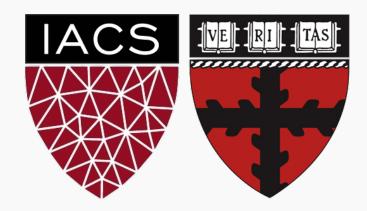
Anatomy of NN

CS109B Data Science 2 Pavlos Protopapas, Mark Glickman



Outline

Anatomy of a NN

Design choices

- Activation function
- Loss function
- Output units
- Architecture

Anatomy of a NN

Design choices

- Activation function
- Loss function
- Output units
- Architecture

Graphical representation of simple functions

We build complex functions by composing simple functions of the form:

$$h_w(x) = f(XW + b)$$

where f is the activation function.

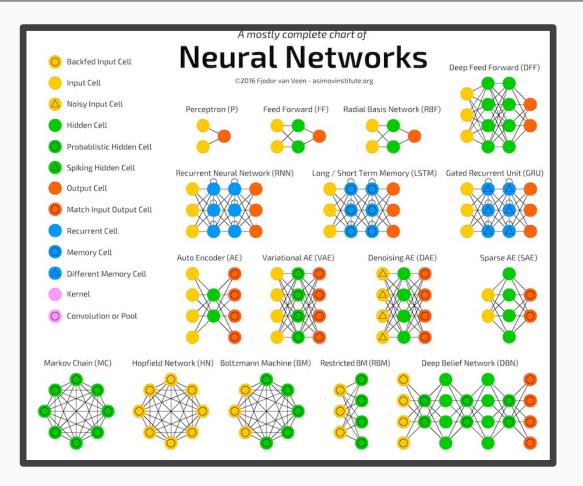
We represent our simple function as a graph



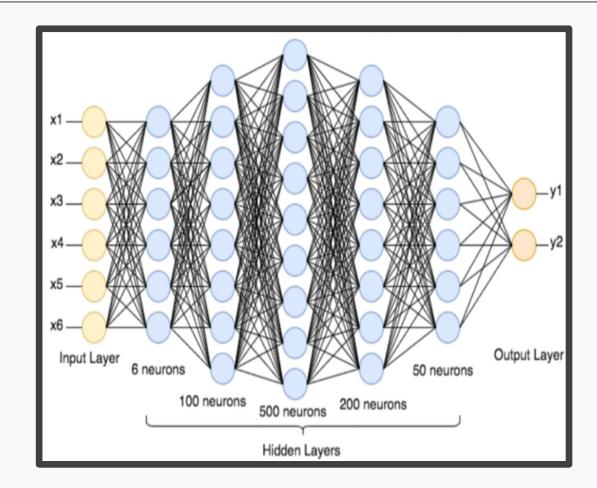
Each edge in this graph represents multiplication by a different constant Wd.

We call each Wd a weight.

