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Graphical representation of simple functions

We build complex functions by composing simple functions of the form: 

ℎ! 𝑥 = 𝑓(𝑋𝑊 + 𝑏)

where 𝑓 is the activation function. 

We represent our simple function as a graph
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The zoo of neural network architectures 

Different architectures result into functions with 
very different properties.

Larger networks can express more complex 
functions
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Activation function
ℎ = 𝑓(𝑊!𝑋 + 𝑏)

The activation function should:

• Provide non-linearity
• Ensure gradients remain large through hidden unit

Common choices are 
• sigmoid, tanh
• ReLU, leaky ReLU, Generalized ReLU
• softplus
• swish 
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Sigmoid, 𝜎() (aka logistic) and tanh

Derivative is zero for much of the domain. This leads to “vanishing gradients” 
in backpropagation.

𝑦 =
1

1 + 𝑒"#
𝑦 =

𝑒# − 𝑒"#

𝑒# + 𝑒"#
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Rectified Linear Unit, ReLU(), Exponential ReLU (ELU)

Two major advantages:
1. No vanishing gradient when x > 0
2. Provides sparsity (regularization) since y 

= 0 when x < 0

𝑦 = max(0, 𝑥) 𝑦 = max 0, 𝑥 + 𝛼min(0, 𝑒# − 1)
where 𝛼 takes a small value

No vanishing gradients and easy to 
calculate. 
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Softplus and Swish

𝑦 = log(1 + 𝑒#)

The derivative of the softplus is the sigmoid 
logistic function, which is a smooth 
approximation of the derivative of the rectifier.  So
the derivative of the softplus is continuous. 

𝑔 𝑥 = 𝑥 𝜎(𝑥)

Swish tends to work better than ReLU on deeper 
models across a number of challenging datasets. 
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Loss Function

Probabilistic modeling

Likelihood for a given measurement: 
𝑝 𝑦$ 𝑊;𝑥$

Assume independency, likelihood for all measurements: 

𝐿 𝑊;𝑋, 𝑌 = 𝑝 𝑌 𝑊;𝑋 ==
$

𝑝 𝑦$ 𝑊;𝑥$

Maximize the likelihood, or equivalently minimizing the –ve log-likelihood:

ℒ 𝑊;𝑋, 𝑌 = − log 𝐿 𝑊;𝑋, 𝑌 =?
$

log 𝑝 𝑦$ 𝑊;𝑥$
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Loss Function

Do not need to design separate loss functions if we follow the probabilistic 
modeling approach, i.e. minimize the –ve likelihood function.

Examples: 

• Distribution is Normal then –ve log-likelihood is 𝐌𝐒𝐄 :

𝑝 𝑦$ 𝑊;𝑥$ =
1

√ 2𝜋%𝜎
𝑒"

&!"'&! "
%("

ℒ 𝑊;𝑋, 𝑌 = ∑$ 𝑦$ − G𝑦$ %

• Distribution is Bernouli then –ve log-likelihood is Binary Cross-Entropy:

𝑝 𝑦$ 𝑊;𝑥$ = 𝑝$
&! 1 − 𝑝$ )"&!

ℒ 𝑊;𝑋, 𝑌 = −∑$ 𝑦$ log 𝑝$ + (1 − 𝑦$) log(1 − 𝑝$)
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Output Units

Output Type Output Distribution Output layer Loss Function

Binary Bernoulli ? Binary Cross Entropy
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Output unit for binary classification  

X

OUTPUT UNIT
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Output unit for binary classification  

X

𝑋 ⟹ 𝜙 𝑋 ⟹ 𝑃 𝑦 = 1 =
1

1 + 𝑒!"($)

𝜙 𝑋 !𝑌 = P(y = 1)

OUTPUT UNIT

𝜎(𝜙(𝑋))X

!𝑌 = P(y = 1)
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Output Units

Output Type Output Distribution Output layer Cost Function

Binary Bernoulli Sigmoid Binary Cross Entropy

Discrete Multinouli ? Cross Entropy
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SoftMax
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SoftMax
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Output Units

Output Type Output Distribution Output layer Cost Function

Binary Bernoulli Sigmoid Binary Cross Entropy

Discrete Multinoulli Softmax Cross Entropy

Continuous Gaussian ? MSE
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Output unit for regression

X

𝑋 ⟹ 𝜙 𝑋 ⟹ K𝑌 = 𝑊&𝜙(𝑋)

𝜙 𝑋

OUTPUT UNIT

W'𝜙(𝑋)X

!𝑌

!𝑌
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Output Units

Output Type Output Distribution Output layer Cost Function

Binary Bernoulli Sigmoid Binary Cross Entropy

Discrete Multinoulli Softmax Cross Entropy

Continuous Gaussian Linear MSE

Continuous Arbitrary - GANS
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Number of nodes
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Number of nodes

…
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Neural Networks as Universal Approximators

We have seen that neural networks can represent 
complex  functions, but are there limitations on 
what a neural network can express? 

Theorem: 

For any continuous function f defined on a 
bounded domain, we can find a neural network 
that approximates f with an arbitrary degree of 
accuracy. 
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Neural Networks as Universal Approximators

We have seen that neural networks can represent 
complex  functions, but are there limitations on 
what a neural network can express? 

Theorem: 

For any continuous function f defined on a 
bounded domain, we can find a neural network 
that approximates f with an arbitrary degree of 
accuracy. 

One hidden layer is enough to represent an approximation of any function to an 
arbitrary degree of accuracy.

So why deeper?
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Layers
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Layers
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Why layers? 

Representation matters!

Neural networks can learn useful representations for the problem. This is another 
reason why they can be so powerful!
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42



Input 

...

i

𝑃(𝑌 = 1)

input hidden1 hidden2 output 

ℎ!

ℎ"

𝑃(𝑌 = 0.5)

43



Depth = Repeated Compositions
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Shallow Nets Overfit More

(Goodfellow 2017)

Depth helps, and it’s not just because of more parameters
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Shallow Nets Overfit More

(Goodfellow 2017)

The 3-layer nets perform worse on the test set, 
even with similar number of total parameters.

The 11-layer net generalizes better on the test set 
when controlling for number of parameters.

Depth helps, and it’s not just because of more parameters

Don’t worry 
about this word 
“convolutional”. 
It’s just a special 
type of neural 
network, often 
used for images.
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