
CS109B Data Science 2
Pavlos Protopapas, Mark Glickman

Anatomy of NN

Outline

Anatomy of a NN

Design choices

• Activation function

• Loss function

• Output units

• Architecture

2

Outline

Anatomy of a NN

Design choices

• Activation function

• Loss function

• Output units

• Architecture

3

Graphical representation of simple functions

We build complex functions by composing simple functions of the form:

ℎ! 𝑥 = 𝑓(𝑋𝑊 + 𝑏)

where 𝑓 is the activation function.

We represent our simple function as a graph

4

The zoo of neural network architectures

Different architectures result into functions with
very different properties.

Larger networks can express more complex
functions

5

Anatomy of artificial neural network (ANN)

hidden layer 1 hidden layer 2

output layerinput layer

6

Anatomy of artificial neural network (ANN)

hidden layer 1 hidden layer 2

output layerinput layer

7

Anatomy of artificial neural network (ANN)

hidden layer 1 hidden layer 2

output layer

input

8

Anatomy of artificial neural network (ANN)

hidden layer 1 hidden layer 2

output layer

input

How many nodes per
layer?

9

Anatomy of artificial neural network (ANN)

hidden layer 1 hidden layer 2

output layer

input

How many nodes per
layer?

How many layers?

10

Anatomy of artificial neural network (ANN)

hidden layer 1 hidden layer 2

output layer

input

How many nodes per
layer?

Type of
output layer

How many layers?

11

Anatomy of artificial neural network (ANN)

hidden layer 1 hidden layer 2

output layer

input

How many nodes per
layer?

How many layers?

Loss

What is the
loss

function?

Type of
output layer

12

Outline

Anatomy of a NN

Design choices

• Activation function

• Loss function

• Output units

• Architecture

13

Activation function
ℎ = 𝑓(𝑊!𝑋 + 𝑏)

The activation function should:

• Provide non-linearity
• Ensure gradients remain large through hidden unit

Common choices are
• sigmoid, tanh
• ReLU, leaky ReLU, Generalized ReLU
• softplus
• swish

14

Sigmoid, 𝜎() (aka logistic) and tanh

Derivative is zero for much of the domain. This leads to “vanishing gradients”
in backpropagation.

𝑦 =
1

1 + 𝑒"#
𝑦 =

𝑒# − 𝑒"#

𝑒# + 𝑒"#

15

Rectified Linear Unit, ReLU(), Exponential ReLU (ELU)

Two major advantages:
1. No vanishing gradient when x > 0
2. Provides sparsity (regularization) since y

= 0 when x < 0

𝑦 = max(0, 𝑥) 𝑦 = max 0, 𝑥 + 𝛼min(0, 𝑒# − 1)
where 𝛼 takes a small value

No vanishing gradients and easy to
calculate.

16

Softplus and Swish

𝑦 = log(1 + 𝑒#)

The derivative of the softplus is the sigmoid
logistic function, which is a smooth
approximation of the derivative of the rectifier. So
the derivative of the softplus is continuous.

𝑔 𝑥 = 𝑥 𝜎(𝑥)

Swish tends to work better than ReLU on deeper
models across a number of challenging datasets.

17

Outline

Anatomy of a NN

Design choices

• Activation function

• Loss function

• Output units

• Architecture

18

Loss Function

Probabilistic modeling

Likelihood for a given measurement:
𝑝 𝑦$ 𝑊;𝑥$

Assume independency, likelihood for all measurements:

𝐿 𝑊;𝑋, 𝑌 = 𝑝 𝑌 𝑊;𝑋 ==
$

𝑝 𝑦$ 𝑊;𝑥$

Maximize the likelihood, or equivalently minimizing the –ve log-likelihood:

ℒ 𝑊;𝑋, 𝑌 = − log 𝐿 𝑊;𝑋, 𝑌 =?
$

log 𝑝 𝑦$ 𝑊;𝑥$

19

Loss Function

Do not need to design separate loss functions if we follow the probabilistic
modeling approach, i.e. minimize the –ve likelihood function.

Examples:

• Distribution is Normal then –ve log-likelihood is 𝐌𝐒𝐄 :

𝑝 𝑦$ 𝑊;𝑥$ =
1

√ 2𝜋%𝜎
𝑒"

&!"'&! "
%("

ℒ 𝑊;𝑋, 𝑌 = ∑$ 𝑦$ − G𝑦$ %

• Distribution is Bernouli then –ve log-likelihood is Binary Cross-Entropy:

𝑝 𝑦$ 𝑊;𝑥$ = 𝑝$
&! 1 − 𝑝$)"&!

