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Outline

1. Regularization for CNN
2. BackProp of MaxPooling layer
3. Layers Receptive Field and dilated convolutions

4. Weights and feature maps visualization
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Regularization for CNN

* L2 and Llwork the same way as in FFNN
Data Augmentation is the same

Early Stopping same as in FFNN

Dropout is slightly different - not the same effect as dropout with FFNN.
 Dropoutin CNN still allows the weights in a kernel to be trained.

* The name is misleading!

 The effect of dropout on convolutional layers amounts to multiplying
Bernoulli noise into the feature maps of the network.

So, if you try adding dropout after a convolutional layer and get bad results, don’t be

disappointed! There doesn’t appear that there is a good reason it shou/d provide good
results.
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer
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Backward propagation of Maximum Pooling Layer

Activation of layer L
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Backward propagation of Maximum Pooling Layer
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Layers Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

The receptive field size is a crucial issue in many visual tasks, as the
output must respond to large enough areas in the image to capture
Information about large objects.
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Layers Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x
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Layers Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x
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Layers Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x
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Layers Receptive Field

The receptive field is defined as the region in the input space that a
particular CNN’s feature (or activation) is looking at (i.e. be affected by).

Let’s look at the receptive field in 1D, no padding, stride 1 and kernel 3x
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Layers Receptive Field

The receptive field for each element of layer's 2 is shown below.
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Layers Receptive Field

The receptive field for each element of layer's 2 is shown below.
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Layers Receptive Field

The receptive field for each element of layer's 2 is shown below.
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Layers Receptive Field

The receptive field for each element of layers 1and 2 are shown below.
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Layers Receptive Field

The receptive field for each element of layers 1and 2 are shown below.
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Layers Receptive Field

In 2D, it works the same way.

The receptive field can be calculated using the recursive formula:
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Dilated CNNs

* We can “inflate” the receptive field by inserting holes between the
Kernel elements.

e These are called Dilated Convolutions.
e Dilation rate indicates how much the kernel is widened.

Heeriest I N N
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>
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Original Idea: Algorithme a trous, an algorithm for wavelet decomposition (Holschneider et al., 1987; Shensa, 1992)
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Dilated CNNs

* We can “inflate” the receptive field by inserting holes between the
Kernel elements.

e These are called Dilated Convolutions.
e Dilation rate indicates how much the kernel is widened.

Dilate rate=1

I ————
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Dilated CNNs

* We can “inflate” the receptive field by inserting holes between the
Kernel elements.

e These are called Dilated Convolutions.
e Dilation rate indicates how much the kernel is widened.

Dilate rate=1
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Dilated CNNs

* We can “inflate” the receptive field by inserting holes between the
Kernel elements.

e These are called Dilated Convolutions.
e Dilation rate indicates how much the kernel is widened.

Dilate rate=1
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Dilated CNNs

2D Example: 2x2 kernel, stride=1, dilate rate=1
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Dilated CNNs

There is a relationship
between classification
accuracy and receptive
field size.

Large receptive fields are
necessary for high-level
recognition tasks, but
with diminishing
rewards.

Araujo, A, Norris, W., & Sim, J. (2019). Computing receptive
fields of convolutional neural networks. Disti/l, 4(11), e21.

ImageNet top-1 accuracy
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https://distill.pub/2019/computing-receptive-fields

Outline

1. Regularization for CNN
2. BackProp of MaxPooling layer
3. Layers Receptive Field

4. Weights and feature maps visualization
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Lessons for Visualization

Choosing/designing machine learning visualization requires that we
think about:

Why and for whom to visualize?
— are we visualizing to diagnose problems with our models?
— are we visualizing to interpret our model's meaningfulness?

What and how to visualize?

— do we visualize decision boundaries, weights of our model, and or
distributional differences in the data?

PROTOPAPAS 39



Why and for whom to visualize?

