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Gradient Descent



PROTOPAPAS

Learning the coefficients

Start with single neuron

𝑌 = 𝑓(𝑊! +𝑊"𝑥" +𝑊#𝑥# +𝑊$𝑥$ +𝑊%𝑥%)

𝑥"

𝑥#

𝑥$

𝑥%
Coefficients or WeightsIntercept or Bias

f(X)= "
"&'!"#$

Classification: 
activation is sigmoid

f 𝑋 = 𝑊(𝑋

Regression:
activation is linear

𝑊!𝑋 𝑓
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PROTOPAPAS

But what is the idea? 

Start with all randomly selected weights. Most likely it will perform horribly.
For example, in our heart data, the model will be giving us the wrong answer. 

𝑆𝑒𝑥 = 𝑀𝑎𝑙𝑒

𝐶ℎ𝑜𝑙 = 152
Bad Computer

y=No

Correct

𝑀𝑎𝑥𝐻𝑅 = 197

𝐴𝑔𝑒 = 55
𝑊!𝑋 𝑓 𝑝̂ = 0.8 → 𝑌𝑒𝑠

Prediction
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PROTOPAPAS

But what is the idea? 

Start with all randomly selected weights. Most likely it will perform horribly.
For example, in our heart data, the model will be giving us the wrong answer. 

𝑆𝑒𝑥 = 𝑀𝑎𝑙𝑒

𝐶ℎ𝑜𝑙 = 352
Bad Computer

𝑀𝑎𝑥𝐻𝑅 = 170

𝐴𝑔𝑒 = 35
𝑊!𝑋 𝑓 𝑝̂ = 0.4 → 𝑁𝑜 y=Yes

CorrectPrediction
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PROTOPAPAS

But what is the idea? 

• The Loss Function takes all these results and averages them and tells us how 
bad or good the computer or those weights are. 

• Telling the computer how bad or good it is, does not help.

• You want to tell it how to change those weights, so it gets better.  

Loss function: ℒ 𝑤E, 𝑤F, 𝑤G, 𝑤H, 𝑤I

For now, let’s only consider a single weight, ℒ 𝑤F
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PROTOPAPAS

Minimizing the Loss function

To find the optimal point of a function ℒ 𝑊 , we take the derivative wrt to the 
weight:

And find the 𝑊 that satisfies that equation. Sometimes there is no explicit 
solution for that.  

Ideally, we want to know the value of  𝑊 that gives the minimal ℒ 𝑊

𝑑ℒ(𝑊)
𝑑𝑊

= 0

Slope or 
derivative 

here is zero

Lars

Lew*I f-- - -- - ----too,
i

d l Bo
*

W W
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PROTOPAPAS

Estimate of the regression coefficients:  gradient descent 

A more flexible method would be

L
&

((wot) .. ..
. .

i

i
i

i
i
& B

WCO) W

Compute the slope/derivative
at this point

L
&

((wot) .. ..
. .

i

i
i

i
i
& B

WCO) W

L
&

((Wos) .. ..
. .q§

i

i

i
i
'

& o B

WCO) W

Start from a random point Step to the opposite direction of 
the derivative 
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PROTOPAPAS

Estimate of the regression coefficients:  gradient descent 

A more flexible method would be

L
&

((wot) .. ..
. . . . . . . . . :&

away - - -
€=q*✓

' f

i i

r l
l l
l l

i i

r I →

& • B

Wco) WH) W

Stop when no more 
improvement or after a certain 
number of iterations. 

L
&

((wot) .. ..
. . . . . . . . . :&

Lcw"'t - - -

I I 90=999' l
l r

i i
r i '

l l l l l

l l l id
l l l l l

l
l l l l

l
g i '

I →
I ¥0,

& • • goal B

Wco) WH) W

C

Compute the slope/derivative
at 𝑊(") and step again in the 
opposite direction of the 
derivative. 

