Parallel software is speci�cally intended for parallel hardware with multiple cores, threads, etc.

In most cases, serial programs run on modern computers "waste" potential computing power

Grand challenge problems

https://en.wikipedia.org/wiki/Grand_Challenges

Fastest supercomputer in the world

Fastest
supercomputer

in the world
performs about

0.4 Exa�op/s

REASONS FOR USING PARALLEL COMPUTING
The Future

In the past 20+ years, trends indicated by ever faster networks, distributed systems,
and multi-processor computer architectures (even at the desktop level) clearly show
that parallelism is the future of computing

In this same time period, there has been a greater than 500'000x increase in
supercomputer performance, with no end currently in sight.

We are entering the Exascale era: (One Exa�op is
 operations per second 😅)

https://www.exascaleproject.org
1018

Fugaku (Top500)

https://www.exascaleproject.org/
https://www.top500.org/system/179807/

WHAT IS A SUPERCOMPUTER?
What Is A Supercomputer? | The Supercomputing SeriesWhat Is A Supercomputer? | The Supercomputing Series

https://www.youtube.com/watch?v=9M99STmu-vI

https://www.youtube.com/watch?v=9M99STmu-vI
https://www.youtube.com/watch?v=9M99STmu-vI

Node/Cluster
A standalone "computer in a box." Usually
comprised of multiple CPUs/processors/cores,
memory, network interfaces, etc. Nodes are
networked together to comprise a
supercomputer or cluster.

CPU/Processor/Core
A CPU (central processing unit) is an entity that
performs data transformations in a core. A core
therefor processes data and is sometimes
called a processor. Recent CPUs have multiple
cores and are sometimes called multi-
processors.

Task
A logically discrete section of computational
work. A task is typically a program or program-
like set of instructions that is executed by a
processor. A parallel program consists of
multiple tasks running on multiple processors.

The internals of a typical node on a supercomputing cluster

Socket
A socket is where a CPU is mounted on the
motherboard. Usually there is one but there
can be multiple. Access to memory modules is
routed through sockets.

Pipelining
Breaking a task into steps performed by
different processor units, with inputs streaming
through, much like an assembly line; a type of
parallel computing.

TERMINOLOGY
This is an overview of commonly used terminology io parallel computing. We

will discuss most of them in detail later in the class.

TERMINOLOGY
Shared memory

Describes a computer architecture where all processors have direct (usually bus based) access to
common physical memory. In a programming sense, it describes a model where parallel tasks all have
the same "picture" of memory and can directly address and access the same logical memory locations
regardless of where the physical memory actually exists.

Symmetric Multi-Processor (SMP)
Shared memory hardware architecture where multiple processors share a single address space and
have equal access to all resources - memory, disk, etc.

Distributed memory
In hardware, refers to network based memory access for physical memory that is not common. As a
programming model, tasks can only logically "see" local machine memory and must use communications
to access memory on other machines where other tasks are executing.

Communications
Parallel tasks typically need to exchange data. There are several ways this can be accomplished, such
as through a shared memory bus or over a network. The actual event of data exchange is commonly
referred to as communication regardless of the method employed.

Synchronization
The coordination of parallel tasks in real time, very often associated with communications.
Synchronization usually involves waiting by at least one task, and can therefore cause a parallel
application's wall clock execution time to increase. Synchronization points serialize a parallel application.

TERMINOLOGY
Granularity

In parallel computing, granularity is a qualitative measure of the ratio of computation to
communication.

Coarse grained: relatively large amounts of computational work are done between communication
events

Fine grained: relatively small amounts of computational work are done between communication
events

Observed speedup
Observed speedup of a code which has been parallelized, de�ned as:

One of the simplest and most widely used indicators for a parallel program's performance.

S = =
T (1)

T (p)

Wall-clock time of serial execution

Wall-clock time of parallel execution

Parallel overhead
The amount of time required to coordinate parallel tasks, as opposed to doing useful work. Parallel
overhead includes:

Task start-up time
Synchronizations
Data communications
Software overhead imposed by parallel languages, libraries, operating systems, etc.
Task termination time

TERMINOLOGY
Massively parallel

Refers to the hardware that comprises a given parallel system - having many processing elements.
The meaning of "many" keeps increasing, but currently, the largest parallel computers are comprised
of processing elements numbering in the hundreds of thousands to millions (e.g. GPUs).

Embarrassingly parallel
Solving many similar, but independent tasks simultaneously; little to no need for coordination between
the tasks.

