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Challenges in Optimization

5

Local Minima No critical points
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Ideally, we would like to arrive at the 
global minimum, but this might not be 
possible. Some local minima performs as 
well  as the global one, so it is an 
acceptable stopping point.

Some cost functions do not have critical 
points. For classification when 𝑝 𝑦 = 1
is never zero or one. 
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Challenges in Optimization

6

Exploding Gradients Poor Conditioning

if
𝜕𝐿
𝜕𝑊 > 𝑢:

𝜕𝐿
𝜕𝑊 = sign

𝜕𝐿
𝜕𝑊 𝑢
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Exploding gradients due to cliffs. Can be 
mitigated using gradient clipping: 

where 𝑢 is user defined threshold.

Poorly conditioned Hessian matrix. High 
curvature: small steps leads to huge 
increase. Learning is slow despite strong 
gradients. Oscillations slow down 
progress.



7

Challenges in Optimization: Vanishing Gradients
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Momentum

Simple Gradient Descent oscillates because updates do not exploit 
curvature information

9

𝐿(𝑊)
𝑊
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Momentum
Let us figure out an algorithm which will converge to the minimum 
faster.  We first examine the partial derivatives of the loss
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𝐿(𝑊)

𝑊
!

𝑊"



PROTOPAPAS

Momentum

Look each component at a time. And see the average behavior of each 
component
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𝐿(𝑊)
𝑊
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Momentum

Let us figure out an algorithm
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𝐿(𝑊)
𝑊
!

𝑊"

The average of the 
vertical direction is 

small! 
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Momentum

Let us figure out an algorithm
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𝐿(𝑊)
𝑊
!

𝑊"

The average of the 
horizontal direction 

is large! 
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Momentum

Add the average of the gradient from before
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𝐿(𝑊)
𝑊
!

𝑊"
Average “trend” 
gradient up to 
this moment

New current 
gradient

Current gradient

New trend up to 
this moment

Add current 
gradient and  

previous trend
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Momentum

Old gradient descent: 

17

𝑔 =
1
𝑚
%
!

𝛻"𝐿(𝑓 𝑥!;𝑊 , 𝑦!)

𝑓is the Neural Network

𝑊∗ = 𝑊 − 𝜂𝑔
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Momentum  

Old gradient descent: 

New gradient descent with momentum: 

18

𝑔 =
1
𝑚
%
!

𝛻"𝐿(𝑓 𝑥!;𝑊 , 𝑦!)

𝑓is the Neural Network

𝑊∗ = 𝑊 − 𝜂𝑔

𝜈 = 𝛼𝜈 + (1 − 𝛼) 𝑔 𝑊∗ = 𝑊 − 𝜂𝜈

controls how quickly 
effect of past gradients decay
α ∈ [0,1)

If 𝛼 = 0 old SGD
If 𝛼 = 1 we only consider the trend

Typical: 𝛼 = 0.9 −0.99 
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Momentum

Add the average of the gradient from before
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𝐿(𝑊)
𝑊
!

𝑊"
Average “trend” 

up to this 
moment, v

New current 
gradient, g

Current 
gradient, g

New trend up to 
this moment, v

Add current gradient 
and  previous trend
𝜈 = 𝛼𝜈 + (1 − 𝛼) 𝑔

Add current gradient 
and  previous trend
𝜈 = 𝛼𝜈 + (1 − 𝛼) 𝑔
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Nesterov Momentum

It is a slightly different version of the momentum update that 
has recently been gaining popularity. And it has better 
theoretical converge guarantees converges (at least for convex 
functions). 

The idea is to look ahead of the weights and apply an interim 
update:

New gradient descent with Nesterov momentum: 
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𝜈 = 𝛼𝜈 + (1 − 𝛼) 𝑔 5𝑊 = 𝑊 − 𝜂𝜈



PROTOPAPAS

Nesterov Momentum

21

6𝑔 =
1
𝑚
%
!

𝛻"𝐿(𝑓 𝑥!; 5𝑊 , 𝑦!)

Re-calculate the gradient, !𝑔, with the new weight, $𝑊

6𝑣 = 𝛼 6𝑣 + (1 − 𝛼) 6𝑔 𝑊 = 𝑊 − 𝜂 6𝑣

Find a new momentum, &𝑣, with the new intermediate 
gradient, &𝑔. And update using gradient descent.  

𝜈 = 𝛼𝜈 + (1 − 𝛼) 𝑔 5𝑊 = 𝑊 − 𝜂𝜈
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𝜈 = 𝛼𝜈 + (1 − 𝛼) 𝑔
𝒈

.𝑔 =
1
𝑚
0
!

𝛻"𝐿(𝑓 𝑥!; 5𝑊 , 𝑦!)

𝒗

5𝑊 = 𝑊 − 𝜂𝜈

"𝒈

𝒘

𝒗→ 0𝑾
0𝑾

Nesterov Momentum visually
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𝜈 = 𝛼𝜈 + (1 − 𝛼) 𝑔
𝒈

.𝑔 =
1
𝑚
0
!

𝛻"𝐿(𝑓 𝑥!; 5𝑊 , 𝑦!)

