
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman

Protopapas 2

Convolutional Neural Networks III



3

Outline

1. Regularization for CNN

2. BackProp of MaxPooling layer 

3. Layers Receptive Field and dilated convolutions

4. Weights and feature maps visualization
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Regularization for CNN

• L2 and L1 work the same way as in FFNN 
• Data Augmentation is the same
• Early Stopping same as in FFNN

• Dropout is slightly different – not the same effect as dropout with FFNN. 
• Dropout in CNN still allows the weights in a kernel to be trained.
• The name is misleading!
• The effect of dropout on convolutional layers amounts to multiplying 

Bernoulli noise into the feature maps of the network.
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So, if you try adding dropout after a convolutional layer and get bad results, don’t be 
disappointed! There doesn’t appear that there is a good reason it should provide good 
results.
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Outline

1. Regularization for CNN

2. BackProp of MaxPooling layer 

3. Layers Receptive Field and dilated convolutions

4. Weights and feature maps visualization
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Layers Receptive Field

The receptive field is defined as the region in the input space that a 
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

The receptive field size is a crucial issue in many visual tasks, as the 
output must respond to large enough areas in the image to capture 
information about large objects.
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Layers Receptive Field

The receptive field is defined as the region in the input space that a 
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1
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Layers Receptive Field

The receptive field is defined as the region in the input space that a 
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1 
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Layers Receptive Field

The receptive field is defined as the region in the input space that a 
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1 
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Layers Receptive Field 

The receptive field is defined as the region in the input space that a 
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1 
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Layers Receptive Field

The receptive field is defined as the region in the input space that a 
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x1 
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Layers Receptive Field

The receptive field for each element of layer’s 2 is shown below. 
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Layers Receptive Field

The receptive field for each element of layer’s 2 is shown below. 
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Layers Receptive Field
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Layers Receptive Field

The receptive field for each element of layers 1 and 2 are shown below. 
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Layers Receptive Field

The receptive field for each element of layers 1 and 2 are shown below. 
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Layers Receptive Field
In 2D, it works the same way.  

31

The receptive field can be calculated using the recursive formula:  

• 𝑘!kernel size (positive integer)
• 𝑠! stride (positive integer)

𝑟! = 1 +(
"#$

%

𝑘" − 1 +
&#$

"'$

𝑠&
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Dilated CNNs

• We can “inflate” the receptive field by inserting holes between the 
kernel elements.

• These are called Dilated Convolutions.
• Dilation rate indicates how much the kernel is widened. 

32

Original Idea: Algorithme a trous, an algorithm for wavelet decomposition (Holschneider et al., 1987; Shensa, 1992)

Dilate rate=1
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Dilated CNNs
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Dilated CNNs
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Dilated CNNs
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• We can “inflate” the receptive field by inserting holes between the 
kernel elements.

• These are called Dilated Convolutions.
• Dilation rate indicates how much the kernel is widened. 
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Dilated CNNs

36

2D Example: 2x2 kernel, stride=1, dilate rate=1
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Dilated CNNs

37

There is a relationship 
between classification 
accuracy and receptive 
field size. 

Large receptive fields are 
necessary for high-level 
recognition tasks, but 
with diminishing 
rewards.

Araujo, A., Norris, W., & Sim, J. (2019). Computing receptive 
fields of convolutional neural networks. Distill, 4(11), e21.

PROTOPAPAS

https://distill.pub/2019/computing-receptive-fields
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Outline

1. Regularization for CNN

2. BackProp of MaxPooling layer 

3. Layers Receptive Field

4. Weights and feature maps visualization
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Lessons for Visualization

Choosing/designing machine learning visualization requires that we 
think about:

– are we visualizing to diagnose problems with our models?
– are we visualizing to interpret our model's meaningfulness?

– do we visualize decision boundaries, weights of our model, and or 
distributional differences in the data?

39

Why and for whom to visualize?

What and how to visualize?  

PROTOPAPAS
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1. Interpretability & Explainability: understand how deep learning 
models make decisions and what representations they have learned.

2. Debugging & Improving Models: help model developers build and 
debug their models, with the hope of expediting the iterative 
experimentation process to ultimately improve performance.

3. Teaching Deep Learning Concepts: educate non-expert users about 
AI.

From: Visual Analytics in Deep Learning: An Interrogative Survey for the 
Next Frontiers 40

For me

For 
others

For us

Why and for whom to visualize?
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https://arxiv.org/pdf/1801.06889.pdf
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What technical components of neural networks could be visualized?

• Computational Graph & Network Architecture
• Learned Model Parameters: weights, filters
• Individual Computational Units: activations, gradients
• Aggregate information: performance metrics

How can they be insightfully visualized?

How depends on the type of data and model as well as our specific 
investigative goal.

41

What and how to visualize?  
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What to Visualize for Neural Network Models?
For logistic regression,  𝑝 𝑦 = 1|𝑤, 𝑥 = 𝜎(𝑤#𝑥) we 
can interrogate the model by printing out the 
weights of the model.

Recalling from previous lectures, we can visualize 
the feature importance looking at the coefficients

ln
𝑃(𝑦 = 1)
𝑃(𝑦 = 0)

= 𝑤#𝑥

42

log-odds
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What to Visualize for Neural Network Models?

For a neural network classifier, 𝑝 𝑦 = 1|𝑤, 𝑥 = 𝜎( 0𝑓 𝑥 ) would it be helpful to 
print out all the weights?

43

INPUT
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,𝑓 𝑥
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Weight Space Versus Function Space

While it's convenient to build up a complex function by composing simple 
ones  -as in neural networks- understanding the impact of each weight on 
the outcome is difficult.

In fact, the relationship between weights of a neural network and the 
function the network represents is extremely complicated:

1. the same function may be represented by two very different set of 
weights for the same architecture.