1. Interpretability & Explainability: understand how deep learning

models make decisions and what representations they have learned.
For
others

2. Debugging & Improving Models: help model developers build and

debug their models, with the hope of expediting the iterativ
experimentation process to ultimately improve performancgﬁ - J
3. Teaching Deep Learning Concepts: educate non-expert users about

~—

From: Visual Analytics in Deep Learning: An Interrogative Survey for the
NQXZ' FfOl? Z'/.el'S PROTOPAPAS 40



https://arxiv.org/pdf/1801.06889.pdf

What and how to visualize?

What technical components of neural networks could be visualized?

* Computational Graph & Network Architecture
* Learned Model Parameters: weights, filters

* Individual Computational Units: activations, gradients
* Aggregate information: performance metrics

How can they be insightfully visualized?

How depends on the type of data and model as well as our specific
Investigative goal.

PROTOPAPAS
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What to Visualize for Neural Network Models?

For logistic regression, p(y = 1|lw,x) = o(w!x) we " FEATURE IMPORTAN &
can interrogate the model by printing out the

weights of the model.
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What to Visualize for Neural Network Models?

For a neural network classifier, p(y = 1|w,x) = o(f (x)) would it be helpful to
print out all the weights?

.
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Weight Space Versus Function Space

While it's convenient to build up a complex function by composing simple
ones -as in neural networks- understanding the impact of each weight on
the outcome is difficult.

In fact, the relationship between weights of a neural network and the
function the network represents is extremely complicated:

1. the same function may be represented by two very different set of
weights for the same architecture.

2. the architecture may be overly expressive - it can express the function

f using a subset of the weights and hidden nodes (i.e. the trained model
can have weights that are zero or nodes that contribute little to the
computation).

PROTOPAPAS
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Debugging & Improving Models : Tensorboard

What happens if we want to know
the OUtpUtS Of a S peCifi C h i d d e n TensorBoard §CALARS IMAGES  GRAPHS  DISTRIBUTIONS  HISTOGRAMS

N,

I a e r? [] show data download links Q_ Filter tags (regular expressions supported)
y ° Ignore outliers in chart scaling
epoch_accuracy
Tooltip sorting method: default

By visualizing the network weights =

and activations as we train, we can =

diagnose issues that ultimately = A=

Impact model performance. B0 s s
O 20190225-183652/data

TensorFlow provides a functionality

to explore the inner workings of the =0

network.

From: Tensorboard PHOIBELEE
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https://www.tensorflow.org/tensorboard

Debugging & Improving Models : Tensorboard

The following visualizes the distribution of activations in two hidden layers
over the course of training.

What problems do we see?

epochs

75085 0.964

Tanh activation Tanh activation

From: Tensorboard PROTOPAPAS 47



https://www.tensorflow.org/tensorboard

Debugging & Improving Models : Tensorboard

The following visualizes the distribution of activations in two hidden layers
over the course of training.

The activations are starting to saturate, reducing the learning speed.
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https://www.tensorflow.org/tensorboard

Debugging & Improving Models : Tensorboard

The following visualizes the distribution of gradients in two hidden layers over
the course of training.

What problems do we see?

0.00450.00530°

From: Tensorboard PROTOPAPAS 49



https://www.tensorflow.org/tensorboard

Debugging & Improving Models : Tensorboard

The following visualizes the distribution of gradients in two hidden layers over
the course of training.

In both layers, the gradients start to became zero. Smaller gradients imply
smaller weight updates and slow training speed.

0.0035 00045 0.00530°

From: Tensorboard PROTOPAPAS 50



https://www.tensorflow.org/tensorboard

CNN Feature Extraction Visualization

We know that CNNs extract features that best helps us to perform our
downstream task (e.g. classification).

Idea: We train a CNN for feature extraction and a model (e.g. MLP, decision
tree, logistic regression) for classification, simultaneousl/y and end-to-end.

