
HIGH PERFORMANCE COMPUTING
FOR SCIENCE AND ENGINEERING

LECTURE 2

Fabian Wermelinger
Harvard University

CS205

Thursday, January 27th 2022

LAST TIME
CS205 introduction

Introduction to parallel
computing

Flynn's taxonomy

Brief summary of reading
for next class

TODAY
Main topic: Overview of CPU hardware organization
with focus on memory

Details:

Hardware organization of a typical CPU system

von Neumann architecture and modi�cations

What are the bottlenecks

Memory

The memory pyramid

Virtual memory

Linux process anatomy

Discussion of reading assignment: There's plenty of
room at the top

Brief introduction to FASRC resources (lab1)

HARDWARE ORGANIZATION
It is important to get an understanding of hardware organization
for writing ef�cient programs

Speci�c implementations of systems change over time, the
underlying concepts do not.

The main components are:
Buses (electrical conduits)

I/O devices (Input/Output)

Main memory (temporary storage)

Processor (central processing unit)

HARDWARE ORGANIZATION
Typical computer system:

CPU

Register file

PC ALU

Bus interface I/O
bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk

Processor

I/O devices

Main memory

CPU

Register file

PC ALU

Bus interface I/O
bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk

Bus system on a motherboard

Buses:
Are a collection of electrical circuits that carry bytes of
information back and forth between components

Typically the transferred chunks of bytes are known as
words

The number of bytes in a word is called the word size and
is a fundamental system parameter

Most machines today have word sizes of either 4 bytes
(32 bits) or 8 bytes (64 bits). In the old days a word was
2 bytes or 16 bits.

HARDWARE ORGANIZATION

The maximum rate at which byte chunks can be
transferred is called bandwidth

Typical bandwidth on a recent CPU is 50 GB/s and on a
GPU 1 TB/s. Why is the bandwidth on a GPU 20x larger?

CPU

Register file

PC ALU

Bus interface I/O
bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk

I/O devices

I/O devices:
I/O (Input/Output) devices are the connection to the
outer world. Examples: keyboard, mouse, display, disk
drive, printer, GPU (rendering, PCIe)

I/O devices are connected by controllers (with chip set) or
adapters (plugin card, e.g. GPU)

Purpose of controller or adapter is simply to transfer
information between I/O bus and I/O device

HARDWARE ORGANIZATION

PCIe slots on a motherboard (left) and a Gigabit PCIe adapter example (right)

CPU

Register file

PC ALU

Bus interface I/O
bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk

Main memory

DRAM modules on a motherboard

Main memory:
Main memory is a temporary storage device

It holds both, a program and data it manipulates while the
processor is executing the program

Physically, main memory consists of a collection of dynamic
random access memory (DRAM)

"Dynamic" means that the memory cells must be refreshed
periodically (DRAM has a frequency, usually MHz)

Logically, memory is organized as a linear array of bytes,
each with its own unique memory address, starting at
zero

You can think of a memory address as the index into the
byte array

Each byte has one address:
32-bit system: 4294967296 addresses → maximum 4GB DRAM

64-bit system: 18446744073709551616 addresses → maximum 16EB DRAM

HARDWARE ORGANIZATION

CPU

Register file

PC ALU

Bus interface I/O
bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk

Processor

CPU mounted in a socket on the
motherboard

Processor:
The central processing unit (CPU) or simply processor is the
workhorse that interprets (executes) instructions stored in main
memory

At its core is a word-size storage device (a register) called the
program counter (PC). At any point in time the PC points at (contains
the address of) som machine instruction in main memory

From power on until power off the processor repeatedly executes
the instruction pointed at by the PC and updates it to point to the
next instruction

The processor operates with a (simple) instruction model, de�ned
by its instruction set architecture (ISA). Two common models are
RISC (reduced instruction set computer) and CISC (complex
instruction set computer).