Continue, 

L
&

((wot) .. ..
. . . . . . . . . :&

Lcw"'t - - -

I I 90=999' l
l r

i i
r i '

l l l l l

l l l id
l l l l l

l
l l l l

l
g i '

I →
I ¥0,

& • • goal B

Wco) WH) W

C
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PROTOPAPAS

Estimate of the regression coefficients:  gradient descent 

Question: How do we generalize this to more than one weight?

Take the gradient: 

𝛁𝑾𝑳 𝑾 = 𝝏𝑳
𝝏𝑾𝟏

, 𝝏𝑳
𝝏𝑾𝟐

, … , 𝝏𝑳
𝝏𝑾𝒑

Question:  What do you think is a good approach for telling the model 
how to change (what is the step size) to become better? 
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PROTOPAPAS

Gradient Descent (cont.)

If the step is proportional to the slope, then you avoid overshooting 
the minimum. How? 
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PROTOPAPAS

Gradient Descent (cont.)

If the step is proportional to the slope, then you avoid overshooting 
the minimum. How? 

𝑑ℒ(𝑊)
𝑑𝑊 𝑑ℒ(𝑊)

𝑑𝑊
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PROTOPAPAS

Gradient Descent

We know that we want to go in the opposite direction of the derivative, and 
we know we want to be making a step proportional to the derivative. 

Making a step means:
𝑤LMN = 𝑤OPQ + 𝑠𝑡𝑒𝑝

Opposite direction of the derivative and proportional to the derivative means:   

𝑤LMN = 𝑤OPQ − 𝜂
𝑑ℒ
𝑑𝑤

Change to more conventional notation:

𝑤(RSF) = 𝑤(R) − 𝜂
𝑑ℒ
𝑑𝑤

Learning 
Rate

Step size is 
proportional 
to derivative
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PROTOPAPAS

Gradient Descent 

• Algorithm for optimization of first 
order to finding a minimum of a 
function. 

• It is an iterative method.

• L is decreasing much faster in the 
direction of the negative derivative. 

• The learning rate is controlled by 
the magnitude of 𝜂.

L

w

- +

𝑤(RSF) = 𝑤(R) − 𝜂
𝑑ℒ
𝑑𝑤
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PROTOPAPAS

Gradient Descent Considerations  

• We still need to calculate the derivatives.

• We need to set the learning rate. 

• Local vs global minima.

• The full likelihood function includes summing up all 
individual ‘errors’.  Sometimes this includes hundreds of 
thousands of examples.  
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PROTOPAPAS

Gradient Descent Considerations  

• We still need to calculate the derivatives.

• We need to set the learning rate. 

• Local vs global minima.

• The full likelihood function includes summing up all 
individual ‘errors’.  Sometimes this includes hundreds of 
thousands of examples.  
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PROTOPAPAS

Calculate the Derivatives

Can we do it? Can we calculate the derivative of  any loss 
function?

Wolfram Alpha can do it for us! 

We need a formalism to deal with these derivatives.
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PROTOPAPAS

Chain Rule

Chain rule for computing gradients: 

𝑦 = 𝑔 𝑥 𝑧 = 𝑓 𝑦 = 𝑓 𝑔 𝑥

For longer chains:

𝜕𝑧
𝜕𝑥

=
𝜕𝑧
𝜕𝑦
𝜕𝑦
𝜕𝑥

𝒚 = 𝑔 𝒙 𝑧 = 𝑓 𝒚 = 𝑓 𝑔 𝒙

𝜕𝑧
𝜕𝑥R

=8
T

𝜕𝑧
𝜕𝑦T

𝜕𝑦T
𝜕𝑥R

∂z
∂xi

= … ∂z
∂yj1jm

∑
j1

∑ …
∂yjm
∂xi
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PROTOPAPAS

Logistic Regression derivatives

ℒ =8
R

ℒR = −8
R

log 𝐿R = −8
R

[𝑦R log 𝑝R + 1 − 𝑦R log(1 − 𝑝R)]