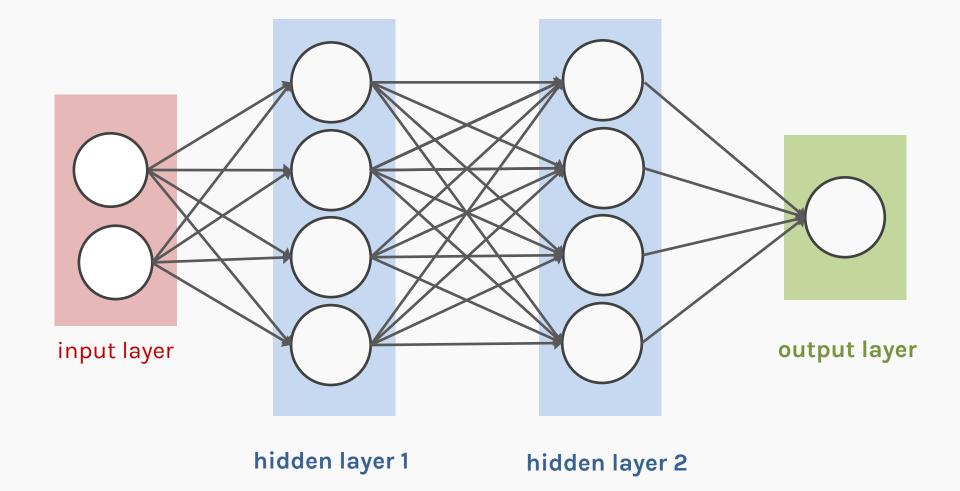
The zoo of neural network architectures

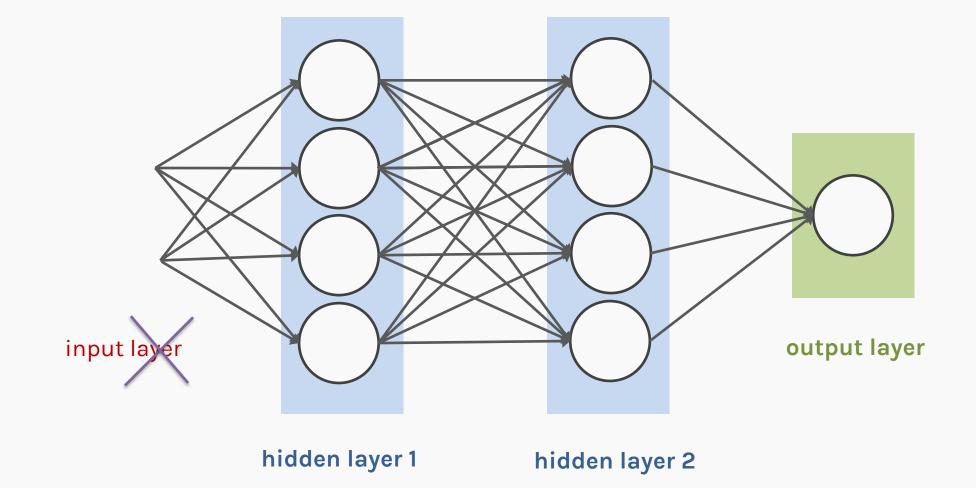


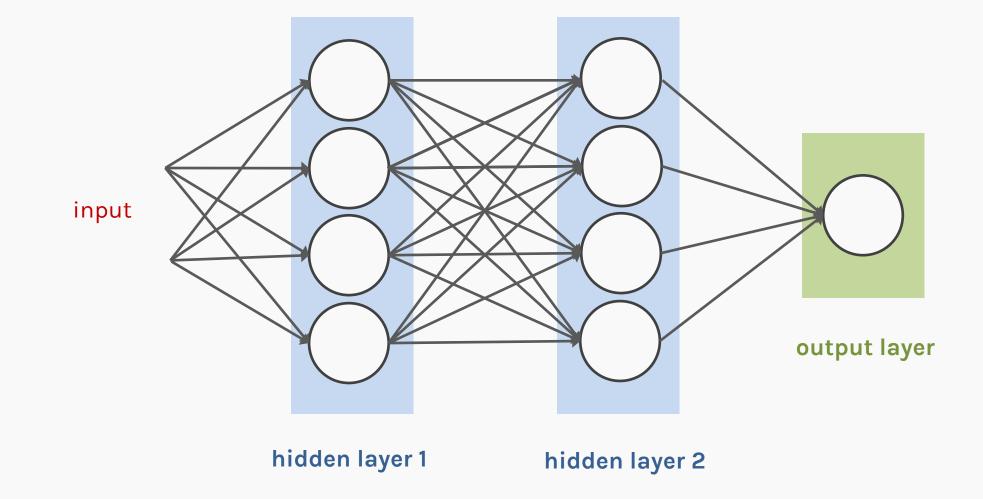
Different architectures result into functions with very different properties.