Instructions execute in strict sequence and executing a single
instruction involves a series of steps

HARDWARE ORGANIZATION

CPU

Register file

PC ALU

Bus interface I/O
bridge

System bus Memory bus

Main
memory

I/O bus
Expansion slots for
other devices such
as network adaptersDisk

controller
Graphics
adapter

DisplayMouse Keyboard

USB
controller

Disk

Processor

CPU mounted in a socket on the
motherboard

Processor:
There are only a few of these simple operations and they revolve
around main memory, the register �le and the arithmetic/logic unit
(ALU)

The register �le is a small storage device that consists of a collection
of word-sized registers

The ALU computes new data and address values

Some simple operations the CPU might carry out:

Load:
Copy a byte or a word from main memory into a register, overwriting the previous
contents of the register

Store:
Copy a byte or a word from a register to an address in main memory, overwriting
the previous contents at that base address

Operate:
Copy the contents of two registers to the ALU, perform an arithmetic operation on
the two words and store the result in a register, overwriting the previous content
of that register

Jump:
Extract a word from the instruction itself and copy that word into the program
counter (PC), overwriting the previous value of the PC

HARDWARE ORGANIZATION

WHAT HAPPENS WHEN YOU RUN A PROGRAM?
Assume we have this simple high-level C program

(high-level because we can read and understand it)

In order to run this program on the system, the high-level code must be translated
into a sequence of low-level machine-language instructions

#include <stdio.h>

int main(void)
{
 printf("hello, world!\n");
 return 0;
}

1
2
3
4
5
6
7

A compiler translates the source code into machine instructions which are packaged
into an executable object program (or binary). For the code above we would execute

What happens when we call gcc:

$ gcc -o hello hello.c

WHAT HAPPENS WHEN YOU RUN A PROGRAM?

Preprocessing phase:
The preprocessor modi�es the original program depending on directives that start
with "#". Comments will be removed as well. For example, the
#include <stdio.h> header in our code would be expanded and replaced with
code in this phase. You can investigate this stage with
$ gcc -E hello.c >hello.i

Compilation phase:
The compiler translates the pre-processed �le into an
assembly-language �le. Assembly language is useful
because it allows us to inspect the generated machine
instructions in a human readable form. This is important
when we optimize. Moreover, it provides a common
output language, i.e. C/C++ and Fortran would look
the same on this level.

Example assembly code for
the hello.c program. Lines

2-7 are each machines
instructions. We will get

back to assembly a bit later.

WHAT HAPPENS WHEN YOU RUN A PROGRAM?

main:
 subq $8, %rsp
 leaq .LC0(%rip), %rdi
 call puts@PLT
 xorl %eax, %eax
 addq $8, %rsp
 ret

1
2
3
4
5
6
7

WHAT HAPPENS WHEN YOU RUN A PROGRAM?

Assembly phase:
The assembler translates assembly code input into machine-language instructions and
packages them into a form known as a relocatable object program which usually have a
*.o �le suf�x. This output can be generated with

When we disassemble hello.o we �nd that our main function is encoded by 23 bytes
and we have a much harder time to �gure out what this machine code does (without
the assembly on the right). We do not need to understand this output for CS205!

$ gcc -c hello.c

$ objdump -d hello.o
0000000000000000 <main>:
 0: 48 83 ec 08 sub $0x8,%rsp
 4: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi # b <main+0xb>
 b: e8 00 00 00 00 call 10 <main+0x10>
 10: 31 c0 xor %eax,%eax
 12: 48 83 c4 08 add $0x8,%rsp
 16: c3 ret

WHAT HAPPENS WHEN YOU RUN A PROGRAM?

Linking phase:
Note that our program calls printf which is part of the standard C library provided by
the compiler (similar to the OpenMP library that we will use later in the class). The
printf function resides in a separate printf.o �le which must be linked to our hello.o
�le. The result is the executable hello �le that can be loaded into memory and
executed by the system. If printf.o was in the same directory as hello.o we could run
(we do not have to do this ever with object code from the standard library):
$ gcc -o hello hello.o printf.o

WHAT HAPPENS WHEN YOU RUN A PROGRAM?
Given the hardware organization we discussed, this is what happens when we execute
$./hello
hello, world!
$

We type the ./hello characters in the shell which are read one by
one into a register and stored in main memory. When we hit enter
the shell knows we are done and execution of the program begins.