ℒ 𝑊;𝑋, 𝑌 = −∑$ 𝑦$ log 𝑝$ + (1 − 𝑦$) log(1 − 𝑝$)
20

Design Choices

Activation function
Loss function
Output units
Architecture
Optimizer

21

Output Units

Output Type Output Distribution Output layer Loss Function

Binary Bernoulli ? Binary Cross Entropy

22

Output unit for binary classification

X

OUTPUT UNIT

23

Output unit for binary classification

X

OUTPUT UNIT

!𝑌 = P(y = 1)

24

Output unit for binary classification

X

𝑋 ⟹ 𝜙 𝑋 ⟹ 𝑃 𝑦 = 1 =
1

1 + 𝑒!"($)

𝜙 𝑋 !𝑌 = P(y = 1)

OUTPUT UNIT

𝜎(𝜙(𝑋))X

!𝑌 = P(y = 1)

25

Output Units

Output Type Output Distribution Output layer Cost Function

Binary Bernoulli Sigmoid Binary Cross Entropy

Discrete Multinouli ? Cross Entropy

26

SoftMax

%𝑌 =
𝑒!! "

∑#$%& 𝑒!! "

re
st

 o
f t

he
 n

et
w

or
k

Probability of A

Probability of B

Probability of C

𝜙# 𝑋

OUTPUT UNIT

A score

B score

C score

27

SoftMax

%𝑌 =
𝑒!! "

∑#$%& 𝑒!! "

re
st

 o
f t

he
 n

et
w

or
k

OUTPUT UNIT

A score

B score

C score

Probability of A

Probability of B

Probability of C

𝜙# 𝑋

So
ft

M
ax

28

Output Units

Output Type Output Distribution Output layer Cost Function

Binary Bernoulli Sigmoid Binary Cross Entropy

Discrete Multinoulli Softmax Cross Entropy

Continuous Gaussian ? MSE

29

Output unit for regression

X

𝑋 ⟹ 𝜙 𝑋 ⟹ K𝑌 = 𝑊&𝜙(𝑋)

𝜙 𝑋

OUTPUT UNIT

W'𝜙(𝑋)X

!𝑌

!𝑌

30

Output Units

Output Type Output Distribution Output layer Cost Function

Binary Bernoulli Sigmoid Binary Cross Entropy

Discrete Multinoulli Softmax Cross Entropy

Continuous Gaussian Linear MSE

Continuous Arbitrary - GANS

31

Design Choices

Activation function
Loss function
Output units
Architecture
Optimizer

32

Number of nodes

33

Number of nodes

…

34

Neural Networks as Universal Approximators

We have seen that neural networks can represent
complex functions, but are there limitations on
what a neural network can express?

Theorem:

For any continuous function f defined on a
bounded domain, we can find a neural network
that approximates f with an arbitrary degree of
accuracy.

35

Neural Networks as Universal Approximators

We have seen that neural networks can represent
complex functions, but are there limitations on
what a neural network can express?

Theorem:

For any continuous function f defined on a
bounded domain, we can find a neural network
that approximates f with an arbitrary degree of
accuracy.

One hidden layer is enough to represent an approximation of any function to an
arbitrary degree of accuracy.

So why deeper?

36

Layers

37

Layers

38

Why layers?

Representation matters!

Neural networks can learn useful representations for the problem. This is another
reason why they can be so powerful!

39

Why layers?

Representation matters!

Neural networks can learn useful representations for the problem. This is another
reason why they can be so powerful!

40

41

Input

...

i

𝑃(𝑌 = 1)

input hidden1 hidden2 output

ℎ!

ℎ"

42

Input

...

i

𝑃(𝑌 = 1)

input hidden1 hidden2 output

ℎ!

ℎ"

𝑃(𝑌 = 0.5)

43

Depth = Repeated Compositions

44

Shallow Nets Overfit More

(Goodfellow 2017)

Depth helps, and it’s not just because of more parameters

45

Shallow Nets Overfit More

(Goodfellow 2017)

The 11-layer net generalizes better on the test set
when controlling for number of parameters.

Depth helps, and it’s not just because of more parameters

46

Shallow Nets Overfit More

(Goodfellow 2017)

The 3-layer nets perform worse on the test set,
even with similar number of total parameters.

The 11-layer net generalizes better on the test set
when controlling for number of parameters.

Depth helps, and it’s not just because of more parameters

47

Shallow Nets Overfit More

(Goodfellow 2017)

The 3-layer nets perform worse on the test set,
even with similar number of total parameters.

The 11-layer net generalizes better on the test set
when controlling for number of parameters.

Depth helps, and it’s not just because of more parameters

Don’t worry
about this word
“convolutional”.
It’s just a special
type of neural
network, often
used for images.

48