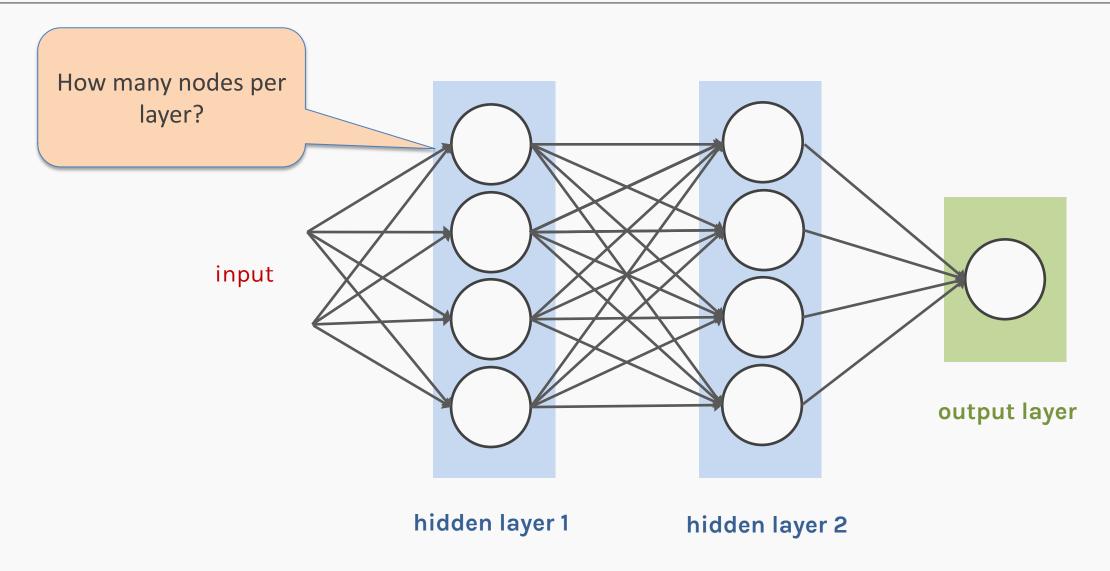


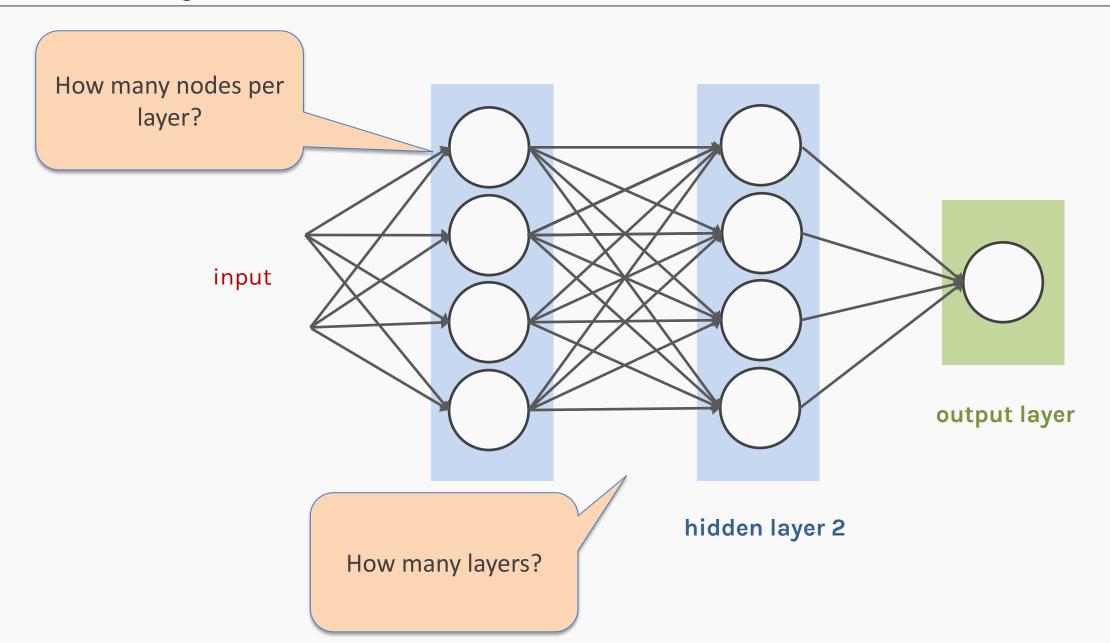
Larger networks can express more complex functions

