Gradient Descent
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Learning the coefficients

Start with single neuron

Classification: Regression:

activation is sigmoid activation is linear
_ 1 —wT

fX)= f0) = w'x

xz O\~ |
T
WX — Y = f(WO + Wlxl + szz + W3x3 + W4x4)
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Intercept or Bias Coefficients or Weights
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But what is the idea?

Start with all randomly selected weights. Most likely it will perform horribly.
For example, in our heart data, the model will be giving us the wrong answer.

MaxHR = 197

Age = 55 Q\
Sex = Male Q/

Chol = 152 O

Prediction Correct

fo= p=08->Yes y=No

Bad Computer
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But what is the idea?

Start with all randomly selected weights. Most likely it will perform horribly.
For example, in our heart data, the model will be giving us the wrong answer.

MaxHR = 170

Prediction Correct
Age = 35 O\
WX | f |— p=0.4—> No y=Yes
Sex = Male Q/

Chol = 352 O

Bad Computer
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But what is the idea?

 The Loss Function takes all these results and averages them and tells us how
bad or good the computer or those weights are.

* Telling the computer how bad or good it is, does not help.

* You want to tell it how to change those weights, so it gets better.

Loss function: L(wy, Wy, Wy, W3, W,)

For now, let’s only consider a single weight, L(w;)
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Minimizing the Loss function

Ideally, we want to know the value of W that gives the minimal L(W)

Slope or
derivative
here is zero

w* W
To find the optimal point of a function L(W), we take the derivative wrt to the
weight:
aL(w) .
aw

And find the W that satisfies that equation. Sometimes there is no explicit
solution for that.
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Estimate of the regression coefficients: gradient descent

A more flexible method would be

Compute the slope/derivative Step to the opposite direction of
at this point the derivative

Start from a random point
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Estimate of the regression coefficients: gradient descent

A more flexible method would be

Compute the slope/derivative Continue, Stop when no more
at W and step again in the improvement or after a certain
opposite direction of the number of iterations.

derivative. PROTOPAPAS .



Estimate of the regression coefficients: gradient descent

Question: How do we generalize this to more than one weight?

Take the gradient:

VWL(W) _ oL oL oL

oWy’ oW, ' oWy,

Question: What do you think is a good approach for telling the model
how to change (what is the step size) to become better?



Gradient Descent (cont.)

If the step is proportional to the slope, then you avoid overshooting
the minimum. How?
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Gradient Descent (cont.)

If the step is proportional to the slope, then you avoid overshooting
the minimum. How?
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Gradient Descent

We know that we want to go in the opposite direction of the derivative, and
we know we want to be making a step proportional to the derivative.

Step size is
proportional
to derivative

Making a step means:

lwnew = yold 4 Steﬂ

Opposite direction of the derivative and proportional

Learning
Rate

e derivative means:
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Gradient Descent

Algorithm for optimization of first
order to finding a minimum of a
function.

It is an iterative method.

L is decreasing much faster in the
direction of the negative derivative.

The learning rate is controlled by
the magnitude of 7.
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Gradient Descent Considerations

We still need to calculate the derivatives.

We need to set the learning rate.

Local vs global minima.

The full likelihood function includes summing up all
Individual ‘errors’. Sometimes this includes hundreds of
thousands of examples.
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Gradient Descent Considerations

We still need to calculate the derivatives.

We need to set the learning rate.

Local vs global minima.

The full likelihood function includes summing up all
Individual ‘errors’. Sometimes this includes hundreds of
thousands of examples.
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Calculate the Derivatives

Can we do it? Can we calculate the derivative of any loss
function?

Wolfram Alpha can do it for us!

We need a formalism to deal with these derivatives.
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Chain Rule

Chain rule for computing gradients:

y=gx) z=f)=f(gx) y=gkx) z=f@u)=f(9(x))

0z dz 0y

For longer chains:
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Logistic Regression derivatives

For logistic regression, the -ve log of the likelihood is:

L= 21: = zlogL z[yl logp; + (1 — y;) log(1 — p;)]

To simplify the analysis Tet us split it ianarts,

Li=LI+ L]
So the derivative with respect to Wis:
LA aLB
Zl aW = 2 ( W
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Considerations

We still need to calculate the derivatives.

We need to set the learning rate.

Local vs global minima.

The full likelihood function includes summing up all
Individual ‘errors’. Sometimes this includes hundreds of
thousands of examples.

PROTOPAPAS
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Learning Rate

Our choice of the learning rate has a significant impact on the performance of gradient

descent.
2 4
[
Lisd) 4 L(w) LC )
e i ™ ™
When 7 is too small, the algorithm When 7 is too large, the algorithm When 71 is appropriate, the
makes very little progress. may overshoot the minimum and algorithm will find the minimum.

has crazy oscillations. The algorithm converges!

PROTOPAPAS
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How can we tell when gradient descent is converging? We visualize the loss function at each
step of gradient descent. This is called the trace plot.
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While the loss is decreasing

throughout training, it does not look
like descent hit the bottom.

Loss is mostly oscillating between
values rather than converging.

The loss has decreased significantly

during training. Towards the end, the
loss stabilizes and it can’t decrease
further.
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Learning Rate

There are many alternative methods which address how to
set or adjust the learning rate, using the derivative or
second derivatives and or the momentum.

More on this later.

PROTOPAPAS
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Considerations

We still need to calculate the derivatives.

We need to set the learning rate.

Local vs global minima.

The full likelihood function includes summing up all
Individual ‘errors’. Sometimes this includes hundreds of
thousands of examples.
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Local vs Global Minima

If we choose 1 correctly, then gradient descent will converge to a stationary point. But
will this point be a global minimum?
If the function is convex then the stationary point will be a global minimum.

Linear ¢ Polynomial Regression Nevral Network Regression Loss
Loss Functions are Convex Functions are not (owex

w(o)
Hessian (2nd Derivative) posttive semi-definite Neura) networks with different we,igh-{'s can
everyNhere, corcespond o the same function.
Every stationary point of the gradient Most Stationary peints are local minima but not

is 8 global min. global optima.
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Local vs Global Minima

No guarantee that we get the global minimum.

Question: What would be a good strategy?

. Random restarts
. Add noise to the loss function

PROTOPAPAS
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