Uℒ
UV = ∑R

Uℒ!
UV = ∑R(

Uℒ!
"

UV+ Uℒ!
#

UV )

ℒR = −𝑦R log
1

1 + 𝑒WV$X − 1 − 𝑦R log(1 −
1

1 + 𝑒WV$X)

For logistic regression,  the –ve log of the likelihood is:

ℒR = ℒRY + ℒRZ

To simplify the analysis let us split it into two parts, 

So the derivative with respect to W is:
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PROTOPAPAS

Variables Partial derivatives Partial derivatives

𝜉! = −𝑊"𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋

𝜉# = 𝑒$! = 𝑒%&"'
𝜕𝜉#
𝜕𝜉!

= 𝑒$!
𝜕𝜉#
𝜕𝜉!

= 𝑒%&"'

𝜉( = 1 + 𝜉# = 1 + 𝑒%&"'
𝜕𝜉(
𝜕𝜉#

= 1 )$#
)$$

=1

𝜉* =
1
𝜉(
=

1
1 + 𝑒%&"'

= 𝑝
𝜕𝜉*
𝜕𝜉(

= −
1
𝜉(#

𝜕𝜉*
𝜕𝜉(

= −
1

1 + 𝑒%&"' #

𝜉+ = log 𝜉* = log 𝑝 = log
1

1 + 𝑒%&"'

𝜕𝜉+
𝜕𝜉*

=
1
𝜉*

𝜕𝜉+
𝜕𝜉*

= 1 + 𝑒%&"'

ℒ,- = −𝑦𝜉+
𝜕ℒ
𝜕𝜉+

= −𝑦
𝜕ℒ
𝜕𝜉+

= −𝑦

𝜕ℒ,-

𝜕𝑊
=
𝜕ℒ,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝜉#

𝜕𝜉#
𝜕𝜉!

𝜕𝜉!
𝜕𝑊

𝜕ℒ,-

𝜕𝑊
= −𝑦𝑋𝑒%&"' 1

1 + 𝑒%&"'

ℒ)* = −𝑦) log
1

1 + 𝑒+,#-
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PROTOPAPAS

Variables Partial derivatives Partial derivatives

𝜉! = −𝑊"𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋

𝜉# = 𝑒$! = 𝑒%&"'
𝜕𝜉#
𝜕𝜉!

= 𝑒$!
𝜕𝜉#
𝜕𝜉!

= 𝑒%&"'

𝜉( = 1 + 𝜉# = 1 + 𝑒%&"'
𝜕𝜉(
𝜕𝜉#

= 1 )$#
)$$

=1

𝜉* =
1
𝜉(
=

1
1 + 𝑒%&"'

= 𝑝
𝜕𝜉*
𝜕𝜉(

= −
1
𝜉(#

𝜕𝜉*
𝜕𝜉(

= −
1

1 + 𝑒%&"' #

𝜉+ = log 𝜉* = log 𝑝 = log
1

1 + 𝑒%&"'

𝜕𝜉+
𝜕𝜉*

=
1
𝜉*

𝜕𝜉+
𝜕𝜉*

= 1 + 𝑒%&"'

ℒ,- = −𝑦𝜉+
𝜕ℒ
𝜕𝜉+

= −𝑦
𝜕ℒ
𝜕𝜉+

= −𝑦

𝜕ℒ,-

𝜕𝑊
=
𝜕ℒ,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝜉#

𝜕𝜉#
𝜕𝜉!

𝜕𝜉!
𝜕𝑊

𝜕ℒ,-

𝜕𝑊
= −𝑦𝑋𝑒%&"' 1

1 + 𝑒%&"'

ℒ)* = −𝑦) log
1

1 + 𝑒+,#-
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PROTOPAPAS

Variables Partial derivatives Partial derivatives

𝜉! = −𝑊"𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋

𝜉# = 𝑒$! = 𝑒%&"'
𝜕𝜉#
𝜕𝜉!

= 𝑒$!
𝜕𝜉#
𝜕𝜉!