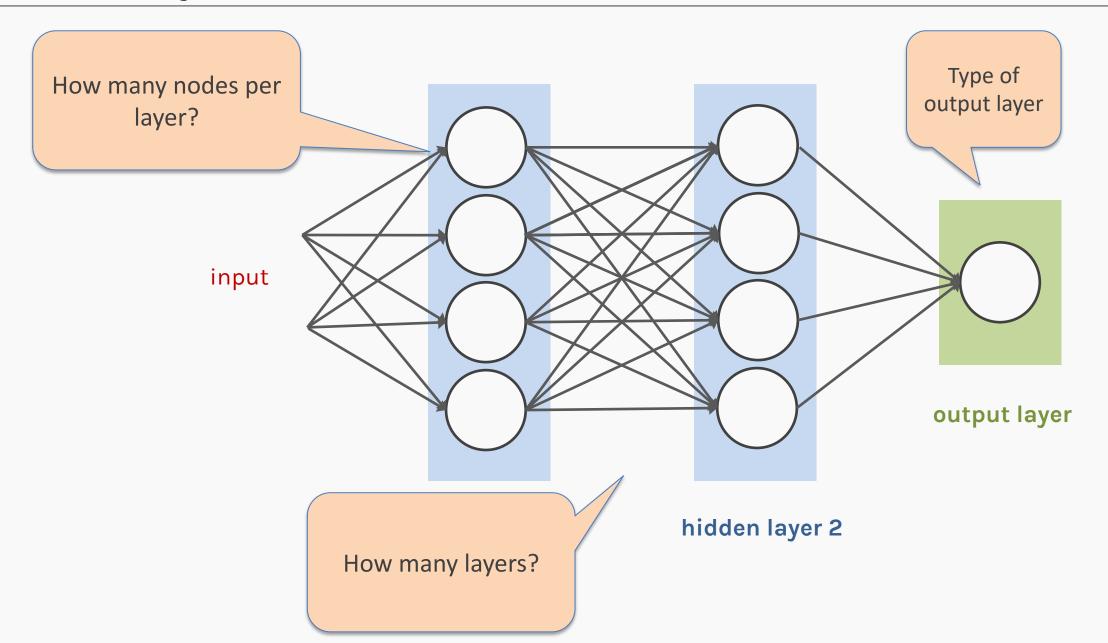


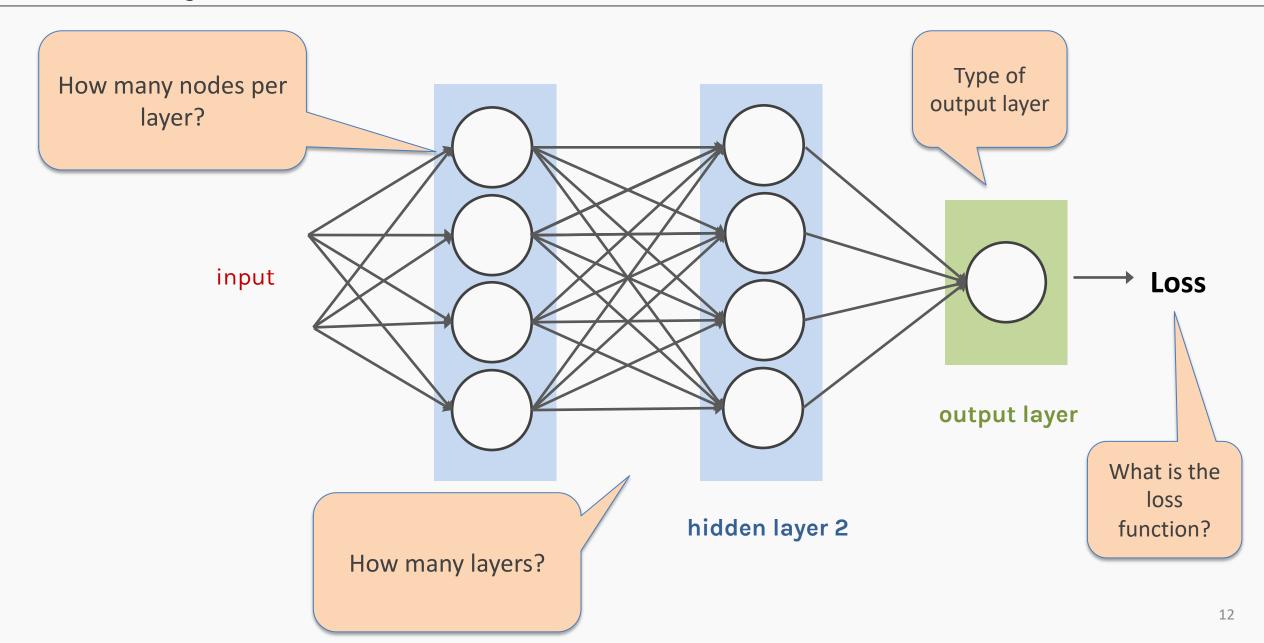












Outline

Anatomy of a NN

Design choices

- Activation function
- Loss function
- Output units
- Architecture

Activation function

$$h = f(W^T X + b)$$

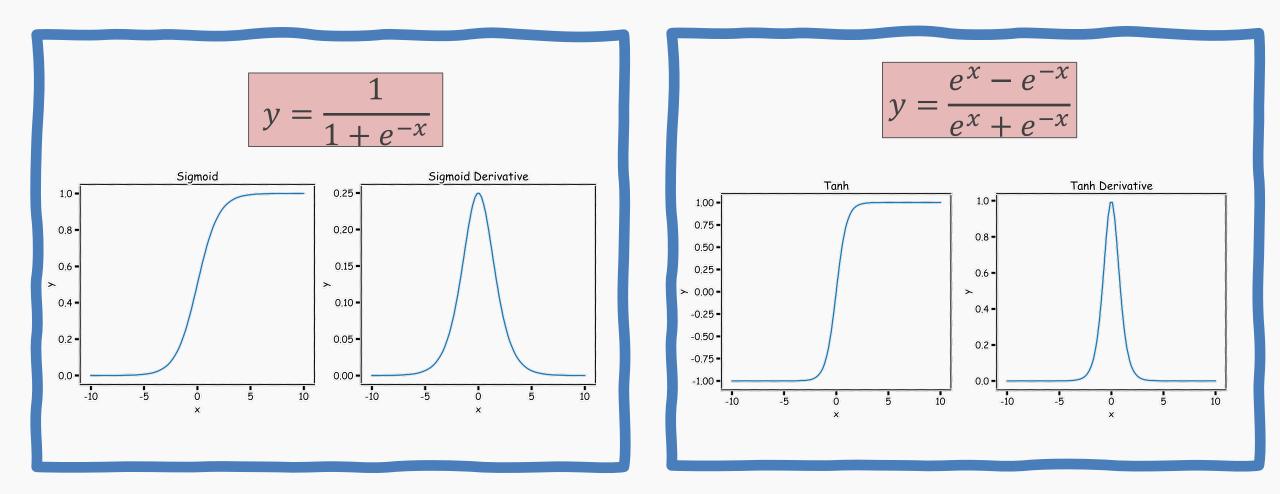
The activation function should:

- Provide non-linearity
- Ensure gradients remain large through hidden unit

Common choices are

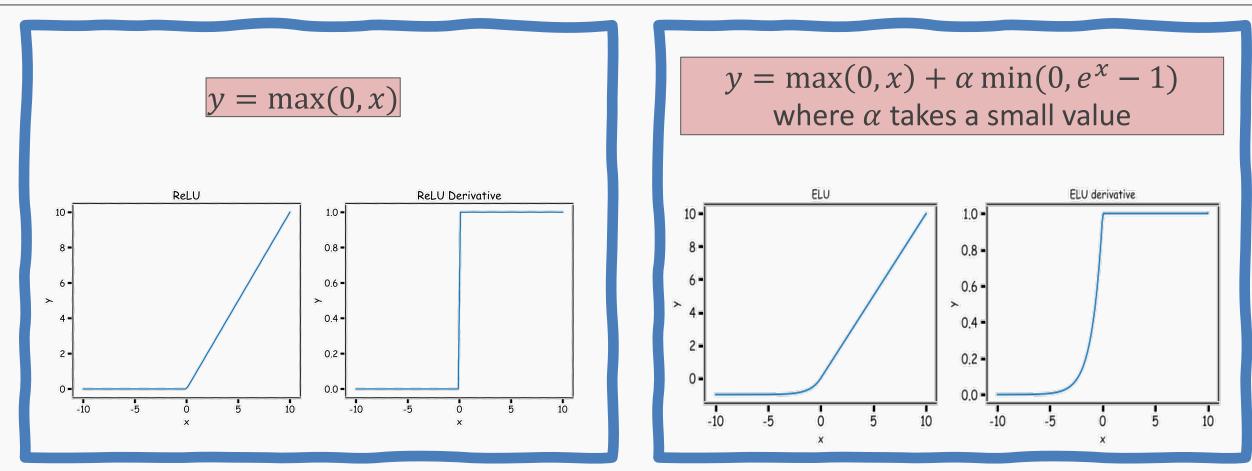
- sigmoid, tanh
- ReLU, leaky ReLU, Generalized ReLU
- softplus
- swish

Sigmoid, σ () (aka logistic) and tanh



Derivative is **zero** for much of the domain. This leads to "vanishing gradients" in backpropagation.