The shell then loads the executable hello �le by executing the
instructions that copy the code and data in the hello object �le from
disk to main memory. (Note: this happens without involving the
processor due to direct memory access (DMA).) The data includes the
string "hello, world!\n" which is encoded in the executable.

Once the code and data in the hello object �le are loaded in memory,
the processor begins to execute the instructions in the main function.
These instructions copy the hello, world!\n string from memory to
the register �le and from there to the display device.

VON NEUMANN ARCHITECTURE

CPU

Register file

System bus Memory bus

Main
memoryBus interface I/O

bridge

ALU

Classic von Neumann architecture

John von Neumann

Let us neglect the I/O devices we have seen in the previous slides. The image below
corresponds to the classical von Neumann architecture:

The classical von Neumann architecture simply consists of main memory a processor
and an interconnect between memory and the processor. Main memory stores both,
instructions and data. Transfer of data and instructions goes through the
interconnect (bus)

What could be a potential problem with this architecture? (especially today)

VON NEUMANN ARCHITECTURE

Warehouse (main memory)

von Neumann bottleneck: separation of processor and memory

Factory/warehouse example:

Traf�c (interconnect/bus) Warehouse (processor)

Bandwidth: the rate at which information is carried along an
interconnect. If you think in terms of the pipe on the right,
bandwidth is proportional to the radius of the pipe (e.g. �ow rate).

Latency: the time it takes for the information to arrive measured
from its initial request. Starting with an empty pipe on the right,
the time it takes to �ll it is proportional to its length.

The interconnect determines the rate at which instructions and data can be accessed. If you
look at the traf�c jam above, this can be a problem. Two important terms to be aware of:

VON NEUMANN ARCHITECTURE
Example: is a CPU starving for data?

We want to assess how relevant the von Neumann bottleneck is today

Recent :

About 1 T�op/s single precision �oating point peak performance

About 80 GB/s memory bandwidth to DRAM

How much more single precision �oating point numbers can this
chip process compared to the amount of �oating point numbers

that can be delivered to the ALU of the chip at any given time?

12th Gen Intel Core i9-12900E

https://www.intel.com/content/www/us/en/products/sku/132212/intel-core-i912900e-processor-30m-cache-up-to-5-00-ghz/specifications.html

VON NEUMANN ARCHITECTURE VS. TODAY
The CPU of today would never be this performant if it was based on the classic von
Neumann architecture. The gap between performance and memory bandwidth keeps
increasing. It is easier to improve CPU performance than memory performance. What
do you think is the main reason for ridiculously high prices of GPUs?

There are three main modi�cations in recent CPUs:
Caches

To reduce the processor-memory gap, smaller and faster cache memories (or just caches) are used
which are usually on the CPU chip. Most often there are three levels: L1 (closest to ALU, smallest
size), L2 and L3 (furthest from ALU, largest size). The idea of caching is to exploit locality. It is a
very important concept for HPC and we will look at caches in the next lecture.

Virtual memory
A similar caching problem exists for DRAM and secondary storage systems. Virtual memory
further helps the operating system manage multiple processes that run simultaneously and thus
request a fraction of main memory. Virtual memory is less important for CS205 and we will not
look into it in detail.

Low-level parallelism
This mainly includes instruction-level parallelism (ILP) on the hardware level. This concept entails
pipelining and multiple issue of instructions (lecture 16). Coarse grained parallelism is exploited
through thread-level parallelism which we will be concerned with in the shared memory part of the
class.

MEMORY HIERARCHY
Introducing different memories (e.g. registers, caches, main memory)
creates a hierarchy of different memory sizes and access times

Each of the levels in the hierarchy are a cache for the immediate lower
level. For example: registers are a cache for L1, L2 is a cache for L3, L3 is a
cache for DRAM and DRAM is a cache for the disk.