= 𝑒%&"'

𝜉( = 1 + 𝜉# = 1 + 𝑒%&"'
𝜕𝜉(
𝜕𝜉#

= 1 )$#
)$$

=1

𝜉* =
1
𝜉(
=

1
1 + 𝑒%&"'

= 𝑝
𝜕𝜉*
𝜕𝜉(

= −
1
𝜉(#

𝜕𝜉*
𝜕𝜉(

= −
1

1 + 𝑒%&"' #

𝜉+ = log 𝜉* = log 𝑝 = log
1

1 + 𝑒%&"'

𝜕𝜉+
𝜕𝜉*

=
1
𝜉*

𝜕𝜉+
𝜕𝜉*

= 1 + 𝑒%&"'

ℒ,- = −𝑦𝜉+
𝜕ℒ
𝜕𝜉+

= −𝑦
𝜕ℒ
𝜕𝜉+

= −𝑦

𝜕ℒ,-

𝜕𝑊
=
𝜕ℒ,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝜉#

𝜕𝜉#
𝜕𝜉!

𝜕𝜉!
𝜕𝑊

𝜕ℒ,-

𝜕𝑊
= −𝑦𝑋𝑒%&"' 1

1 + 𝑒%&"'

ℒ)* = −𝑦) log
1

1 + 𝑒+,#-
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PROTOPAPAS

Variables Partial derivatives Partial derivatives

𝜉! = −𝑊"𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋

𝜉# = 𝑒$! = 𝑒%&"'
𝜕𝜉#
𝜕𝜉!

= 𝑒$!
𝜕𝜉#
𝜕𝜉!

= 𝑒%&"'

𝜉( = 1 + 𝜉# = 1 + 𝑒%&"'
𝜕𝜉(
𝜕𝜉#

= 1 )$#
)$$

=1

𝜉* =
1
𝜉(
=

1
1 + 𝑒%&"'

= 𝑝
𝜕𝜉*
𝜕𝜉(

= −
1
𝜉(#

𝜕𝜉*
𝜕𝜉(

= −
1

1 + 𝑒%&"' #

𝜉+ = log 𝜉* = log 𝑝 = log
1

1 + 𝑒%&"'

𝜕𝜉+
𝜕𝜉*

=
1
𝜉*

𝜕𝜉+
𝜕𝜉*

= 1 + 𝑒%&"'

ℒ,- = −𝑦𝜉+
𝜕ℒ
𝜕𝜉+

= −𝑦
𝜕ℒ
𝜕𝜉+

= −𝑦

𝜕ℒ,-

𝜕𝑊
=
𝜕ℒ,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝜉#

𝜕𝜉#
𝜕𝜉!

𝜕𝜉!
𝜕𝑊

𝜕ℒ,-

𝜕𝑊
= −𝑦𝑋𝑒%&"' 1

1 + 𝑒%&"'

ℒ)* = −𝑦) log
1

1 + 𝑒+,#-
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PROTOPAPAS

Variables Partial derivatives Partial derivatives

𝜉! = −𝑊"𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋

𝜉# = 𝑒$! = 𝑒%&"'
𝜕𝜉#
𝜕𝜉!

= 𝑒$!
𝜕𝜉#
𝜕𝜉!

= 𝑒%&"'

𝜉( = 1 + 𝜉# = 1 + 𝑒%&"'
𝜕𝜉(
𝜕𝜉#

= 1 )$#
)$$

=1

𝜉* =
1
𝜉(
=

1
1 + 𝑒%&"'

= 𝑝
𝜕𝜉*
𝜕𝜉(

= −
1
𝜉(#

𝜕𝜉*
𝜕𝜉(

= −
1

1 + 𝑒%&"' #

𝜉+ = log 𝜉* = log 𝑝 = log
1

1 + 𝑒%&"'

𝜕𝜉+
𝜕𝜉*

=
1
𝜉*

𝜕𝜉+
𝜕𝜉*

= 1 + 𝑒%&"'

ℒ,- = −𝑦𝜉+
𝜕ℒ
𝜕𝜉+

= −𝑦
𝜕ℒ
𝜕𝜉+

= −𝑦

𝜕ℒ,-

𝜕𝑊
=
𝜕ℒ,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝜉#

𝜕𝜉#
𝜕𝜉!