Rectified Linear Unit, ReLU(), Exponential ReLU (ELU)

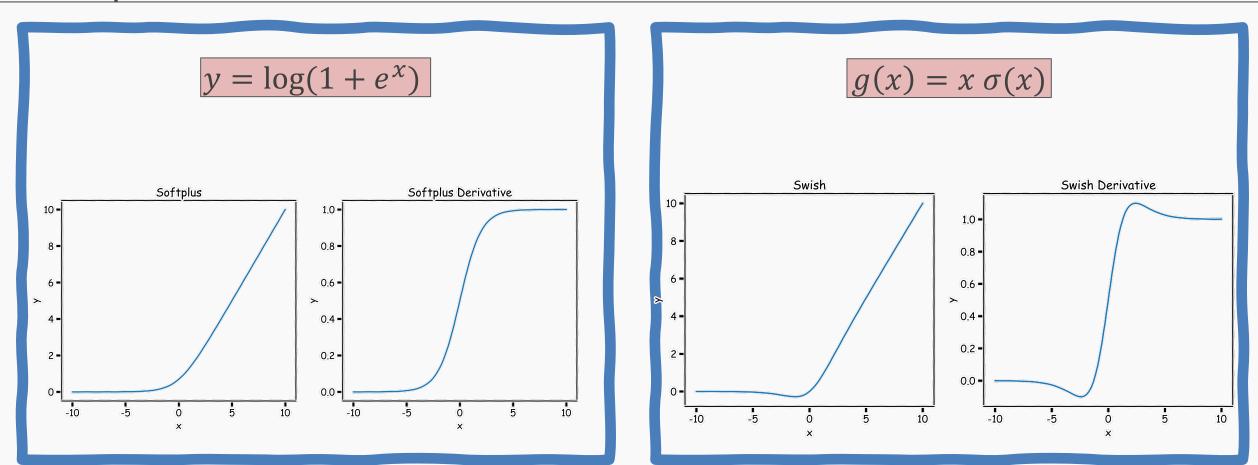


Two major advantages:

- 1. No vanishing gradient when x > 0
- 2. Provides sparsity (regularization) since y
 - = 0 when x < 0

No vanishing gradients and easy to calculate.

Softplus and Swish



The derivative of the softplus is the sigmoid logistic function, which is a smooth approximation of the derivative of the rectifier. So the derivative of the softplus is continuous. Swish tends to work better than ReLU on deeper models across a number of challenging datasets.

Outline

Anatomy of a NN

Design choices

- Activation function
- Loss function
- Output units
- Architecture

Probabilistic modeling

Likelihood for a given measurement:

 $p(y_i|W;x_i)$

Assume **independency**, likelihood for all measurements:

$$L(W; X, Y) = p(Y|W; X) = \prod_{i} p(y_i|W; x_i)$$

Maximize the likelihood, or equivalently minimizing the -ve log-likelihood:

$$\mathcal{L}(W; X, Y) = -\log L(W; X, Y) = \sum_{i} \log p(y_i | W; x_i)$$

Loss Function

Do not need to design separate loss functions if we follow the probabilistic modeling approach, i.e. minimize the –ve likelihood function.

Examples:

• Distribution is **Normal** then -ve log-likelihood is **MSE** :

$$p(y_i|W;x_i) = \frac{1}{\sqrt{\{2\pi^2\sigma\}}} e^{-\frac{(y_i - \hat{y}_i)^2}{2\sigma^2}}$$
$$\mathcal{L}(W;X,Y) = \sum_i (y_i - \hat{y}_i)^2$$

• Distribution is **Bernouli** then -ve log-likelihood is **Binary Cross-Entropy**:

$$p(y_i|W; x_i) = p_i^{y_i} (1 - p_i)^{1 - y_i}$$

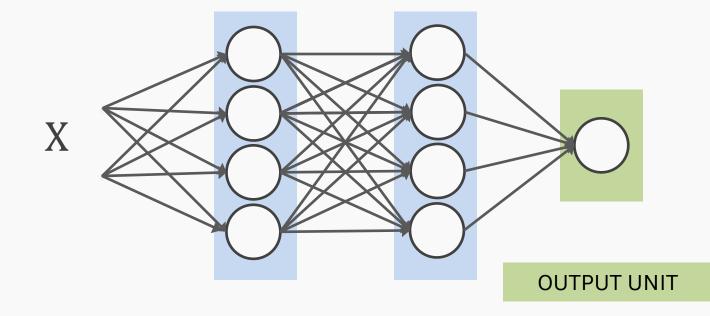
$$\mathcal{L}(W; X, Y) = -\sum_i [y_i \log p_i + (1 - y_i) \log(1 - p_i)]$$

Activation function Loss function Output units Architecture

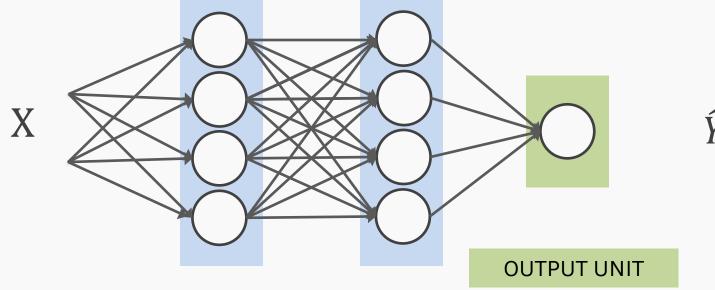
Optimizer

Output Type	Output Distribution	Output layer	Loss Function
Binary	Bernoulli	?	Binary Cross Entropy