As the access time (and size) of a memory technology gets smaller, the
price goes up

This hierarchy allows to increase the bandwidth by exploiting locality

Important take-away: the memory hierarchy only works for well-written
programs. A well-written program is one that spends more time in the
same level of the hierarchy rather than frequent access of memories in
lower levels. As a programmer you must understand the memory hierarchy
to write ef�cient code.

MEMORY PYRAMID
CPU registers hold words
retrieved from cache memory.

L1 cache holds cache lines
retrieved from L2 cache.

L2 cache holds cache lines
retrieved from L3 cache.

Main memory holds disk blocks
retrieved from local disks.

Local disks hold files
retrieved from disks on
remote network server.

Regs

L3 cache
(SRAM)

L2 cache
(SRAM)

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Remote secondary storage
(distributed file systems, Web servers)

Smaller,
faster,
and

costlier
(per byte)
storage
devices

Larger,
slower,

and
cheaper

(per byte)
storage
devices

L0:

L1:

L2:

L3:

L4:

L5:

L6:

L3 cache holds cache lines
retrieved from memory.

Since 1985, the cost per megabyte DRAM has decreased by a factor of 44'000(!), its access time
has improved only by a factor of 10

The cost of SRAM is about 50-100 times higher than DRAM because of the manufacturing
process as well as one SRAM cells requires 6 transistors while DRAM requires 1 (and a
capacitor).

LATENCY FIGURES YOU SHOULD BE AWARE OF
You should be aware of the following characteristic latencies:

Type Where cached Latency (cycles) Managed by

CPU registers On-chip CPU registers 0 Compiler

L1 cache On-chip L1 cache 4 Hardware

L2 cache On-chip L2 cache 10 Hardware

L3 cache On-chip L3 cache 50 Hardware

Virtual memory Main memory (DRAM) 200 Hardware + OS

Disk cache Disk controller 100'000 Controller �rmware

Browser cache Local disk 10'000'000 Web browser

Web cache Remote server disks 1'000'000'000 Web proxy server

Do you have a feel for the difference of latency between a L1 cache
and main memory? See next slide...

WHAT IT FEELS LIKE TO ACCESS MEMORIES
What work will you do while waiting?

0:00 / 1:20

VIRTUAL MEMORY
Virtual memory is an abstraction that provides each process with the
illusion that it has exclusive use of the main memory

Each process the same uniform view of memory which is known as its
virtual address space

In reality, there is on large pool of physical DRAM memory with
4294967296 unique addresses on 32-bit systems or
18446744073709551616 unique addresses on a 64-bit system

The operating system manages many processes which may run
concurrently on the system. Virtual memory protects the address space of
each process from corruption by other processes

Under the hood, a lookup of a virtual memory address must be translated
to a physical memory address. Dedicated hardware on the CPU chip called
memory management unit (MMU) translates virtual addresses on the �y

VIRTUAL MEMORY
Under the hood, a lookup of a virtual memory address must be translated
to a physical memory address. Dedicated hardware on the CPU chip called
memory management unit (MMU) translates virtual addresses on the �y

Virtual address (VA) to physical address (PA) translation through MMU when loading a 4 byte word

High address

Low address

Program start

VIRTUAL ADDRESS SPACE (LINUX PROCESS)
#include <stdio.h>

int main(void)
{
 printf("hello, world!\n");
 return 0;
}

1
2
3
4
5
6
7

High address

Low address

Program start

Program code and data
Code begins at the same �xed
address for all processes, followed
by data locations that correspond to
global C/C++ variables. The code and
data areas are initialized directly
form the contents of an executable
object �le, here the hello
executable.

VIRTUAL ADDRESS SPACE (LINUX PROCESS)
#include <stdio.h>

int main(void)
{
 printf("hello, world!\n");
 return 0;
}

1
2
3
4
5
6
7

High address

Low address

Program start

Heap
The code and data areas are
followed immediately by the tun-
time heap. Unlike the code and data
areas (which are �xed in size once
the process begins running) the
heap expands and contracts
dynamically at run time as a result of
calls to malloc or free for example.
These calls involve the OS kernel
which are therefore slow.