PROTOPAPAS 51



CNN Feature Extraction Visualization

We know that CNNs extract features that best helps us to perform our
downstream task (e.g. classification).

Idea: We train a CNN for feature extraction and a model (e.g. MLP, decision
tree, logistic regression) for classification, simultaneous/y and end-to-end.

The resulting feature maps are matrices, that we can interpret as images. As
such, we can analyze them a look for relevant patterns.
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What to Visualize for CNNs?

The first things to try are:
1. visualize the result of applying a learned filter to an image

mee HARD TO UNDERSTAND OR

Input LZ. visualize the filters themselves

INTE RPRETATE

i.m IFEJS

i ol m] I[FT

Feature maps Kernels
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Occlusion methods

If we want to interpret what part of the image the network is
paying more attention, these visualizations might not be the
best solution.

Activations
maps for
layerl

Activations
maps for
We have no guarantees that the feature maps will provide layer2
meaningful information. Their interpretation can be even more

difficult than the original problem.
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Occlusion methods

Occlusion methods attributes importance for the classification of
the image. Occlusion involves running a patch over part of the
Image to see which pixels affect the classification the most.

[nput [mage

PROTOPAPAS 55



Occlusion methods

Occlusion methods attributes importance for the classification of
the image. Occlusion involves running a patch over part of the
Image to see which pixels affect the classification the most.

[nput Image Occluding patches of theimage
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Occlusion methods

Occlusion methods attributes importance for the classification of
the image. Occlusion involves running a patch over part of the
Image to see which pixels affect the classification the most.

[mage with change

[nput Image Oceluding patches of the image

in loss as a function of ocelugion
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Occlusion methods

However, to obtain fine details we need to use a small occlusion
area, increasing the number of model evaluations. This can
become impractical for a fine resolution and many test images.

[mage with change

[nput Image Oceluding patches of the image

in loss as a function of ocelugion
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Occlusion process

ORIGINAL IMAGE

PROTOPAPAS
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Occlusion process

ORIGINAL IMAGE
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Occlusion process
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Occlusion process

ORIGINAL IMAGE
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Occlusion process
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Occlusion process

ORIGINAL IMAGE OCCLUSION LOSS MAP
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Occlusion | 6Ls 6Lg OL; Olg

SL;_38L;_,6L;_15L;

—

20

—

=

PROTOPAPAS 64



Occlusion process

* Inputimage to a trained network
 Take note of the true label, K

* Getthe prediction of the true image, Q
* Compute the loss, L,,; = —log P(y = Q)

* Occlude patches of the image with gray blocks starting at the
top left

— Get the prediction of this occluded version of the image
— Compute the loss, Ly, = —log Py (y = Q)

— Compute the difference of the losses, Lo — Loy,

If K=Q, we answer the what parts of the image have contributed to correctly

predict. If K<>Q, we answer what parts of the image contributed to predict the
Incorrect class.




Exercise: Image Occlusion

The aim of this exercise is to understand occlusion.
Occlusion involves running a patch over the entire

Image to see which pixels affect the classification the
most.

True Label: HORSE
I

Predicted label with atch size 10: HORSE 0
! -1000
5
I —2000

000000

00000

000000

[mage with change

[nput Image Occluding patches of the image

in loss ag a funetion of ocelusion
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Taylor series expansion

Any differentiable function f(x) can be approximated as a series around x
as:
(x=x) Of| | (x=2x0)"9°f

f@) = o)+ gl + 5 ]+

This function can be the logistic regression or even a complex neural
network.

Note: Including more terms will improve the approximation.

PROTOPAPAS
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Visualizing Top Predictors by Input Gradient

Since the input gradient of an objective function for a trained model
Indicates which input dimensions has the greatest effect on the model
decision at an input X, we can visualize the "top predictors” of outcome

for a particular input x.

We can think of this as approximating our neural network model with a
linear model locally at an input x and then interpreting the weights of

this linear approximation.
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Thank you
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