Output unit for binary classification

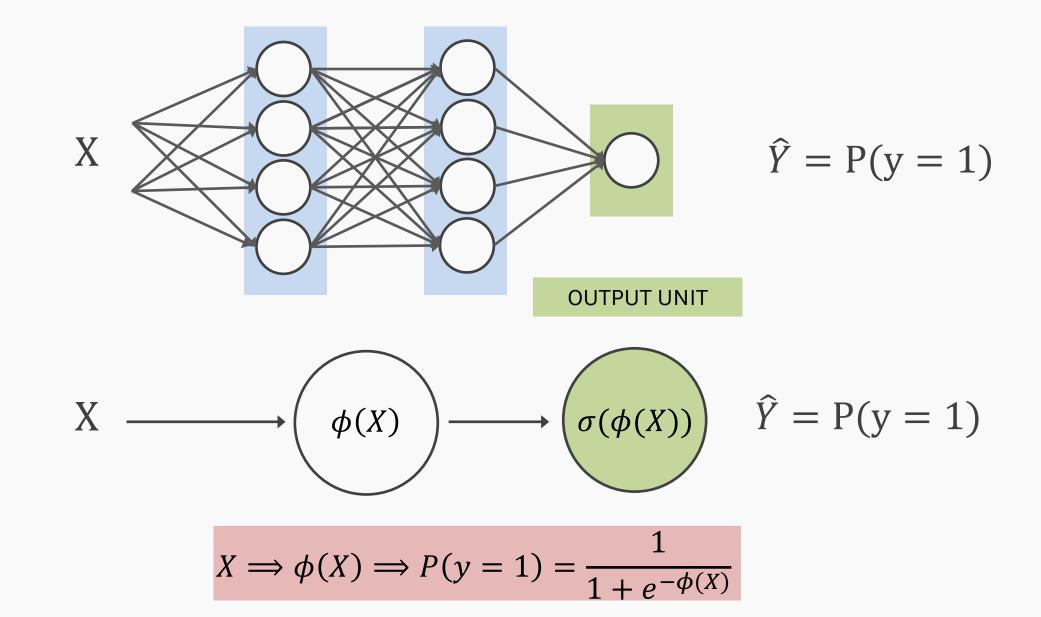


Output unit for binary classification



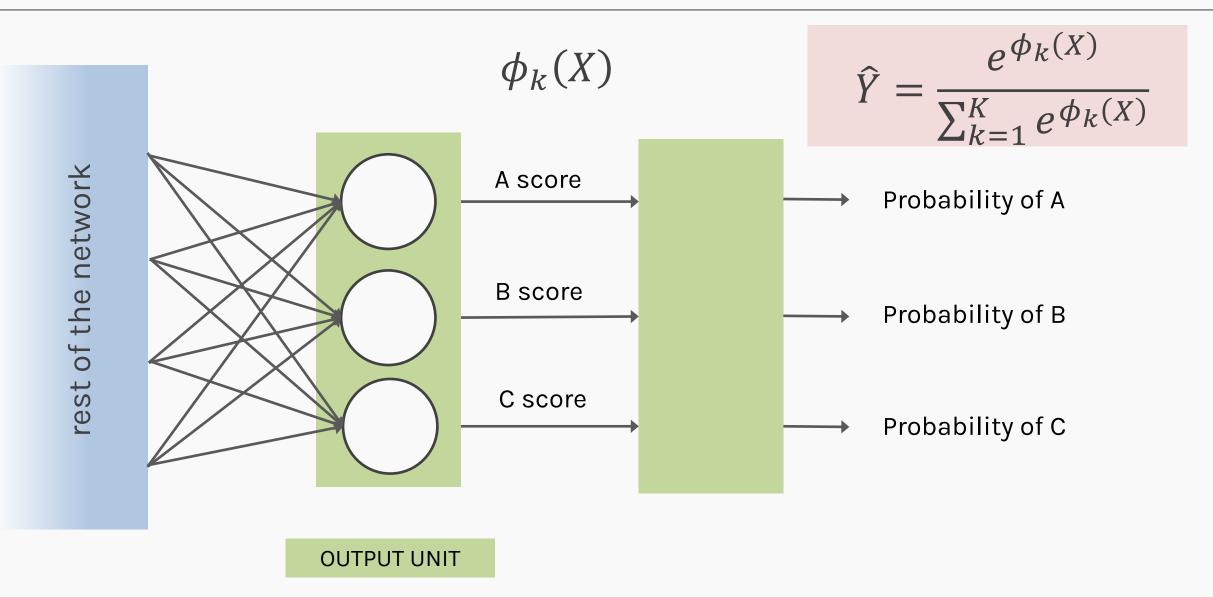
 $\widehat{Y} = P(y = 1)$

Output unit for binary classification

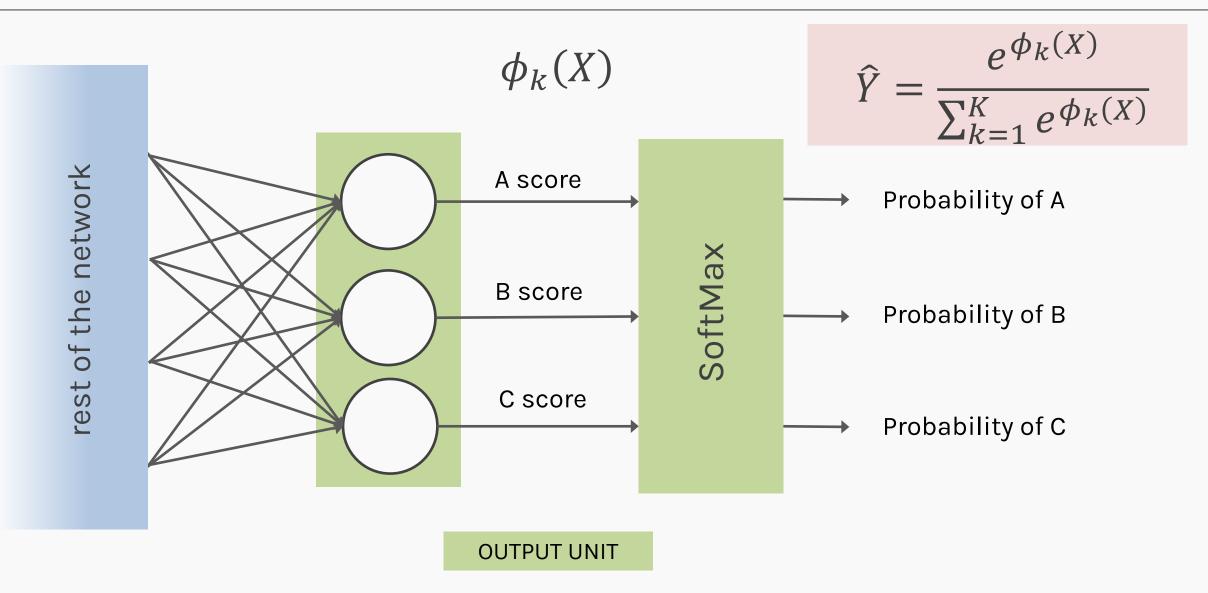


Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinouli	?	Cross Entropy

SoftMax

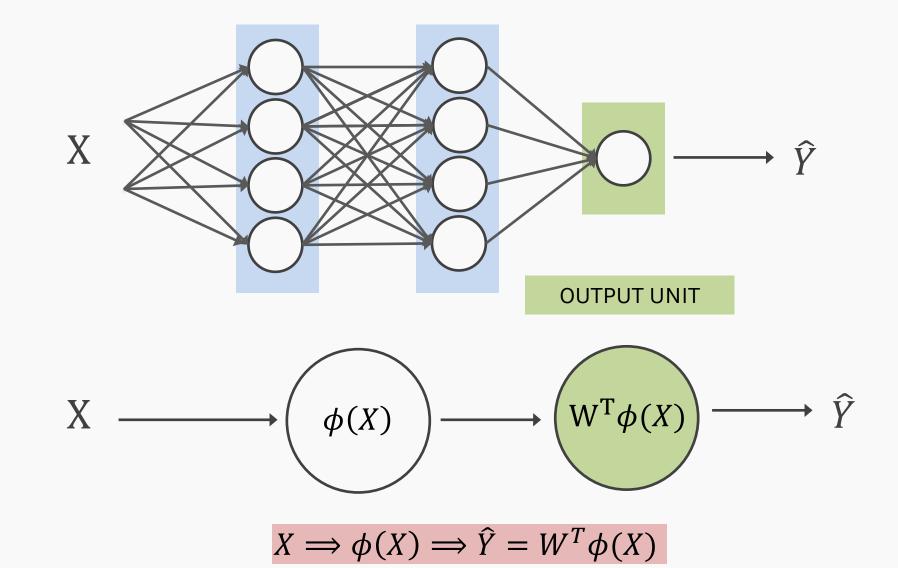


SoftMax



Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy
Continuous	Gaussian	?	MSE

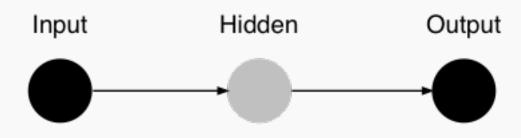
Output unit for regression

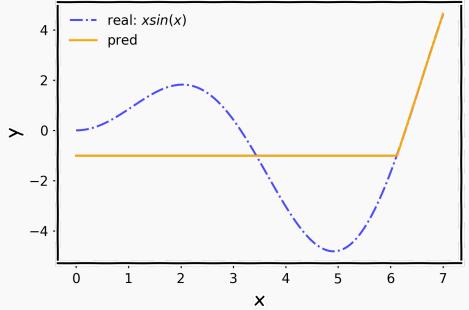


Output Type	Output Distribution	Output layer	Cost Function
Binary	Bernoulli	Sigmoid	Binary Cross Entropy
Discrete	Multinoulli	Softmax	Cross Entropy
Continuous	Gaussian	Linear	MSE
Continuous	Arbitrary	-	GANS