Scalability
Refers to a parallel system's (hardware and/or software) ability to demonstrate a proportionate
increase in parallel speedup with the addition of more resources. Factors that contribute to scalability
include:

Hardware - particularly memory-cpu bandwidths and network communication properties
Application algorithm
Parallel overhead related
Characteristics of your speci�c application and coding

FLYNN'S TAXONOMY
A widely used classi�cation of parallel computers is due to Flynn (1966)

Flynn's taxonomy distinguishes multi-processor computer architectures
according to how they can be classi�ed along the two independent
dimensions of Instruction Stream and Data Stream. Each of these
dimensions can have only one of two possible states: Single or Multiple.

Flynn's taxonomy

FLYNN'S TAXONOMY
Single Data Multiple Data

Single
Instruction

Multiple
Instruction

A serial (non-parallel) computer

Single instruction: Only one
instruction stream is being
acted on by the CPU during any
one clock cycle

Single data: Only one data
stream is being used as input
during any one clock cycle

Deterministic execution

This is the oldest type of
computer

IBM 360

SISD

Best suited for specialized problems characterized by
a high degree of regularity, such as graphics/image
processing

Synchronous (lockstep) and deterministic execution

Two varieties: Processor Arrays and Vector Pipelines

Examples:
Processor Arrays: Thinking Machines CM-2, MasPar MP-1 & MP-2,
ILLIAC IV
Vector Pipelines: IBM 9000, Cray X-MP, Y-MP & C90, Fujitsu VP, NEC
SX-2, Hitachi S820, ETA10

Most modern computers, particularly those with
graphics processor units (GPUs) employ SIMD
instructions and execution units

SIMD
A type of parallel computer (treated in class)

Single instruction: All processing units execute the same instruction at any given clock cycle

Multiple data: Each processing unit can operate on a different data element

MISD
A type of parallel computer (not treated in class)

Multiple instruction: Each processing unit operates on the data independently via separate
instruction streams

Single data: A single data stream is fed into multiple processing units

Few (if any) actual examples of this class of parallel computer have ever existed

Some conceivable uses might be:
Redundancy in critical missions (e.g. space)
multiple frequency �lters operating on a single signal stream
multiple cryptography algorithms attempting to crack a single coded message

MIMD
A type of parallel computer (treated in class)

Multiple instruction: Every processor may be executing a different instruction stream

Multiple data: Every processor may be working with a different data stream

Execution can be synchronous or asynchronous, deterministic or non-deterministic

The most common type of parallel computer - most modern supercomputers fall into this category

Examples: most current supercomputers, networked parallel computer clusters and "grids", multi-
processor SMP computers, multi-core PCs

Note: Many MIMD architectures also include SIMD execution sub-components

MIMD MACHINES

Piz Daint, CSCS Switzerland Summit, ORNL United States

Sunway TaihuLight, NSCCWX China Cannon, Harvard University United States

READING FOR NEXT CLASS
You can �nd the reading for the next class (see) in the
class git repository.
()

Try to make the following connections to today's class:
The relation to Moore's Law

Does this paper address the ef�ciency gap between hardware and software? If
so, what are some of the technologies discussed to alleviate the gap?

Did you already know some of these technologies?

Do not worry if you do not understand everything the authors are talking about.
We will address these topics in the lecture. The reading is motivational to
highlight the current issues.

The take-away message is that you will waste a lot of resources if you do not
consider all of the parallelism available on the hardware.

schedule

https://code.harvard.edu/CS205/main/blob/master/reading/01_leiserson2020a.pdf

https://harvard-iacs.github.io/2022-CS205/pages/schedule_static.html
https://code.harvard.edu/CS205/main/blob/master/reading/01_leiserson2020a.pdf

RECAP
It is essential to know the hardware to get the best out of software

You must �nd suitable parallelism in your application/algorithm

Coordination and synchronization: data must be shared safely
among processors

Writing fast parallel programs is therefore harder than sequential.
CS205 will provide you with the fundamentals. It is not very hard
but you must practice as with all things in life.

Further reading:

Chapter 1 in Pacheco, An Introduction to Parallel Programming, Morgan Kaufmann, 2011

Cameron et al., High-performance, power-aware distributed computing for scienti�c
applications, IEEE, 38(11):40-47, 2005

https://www.energy.gov/science-innovation/science-technology/computing

https://www.energy.gov/science-innovation/science-technology/computing