2. the architecture may be overly expressive - it can express the function 
(𝑓 using a subset of the weights and hidden nodes (i.e. the trained model 

can have weights that are zero or nodes that contribute little to the 
computation).
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Debugging & Improving Models : Tensorboard

What happens if we want to know 
the outputs of a specific hidden 
layer? 

By visualizing the network weights 
and activations as we train, we can 
diagnose issues that ultimately 
impact model performance.

TensorFlow provides a functionality 
to explore the inner workings of the 
network.

45From: Tensorboard PROTOPAPAS

https://www.tensorflow.org/tensorboard
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Debugging & Improving Models : Tensorboard

The following visualizes the distribution of activations in two hidden layers 
over the course of training. 
What problems do we see?

47From: Tensorboard

Tanh activation Tanh activation
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Debugging & Improving Models : Tensorboard

The following visualizes the distribution of activations in two hidden layers 
over the course of training. 
The activations are starting to saturate,  reducing the learning speed.

48From: Tensorboard

Tanh activation Sigmoid activation
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https://www.tensorflow.org/tensorboard


49

Debugging & Improving Models : Tensorboard

The following visualizes the distribution of gradients in two hidden layers over 
the course of training. 
What problems do we see?

49From: Tensorboard PROTOPAPAS

https://www.tensorflow.org/tensorboard
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Debugging & Improving Models : Tensorboard

The following visualizes the distribution of gradients in two hidden layers over 
the course of training. 
In both layers, the gradients start to became zero. Smaller gradients imply 
smaller weight updates and slow training speed.

50From: Tensorboard PROTOPAPAS

https://www.tensorflow.org/tensorboard
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CNN Feature Extraction Visualization

We know that CNNs extract features that best helps us to perform our 
downstream task (e.g. classification).
Idea: We train a CNN for feature extraction and a model (e.g. MLP, decision 
tree, logistic regression) for classification, simultaneously and end-to-end.
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CNN Feature Extraction Visualization

The resulting feature maps are matrices, that we can interpret as images. As 
such, we can analyze them a look for relevant patterns.

52
FULLY CONNECTED LAYERSCONVOLUTION + POOLING LAYERS

Convolution + Nonlinearity Max Pooling

We know that CNNs extract features that best helps us to perform our 
downstream task (e.g. classification).
Idea: We train a CNN for feature extraction and a model (e.g. MLP, decision 
tree, logistic regression) for classification, simultaneously and end-to-end.
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What to Visualize for CNNs?

The first things to try are:
1. visualize the result of applying a learned filter to an image
2. visualize the filters themselves

53
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Occlusion methods

If we want to interpret what part of the image the network is 
paying more attention, these visualizations might not be the 
best solution.

We have no guarantees that the feature maps will provide 
meaningful information. Their interpretation can be even more 
difficult than the original problem.
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Occlusion methods

Occlusion methods attributes importance for the classification of 
the image. Occlusion involves running a patch over part of the  
image to see which pixels affect the classification the most. 

55PROTOPAPAS
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Occlusion methods

Occlusion methods attributes importance for the classification of 
the image. Occlusion involves running a patch over part of the  
image to see which pixels affect the classification the most. 
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Occlusion methods

Occlusion methods attributes importance for the classification of 
the image. Occlusion involves running a patch over part of the  
image to see which pixels affect the classification the most. 
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Occlusion methods

However, to obtain fine details we need to use a small occlusion 
area, increasing the number of model evaluations. This can 
become impractical for a fine resolution and many test images.
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Occlusion process
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Occlusion process
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Occlusion process
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Occlusion process
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Occlusion process
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Occlusion process
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Occlusion process

• Input image to a trained network
• Take note of the true label, K
• Get the prediction of the true image, Q
• Compute the loss, 𝐿#$! = −log P(y = Q)
• Occlude patches of the image with gray blocks starting at the 

top left
– Get the prediction of this occluded version of the image
– Compute the loss, 𝐿/10$ = −log P/11(y = Q)
– Compute the difference of the losses, 𝐿./0 − 𝐿/10$

65PROTOPAPAS

If K=Q, we answer the what parts of the image have contributed to correctly 
predict. If K<>Q, we answer what parts of the image contributed to predict the
incorrect class. 
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Exercise: Image Occlusion

The aim of this exercise is to understand occlusion. 
Occlusion involves running a patch over the entire 
image to see which pixels affect the classification the 
most.
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Taylor series expansion

Any differentiable function 𝑓 𝑥 can be approximated as a series around 𝑥5
as:

𝑓 𝑥 = 9𝑓 𝑥5 +
𝑥 − 𝑥5
1!

6 𝜕𝑓
𝜕𝑥 7%

+ 9𝑥 − 𝑥5
2!

8 𝜕8𝑓
𝜕𝑥8 7%

+⋯

This function can be the logistic regression or even a complex neural 
network.

Note: Including more terms will improve the approximation. 
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Visualizing Top Predictors by Input Gradient
Since the input gradient of an objective function for a trained model 
indicates which input dimensions has the greatest effect on the model 
decision at an input 𝐱, we can visualize the "top predictors" of outcome 
for a particular input 𝐱.

We can think of this as approximating our neural network model with a 
linear model locally at an input 𝐱 and then interpreting the weights of 
this linear approximation.

68

𝑁𝑁 𝒙 ≈ 𝑁𝑁 𝒙5 +𝑤# 𝒙 − 𝒙5
≈ 𝑁𝑁 0 + 𝑤# 𝒙
≈ 𝑤#𝒙 + 𝑏

𝑤 = 9
𝜕𝑁𝑁
𝜕𝒙 7% PROTOPAPAS
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Thank you
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