𝒗

5𝑊 = 𝑊 − 𝜂𝜈

"𝒈

.𝑣 = 𝛼 .𝑣 + (1 − 𝛼) .𝑔

𝑊 = 𝑊 − 𝜂 .𝑣

𝒘

!𝒗
𝑾

Nesterov Momentum visually
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Adaptive Learning Rates

Oscillations along vertical direction
– Learning must be slower along parameter 𝑊2

Use a different learning rate for each parameter?
27

Slow

Fast

𝐿(𝑊)

𝑊
!

𝑊"
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Adaptive Learning Rates
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Slow

Fast

𝐿(𝑊)

𝑊
!

𝑊"

Oscillations along vertical direction
– Learning must be slower along parameter 𝑊2

Use a different learning rate for each parameter?
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Adaptive Learning Rates
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Slow

Fast

𝐿(𝑊)

𝑊
!

𝑊"

Oscillations along vertical direction
– Learning must be slower along parameter 𝑊2

Use a different learning rate for each parameter?
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Adaptive Learning Rates

30

Slow

Fast

𝐿(𝑊)

𝑊
!

𝑊"

Oscillations along vertical direction
– Learning must be slower along parameter 𝑊2

Use a different learning rate for each parameter?
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Adaptive Learning Rates
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Slow

Fast

𝐿(𝑊)

𝑊
!

𝑊"

With different learning rates we can control the 
oscillations. 
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AdaGrad

Old gradient descent: 
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𝑔 =
1
𝑚
%
!

𝛻"𝐿(𝑓 𝑥!;𝑊 , 𝑦!) 𝑊∗ = 𝑊 − 𝜂𝑔
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AdaGrad

Old gradient descent: 

34

𝑔 =
1
𝑚
%
!

𝛻"𝐿(𝑓 𝑥!;𝑊 , 𝑦!) 𝑊∗ = 𝑊 − 𝜂𝑔

We would like 𝜂3𝑠 not to be the same and be inversely proportional to the |𝑔4|

𝑊!
∗ = 𝑊! − 𝜂!𝑔! 𝜂! ∝

1
|𝑔!|

=
𝜖

𝛿 + |𝑔!|
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AdaGrad

Old gradient descent: 
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𝑔 =
1
𝑚
%
!

𝛻"𝐿(𝑓 𝑥!;𝑊 , 𝑦!) 𝑊∗ = 𝑊 − 𝜂𝑔

We would like 𝜂3𝑠 not to be the same and be inversely proportional to the |𝑔4|

𝑊!
∗ = 𝑊! − 𝜂!𝑔! 𝜂! ∝

1
|𝑔!|

=
𝜖

𝛿 + |𝑔!|

𝛿 is a small number, making sure 
𝜂! does not become too large
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AdaGrad

Old gradient descent: 

36

𝑔 =
1
𝑚
%
!

𝛻"𝐿(𝑓 𝑥!;𝑊 , 𝑦!) 𝑊∗ = 𝑊 − 𝜂𝑔

We would like 𝜂3𝑠 not to be the same and be inversely proportional to the |𝑔4|

𝑊!
∗ = 𝑊! − 𝜂!𝑔! 𝜂! ∝

1
|𝑔!|

=
𝜖

𝛿 + |𝑔!|

𝑟!∗ = 𝑟! + 𝑔!$ 𝑊!
∗ = 𝑊! −

𝜖
𝛿 + 𝑟!

g%

New gradient descent with adaptive learning rate:

𝛿 is a small number, making sure 
𝜂! does not become too large
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RMSProp

• For non-convex problems, AdaGrad can 
prematurely decrease learning rate

• Use exponentially weighted average for 
gradient accumulation

38

ri = ρri + (1− ρ)gi
2

𝜂 =
𝜖

𝛿 + √𝑟

𝑟!∗ = 𝑟! + 𝑔!$
AdaGrad RMSProp
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Adam: RMSProp + Momentum

• Estimate first moment:

• Estimate second moment:

• Update parameters:

40

Also applies 
bias correction 

to v and r

Works well in practice, 
it is robust to hyper-

parameters

vi = ρ1vi + (1− ρ1 )gi

ri = ρ2ri + (1− ρ2 )gi
2
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Bias Correction

41

To perform bias correction on the two running average variables, we use the 
following equations. We do this before we update weights. 

Where 𝑡 is the number of the current iteration.

𝜈!"## =
𝜈

1 − 𝜌$%

𝑟!"## =
𝑟

1 − 𝜌&%

1st and 2nd moment gradient estimates are started off with both estimates 
being zero. Hence those initial values for which the true value is not zero, 
would bias the results.



51

Exercise: Clipping

The aim of this exercise is to understand gradient clipping 
and learning rate decay.

• Implement a function to clip exploding gradients

• Experiment with different learning rates, clipping 
threshold

if
𝜕𝐿
𝜕𝑊 > 𝑢:

𝜕𝐿
𝜕𝑊 = sign

𝜕𝐿
𝜕𝑊 𝑢
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Exercise: RMS Prop vs Learning rate 
decay 

The aim of this exercise is to visualize various learning 
rate scheduling strategies

• Make a choice for the learning rate, decay rate and 
starting point for the weight

• Based on the choices, visualize the loss landscape 
to see how quickly each strategy converges to the 
local minima 

• Change the parameters to see if the updates are 
consistent  with the equations for the various 
strategies


