
CS205
HIGH PERFORMANCE COMPUTING FOR SCIENCE AND ENGINEERING

CLASS SYLLABUS
2021-12-17

Fabian Wermelinger
Harvard University

Objective:
With manufacturing processes reaching the
limits in terms of transistor density on today’s
computing architectures, ef�cient utilization of
computing resources must exploit parallel
execution to maintain scaling. The use of
computers in academia, industry and society is a
fundamental tool for solving (scienti�c) problems
while the "think parallel" mindset of code
developers is still lagging behind. The aim of this
course is to introduce the student to the
fundamentals of parallel programming and its
relationship on computer architectures. Various
forms of parallelism are discussed and exploited
through different programming models with
focus on shared and distributed memory
programming.

After completing this class, the student is
capable of identifying parallelism in algorithms
and exploit it with appropriate techniques. The
student will further learn about methods to
analyze the performance and parallel scaling of
programs and know how to apply optimizations
in software such that it can be deployed on large
scale high performance computing (HPC)
architectures.

Prerequisites:
The course assumes that the student is
comfortable with reading and writing code in the
C or C++ (or Fortran) programming languages.
Homework, lab and examples in class will be
presented using C++. Familiarity with the Linux
command line tools, ssh, git and editing source
code is assumed. Preparatory classes include
CS50, CS107 or AC207. The course will not teach
basics of programming.

Textbooks:
The class does not follow a speci�c textbook. The
following textbooks are suitable for additional
reference:

"Introduction to High Performance Scienti�c Computing",
V. Eijkhout,
"Parallel Programming for Science and Engineering",
V. Eijkhout,
"An Introduction to Parallel Programming",
P. Pacheco, Morgan Kaufmann 2011
"Introduction to High Performance Computing for
Scientists and Engineers",
G. Hager and G. Wellein, CRC Press 2011
"Computer Organization and Design",
D. Patterson and J. Hennessy, Morgan Kaufmann
2018 (RISC-V edition)
"Computer Architecture",
J. Hennessy and D. Patterson, Morgan Kaufmann
2019
"Programming Massively Parallel Processors",
D. Kirk and W. Hwu, Morgan Kaufmann 2017

Course Format:
The course contains six main components:

1. Lectures: Deliver the main content of the class.
Attendance is mandatory.

2. Readings: Accommodate lecture material. The reading
assignments are discussed in class. Questions to
individual students may be asked.

3. Quizzes: In-class quizzes intended to assess the
learning progress.

4. Labs: Lab sessions offer practice on topics addressed
in class and help support homework assignments.

5. Homeworks: Homework assignments deepen the
lecture material and include coding exercises
(skeleton codes are provided in C++).

6. Projects: The class is accompanied by a project (teams
of 3-4 students) to practice the methods learned in
class on a real application. Topics are proposed by the
teams and may involve research problems of
individual team members.

Grading:
Homework: 40%

Project: 35%

Quizzes: 10%

Labs: 10%

Communal Contributions:
Via the class communication platforms.

5%

Bonus:
Can be exploited only by participation in discussions
during lectures. This may include answering or asking
questions or discussions for reading assignments.
Maximum is 5%.

5%

The class does not have standard midterm or
�nal exams. The project work involves
presentations.

Collaboration and Class Policies:
You are welcome to discuss the course material
and homework with others in order to better
understand it, but the work you turn in must be
your own (with exception of the project where
collaborative work is permitted). Any work that
is not your own, without properly citing the
original author(s), is considered plagiarism.
Failure to follow the academic integrity and
dishonesty guidelines outlined in the

 will have an adverse effect on
your �nal grade. This includes the removal of
copyright notices in code. You may not submit
the same or similar work to this course that you
have submitted or will submit to another without
permission.

The course related material will be distributed
through git repositories on the

 platform. Membership
in the CS205 organization on that platform is
required to access the material.

free pdf 3rd edition 2020

free pdf 2nd edition 2020

Harvard
Student Handbook

https://code.harvard.edu/

https://web.corral.tacc.utexas.edu/CompEdu/pdf/stc/EijkhoutIntroToHPC.pdf
https://web.corral.tacc.utexas.edu/CompEdu/pdf/pcse/EijkhoutParallelProgramming.pdf
https://handbook.college.harvard.edu/
https://code.harvard.edu/

Wk Tuesday Thursday Labs Events

1(4) Lecture 1: 2022-01-25
Class introduction/organization
Moore's Law
Transistor density and power limit
Parallel computing
Flynn's taxonomy
Overview of parallelism treated in class: DLP, ILP, TLP, shared
memory and distributed memory

Lecture 2: 2022-01-27
Computer architecture
von Neumann architecture
Memory pyramid
Linux process anatomy
Introduction to compute cluster: access, job submission
Reading: Leiserson paper

Sign-up:
Select one of the
offered lab
session days
according to
your schedule

Note:
The "Reading"
assignments are relevant
for the lecture and due on
the day of the lecture!
Questions may be asked
to individual students.
1. Doodle for lab day

selection due
(2022-01-28)

2(5) Lecture 3: 2022-02-01
Cache memories: why are they there, how they work
Cache lines and the 3 C's
What is temporal and spatial locality
Cache associativity: fully, -way, direct mapped
Memory access patterns (differences row-major / column-
major)

Lecture 4: 2022-02-03
Shared memory introduction
Examples of concurrency and concurrent memory access
Why is shared memory programming hard: what is a race
condition and why/how does it happen
Quiz 1

Lab 1:
Accessing
cluster, SLURM,
Linux, compiler
and C++
tutorials.