VIRTUAL ADDRESS SPACE (LINUX PROCESS)
#include <stdio.h>

int main(void)
{
 printf("hello, world!\n");
 return 0;
}

1
2
3
4
5
6
7

High address

Low address

Program start

Shared libraries
Near the middle of the address
space is the is an area that holds
code and data for shared libraries
such as the C/C++ standard libraries
and the math library for example.

VIRTUAL ADDRESS SPACE (LINUX PROCESS)
#include <stdio.h>

int main(void)
{
 printf("hello, world!\n");
 return 0;
}

1
2
3
4
5
6
7

High address

Low address

Program start

Stack
At the top of the user's virtual
address space is the user stack that
the compiler uses to implement
function calls. The user stack
expands and contracts dynamically
during the execution of the program.
When we call a function the stack
grows downward and when we exit a
function it contracts upward. Unlike
the heap, memory requests on the
stack are cheap.

VIRTUAL ADDRESS SPACE (LINUX PROCESS)
#include <stdio.h>

int main(void)
{
 printf("hello, world!\n");
 return 0;
}

1
2
3
4
5
6
7

High address

Low address

Program start

Kernel virtual memory
The top region of the address space
is reserved for the kernel.
Application programs are not
allowed to read or write the
contents of this area or to directly
call functions de�ned in the kernel
code. Instead, they must invoke the
kernel to perform these operations.

VIRTUAL ADDRESS SPACE (LINUX PROCESS)
#include <stdio.h>

int main(void)
{
 printf("hello, world!\n");
 return 0;
}

1
2
3
4
5
6
7

READING: THERE'S PLENTY OF ROOM AT THE TOP
In the �rst column of the summary, the authors mention:

What do they mean by that?

Unfortunately, semiconductor miniaturization is
running out of steam as a viable way to grow computer
performcane—there isn't much more room at the
"Bottom."

READING: THERE'S PLENTY OF ROOM AT THE TOP

Cameron et al., IEEE 2005
Leiserson et al., Science 2020

How are these two �gures related?

READING: THERE'S PLENTY OF ROOM AT THE TOP
What is the message of the data presented in this table? From a software engineering
perspective, is it always a good idea to go all this way?

Leiserson et al., Science 2020

What is the parallelization the authors used in Version 4?

For Version 5 the authors mention that "spatial and temporal locality" has been exploited.
Which part of the hardware did they target for this optimization (in hindsight of the
lecture today)? How dramatic is the relative speedup?

Version 6 and 7 deal with vectorization. What is meant by that? What is "AVX" and will
you have this on any CPU? Recall Flynn's taxonomy: to which classi�cation does Version 6
and 7 belong? (SIMD, MISD or MIMD)

INTRO TO COMPUTING RESOURCES
You will need some computing resources to solve the homeworks
and tasks in the labs

You have options:
Since your laptop is a node, you can work locally to solve a problem

There is a docker image available

We have a share on the Harvard academic cluster (Linux system)

The academic cluster is the reference platform. If you are asked to
benchmark a problem or report performance results, you are
expected to produce these results on the academic cluster for
the speci�ed con�guration

Results in solutions are obtained from the Harvard academic
cluster

$ docker pull iacs/cs205_ubuntu

INTRO TO COMPUTING RESOURCES
Laptop:

When you work on your laptop, you can use any operating system
you like. Some of the tools discussed in class are Linux speci�c
however. Examples and handouts are tested on Linux
environments only.

You need a compiler for C/C++ code that supports OpenMP (all
common compilers do) and an MPI library

You should be familiar with working in the command line, especially
for work on the cluster. See these resources for refreshers:
https://harvard-iacs.github.io/2022-CS205/pages/resources.html#general

https://harvard-iacs.github.io/2022-CS205/pages/resources.html#general

You should become familiar with the
hardware/CPU you are working with
on your laptop

On Linux, see the �le /proc/cpuinfo
for CPU information

A very useful tool to visualize the CPU
architecture is (used in Lab1).
You can create a visualization of your
CPU with

You can either build it, use your
package manager (if available) or use
the docker image.