𝜕𝜉!
𝜕𝑊

𝜕ℒ,-

𝜕𝑊
= −𝑦𝑋𝑒%&"' 1

1 + 𝑒%&"'

ℒ)* = −𝑦) log
1

1 + 𝑒+,#-
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PROTOPAPAS

Variables Partial derivatives Partial derivatives

𝜉! = −𝑊"𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋

𝜉# = 𝑒$! = 𝑒%&"'
𝜕𝜉#
𝜕𝜉!

= 𝑒$!
𝜕𝜉#
𝜕𝜉!

= 𝑒%&"'

𝜉( = 1 + 𝜉# = 1 + 𝑒%&"'
𝜕𝜉(
𝜕𝜉#

= 1 )$#
)$$

=1

𝜉* =
1
𝜉(
=

1
1 + 𝑒%&"'

= 𝑝
𝜕𝜉*
𝜕𝜉(

= −
1
𝜉(#

𝜕𝜉*
𝜕𝜉(

= −
1

1 + 𝑒%&"' #

𝜉+ = log 𝜉* = log 𝑝 = log
1

1 + 𝑒%&"'

𝜕𝜉+
𝜕𝜉*

=
1
𝜉*

𝜕𝜉+
𝜕𝜉*

= 1 + 𝑒%&"'

ℒ,- = −𝑦𝜉+
𝜕ℒ
𝜕𝜉+

= −𝑦
𝜕ℒ
𝜕𝜉+

= −𝑦

𝜕ℒ,-

𝜕𝑊
=
𝜕ℒ,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝜉#

𝜕𝜉#
𝜕𝜉!

𝜕𝜉!
𝜕𝑊

𝜕ℒ,-

𝜕𝑊
= −𝑦𝑋𝑒%&"' 1

1 + 𝑒%&"'

ℒ)* = −𝑦) log
1

1 + 𝑒+,#-
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PROTOPAPAS

Variables Partial derivatives Partial derivatives

𝜉! = −𝑊"𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋

𝜉# = 𝑒$! = 𝑒%&"'
𝜕𝜉#
𝜕𝜉!

= 𝑒$!
𝜕𝜉#
𝜕𝜉!

= 𝑒%&"'

𝜉( = 1 + 𝜉# = 1 + 𝑒%&"'
𝜕𝜉(
𝜕𝜉#

= 1 )$#
)$$

=1

𝜉* =
1
𝜉(
=

1
1 + 𝑒%&"'

= 𝑝
𝜕𝜉*
𝜕𝜉(

= −
1
𝜉(#

𝜕𝜉*
𝜕𝜉(

= −
1

1 + 𝑒%&"' #

𝜉+ = log 𝜉* = log 𝑝 = log
1

1 + 𝑒%&"'

𝜕𝜉+
𝜕𝜉*

=
1
𝜉*

𝜕𝜉+
𝜕𝜉*

= 1 + 𝑒%&"'

ℒ,- = −𝑦𝜉+
𝜕ℒ
𝜕𝜉+

= −𝑦
𝜕ℒ
𝜕𝜉+

= −𝑦

𝜕ℒ,-

𝜕𝑊
=
𝜕ℒ,
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝜉#

𝜕𝜉#
𝜕𝜉!

𝜕𝜉!
𝜕𝑊

𝜕ℒ,-

𝜕𝑊
= −𝑦𝑋𝑒%&"' 1

1 + 𝑒%&"'

ℒ)* = −𝑦) log
1

1 + 𝑒+,#-
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PROTOPAPAS

Variables derivatives Partial derivatives wrt to X,W

𝜉! = −𝑊"𝑋 𝜕𝜉!
𝜕𝑊

= −𝑋
𝜕𝜉!
𝜕𝑊

= −𝑋

𝜉# = 𝑒$! = 𝑒%&"' 𝜕𝜉#
𝜕𝜉!