1. HW1 release

(2022-02-01)

3(6) Lecture 5: 2022-02-08
Memory model for shared memory programming and its
implications on compilers
Sequential consistency
Mutual exclusion / critical sections / locks
Overview of thread libraries

Lecture 6: 2022-02-10
Introduction to OpenMP: why OpenMP and how to use it in
new or existing codes
OpenMP: fork/join parallel regions
OpenMP: work sharing constructs
OpenMP: data environment
Reading: OpenMP speci�cation 5.2 Chap. 1 (until 1.4 inclusive)

1. Lab 1 due

(2022-02-11)
2. Project team

formation due
(2022-02-08)

4(7) Lecture 7: 2022-02-15
OpenMP: synchronization constructs
OpenMP: library routines
OpenMP: environment variables
OpenMP: processor binding

Lecture 8: 2022-02-17
UMA/NUMA memory architectures
What is cache coherency and why is it required in shared
memory programming
Cache coherency protocols (focus on MESI)
False sharing
Quiz 2

Lab 2:
OpenMP locks,
critical sections
and atomic
clauses.

1. HW1 due

(2022-02-15)
2. HW2 release

(2022-02-15)

5(8) Lecture 9: 2022-02-22
Performance analysis (single node)
Relationship of compute performance (�op) to memory
bandwidth
Roo�ine model
Reading: Williams paper

Lecture 10: 2022-02-24
Introduction to distributed programming (recap Flynn's
taxonomy)
What is the Message Passing Interface (MPI)
Simple parallel MPI program example

Lab 3:
False sharing
and cache
thrashing.

1. Lab 2 due

(2022-02-25)
2. Project high-level

description due
(2022-02-22)

6(9) Lecture 11: 2022-03-01
MPI: blocking point-to-point
MPI: blocking collective
Reading: MPI 4.0 Standard 3.1, 3.2, 3.4, 3.5

Lecture 12: 2022-03-03
MPI: non-blocking point-to-point
MPI: non-blocking collective
Reading: MPI 4.0 Standard 3.7

1. Lab 3 due

(2022-03-04)

n

Wk Tuesday Thursday Labs Events

7(10) Lecture 13: 2022-03-08
MPI: I/O �le management
MPI: I/O read and write routines
Parallel I/O for data compression example

Lecture 14: 2022-03-10
Hybrid MPI and OpenMP
Overhead associated with sending messages
Message packing
Working with scienti�c libraries (BLAS/LAPACK/Eigen)
Quiz 3

Lab 4:
MPI reductions
and scans.

1. HW2 due

(2022-03-08)
2. HW3 release

(2022-03-08)

8(11) Spring break: 2022-03-15 Spring break: 2022-03-17

9(12) Presentations for project proposals:
2022-03-22

Presentations for project proposals:
2022-03-24

1. Lab 4 due

(2022-03-25)
2. Project proposals due

10(13) Lecture 15: 2022-03-29
Parallel scaling analysis
Strong scaling / Amdahl's law
Weak scaling

Lecture 16: 2022-03-31
Instruction set architecture (ISA) / RISC / CISC
Assembly language (x86_64)
Processor pipelining (ILP)
Reading: Hennessy and Patterson Turing lecture

Lab 5:
Linking your
code with third
party libraries.
Examples for
BLAS and
LAPACK.

1. HW3 due

(2022-03-29)
2. HW4 release

(2022-03-29)

11(14) Lecture 17: 2022-04-05
Recap Flynn's taxonomy: SIMD
Instruction set architecture extensions
What is vectorization and why is it important
Memory alignment and relation to cache lines

Lecture 18: 2022-04-07
Manual vectorization
Intel intrinsics
Bit masking/shuf�ing
Examples for manual vectorization and performance impact
(DLP in roo�ine)

1. Lab 5 due

(2022-04-08)

12(15) Presentations for project designs:
2022-04-12

Presentations for project designs:
2022-04-14

1. Project designs due

13(16) Lecture 19: 2022-04-19
Compiler auto vectorization
SPMD programming model
Intel ISPC compiler
Reading: Pharr paper
Quiz 4

Lecture 20: 2022-04-21
GPU computing I:

Streaming processors
Main difference between CPU and GPU architectures
SIMD and SIMT
Introduction to CUDA

Lab 6:
Understanding
machine
instructions by
learning how to
debug code.

1. HW4 due

(2022-04-19)
2. HW5 release

(2022-04-19)

14(17) Lecture 21: 2022-04-26
GPU computing II (CUDA):

CUDA warps and threads
Streaming multiprocessor and Little's Law
Example CUDA kernel for vector addition

Class summary

Reading period: 2022-04-28
1. HW5 due

(2022-05-01)
2. Lab 6 due

(2022-04-29)

Wk Tuesday Thursday Labs Events

15(18) Reading period: 2022-05-03 Exam period: 2022-05-05

16(19) Exam period: 2022-05-10
Project �nal presentations (date TBD)

Exam period: 2022-05-12
Project �nal presentations (date TBD)

1. Project deliverables

due
2. Project �nal

presentations due