INTRO TO COMPUTING RESOURCES
Check the CPU on your laptop:

hwloc

$ lstopo --whole-system --no-io --no-icaches $HOME/mycpu.png

https://www.open-mpi.org/projects/hwloc/

INTRO TO COMPUTING RESOURCES
Docker:

If you are working on Windows or otherwise like to use a container,
you can get a class container with the tools discussed in class with

There is convenience launch wrapper to mount a working directory
inside the container:

Run it with

to mount the host my_workdir directory under /scratch inside the
container. Alternatively update your $PATH variable.

$ docker pull iacs/cs205_ubuntu

https://code.harvard.edu/CS205/main/blob/master/docker/run_cs205_docker.sh

$./run_cs205_docker.sh my_workdir

https://code.harvard.edu/CS205/main/blob/master/docker/run_cs205_docker.sh

INTRO TO COMPUTING RESOURCES
Academic cluster:

Due to security issues we cannot access the cluster directly with ssh

We have to use the instead

By clicking on the link above, you are directed to a browser tab that looks
like the left image below (use your HarvardKey to login). Click on "FAS-
OnDemand Shell Access" to open a shell in a new browser tab. This should
look similar to the image on the right below.

In the example above we landed on the academic-login07 login node

FAS OnDemand web-interface on Canvas

https://canvas.harvard.edu/courses/100601/external_tools/83566?display=borderless

INTRO TO COMPUTING RESOURCES
Academic cluster:

To view, upload or download �les to or from the cluster you can use the
"Home Directory" tool in your dashboard

Your $HOME on the cluster is persistent, you can modify your .bashrc for
example for customizations. The quota in your $HOME directory is 20GB.

There are two special directories in your $HOME directory:
shared_data

Contains �les and executables that are shared with all users of the class. For example,
large binary �les needed for the homework will be available from there. You can also
share data with project team mates for example. The path for this directory is
contained in the $SHARED_DATA environment variable.

scratch_folder
Is used to run your code, simulations, test cases, etc. You should run your code in this
directory because it is mounted on a high performance �le system with a large
10TB quota that can accommodate the I/O data generated by your code. The data in
this directory will be deleted 90 days after its last modi�cation (without noti�cation).

Lustre

https://www.lustre.org/

INTRO TO COMPUTING RESOURCES
Useful references:

The �rst lab next week will walk you through all these steps in more
detail:

https://www.rc.fas.harvard.edu/services/cluster-computing

https://docs.rc.fas.harvard.edu/kb/convenient-slurm-commands

https://code.harvard.edu/CS205/main/tree/master/lab/lab1

https://www.rc.fas.harvard.edu/services/cluster-computing
https://docs.rc.fas.harvard.edu/kb/convenient-slurm-commands
https://code.harvard.edu/CS205/main/tree/master/lab/lab1

RECAP
The main components of hardware organization

Processors read and interpret instructions stored in main memory

Processors modify data stored in main memory

Classic von Neumann architecture would not work today because processors transform data at a
rate higher than the data can be fed into the processor → caches!

Overview of the memory hierarchy

Accessing main memory (DRAM) is slow!

SRAM is fast but more expensive

Each level serves as a cache for the next lower level

Linux process anatomy is important to be aware of: where is the program code, where is the heap
and where does it grow, where is the stack and where does it grow?

Further reading:

Sections 2.1, 2.2, 2.3 in Pacheco, An Introduction to Parallel Programming, Morgan
Kaufmann, 2011

Chapter 1 in Eijkhout, Introduction to High Performance Scienti�c Computing, free PDF

https://web.corral.tacc.utexas.edu/CompEdu/pdf/stc/EijkhoutIntroToHPC.pdf