= 𝑒$!
𝜕𝜉#
𝜕𝜉!

= 𝑒%&"'

𝜉( = 1 + 𝜉# = 1 + 𝑒%&"' 𝜕𝜉(
𝜕𝜉#

= 1 )$#
)#

=1

𝜉* =
1
𝜉(
=

1
1 + 𝑒%&"'

= 𝑝
𝜕𝜉*
𝜕𝜉(

= −
1
𝜉(#

𝜕𝜉*
𝜕𝜉(

= −
1

1 + 𝑒%&"' #

𝜉+ = 1 − 𝜉* = 1 −
1

1 + 𝑒%&"'

𝜕𝜉+
𝜕𝜉*

= −1 )$%
)$&

=-1

𝜉. = log 𝜉+ = log(1 − 𝑝) = log
1

1 + 𝑒%&"'

𝜕𝜉.
𝜕𝜉+

=
1
𝜉+

𝜕𝜉.
𝜕𝜉+

=
1 + 𝑒%&"'

𝑒%&"'

ℒ,/ = (1 − 𝑦)𝜉. 𝜕ℒ
𝜕𝜉.

= 1 − 𝑦
𝜕ℒ
𝜕𝜉.

= 1 − 𝑦

𝜕ℒ,/

𝜕𝑊
=
𝜕ℒ,/

𝜕𝜉.
𝜕𝜉.
𝜕𝜉+

𝜕𝜉+
𝜕𝜉*

𝜕𝜉*
𝜕𝜉(

𝜕𝜉(
𝜕𝜉#

𝜕𝜉#
𝜕𝜉!

𝜕𝜉!
𝜕𝑊

𝜕ℒ,/

𝜕𝑊
= (1 − 𝑦)𝑋

1

1 + 𝑒%&"'

ℒ). = −(1 − 𝑦)) log[1 −
1

1 + 𝑒+,#-
]
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PROTOPAPAS

Considerations 

• We still need to calculate the derivatives.

• We need to set the learning rate. 

• Local vs global minima.

• The full likelihood function includes summing up all 
individual ‘errors’.  Sometimes this includes hundreds of 
thousands of examples.  
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Learning Rate

Our choice of the learning rate has a significant impact on the performance of gradient 
descent. 

When 𝜂 is too small, the algorithm 
makes very little progress.

When 𝜂 is too large, the algorithm 
may overshoot the minimum and 
has crazy oscillations.   

When 𝜂 is appropriate, the 
algorithm will find the minimum.
The algorithm converges!
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How can we tell when gradient descent is converging? We visualize the loss function at each 
step of gradient descent. This is called the trace plot. 

Loss is mostly oscillating between 
values rather than converging.

While the loss is decreasing 
throughout training, it does not look 
like descent hit the bottom.

The loss has decreased significantly 
during training. Towards the end, the 
loss stabilizes and it can’t decrease 
further. 
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PROTOPAPAS

Learning Rate

There are many alternative methods which address how to 
set or adjust the learning rate, using the derivative or 
second derivatives and or the momentum. 

More on this later. 
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PROTOPAPAS

Considerations 

• We still need to calculate the derivatives.

• We need to set the learning rate. 

• Local vs global minima.

• The full likelihood function includes summing up all 
individual ‘errors’.  Sometimes this includes hundreds of 
thousands of examples.  
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Local vs Global Minima

If we choose 𝜂 correctly, then gradient descent will converge to a stationary point. But 
will this point be a global minimum? 
If the function is convex then the stationary point will be a global minimum.
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PROTOPAPAS

Local vs Global Minima

No guarantee that we get the global minimum.

Question: What would be a good strategy?

• Random restarts
• Add noise to the loss function 
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