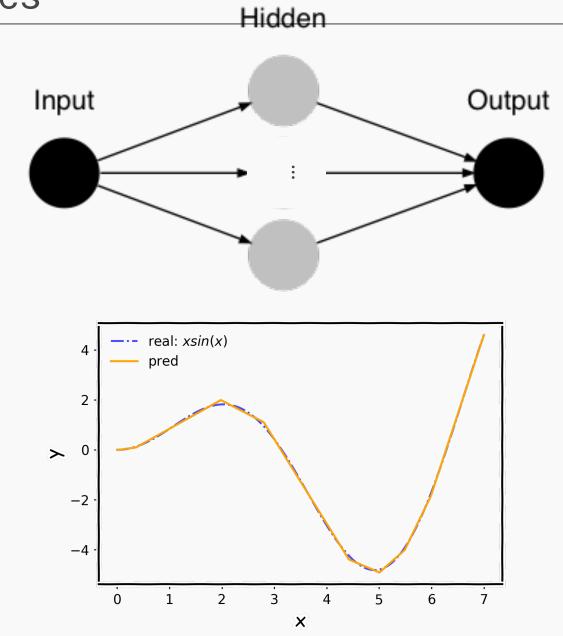
Activation function Loss function Output units Architecture Optimizer

Number of nodes

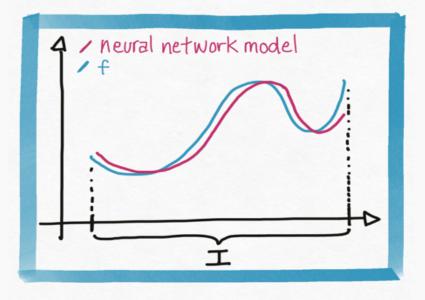




Number of nodes



Neural Networks as Universal Approximators

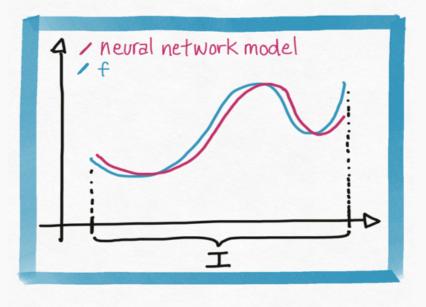


We have seen that neural networks can represent complex functions, but are there limitations on what a neural network can express?

Theorem:

For any continuous function f defined on a bounded domain, we can find a neural network that approximates f with an arbitrary degree of accuracy.

Neural Networks as Universal Approximators



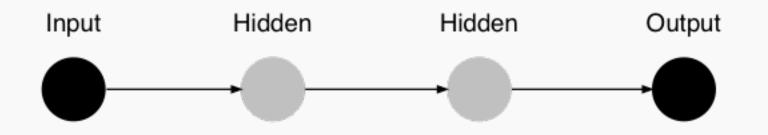
We have seen that neural networks can represent complex functions, but are there limitations on what a neural network can express?

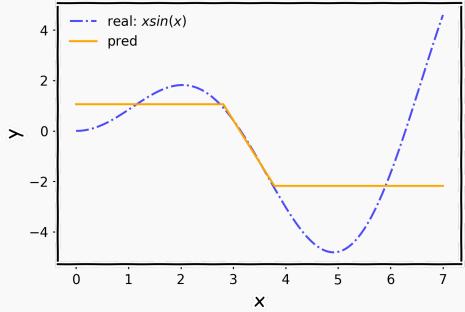
Theorem:

For any continuous function f defined on a bounded domain, we can find a neural network that approximates f with an arbitrary degree of accuracy.

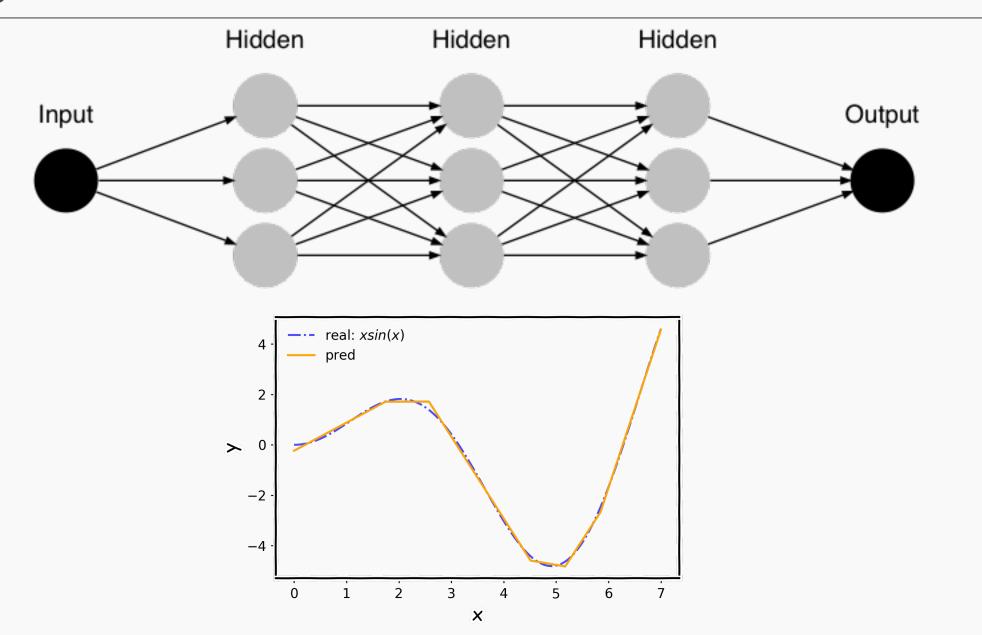
One hidden layer is enough to represent an approximation of any function to an arbitrary degree of accuracy.

So why deeper?



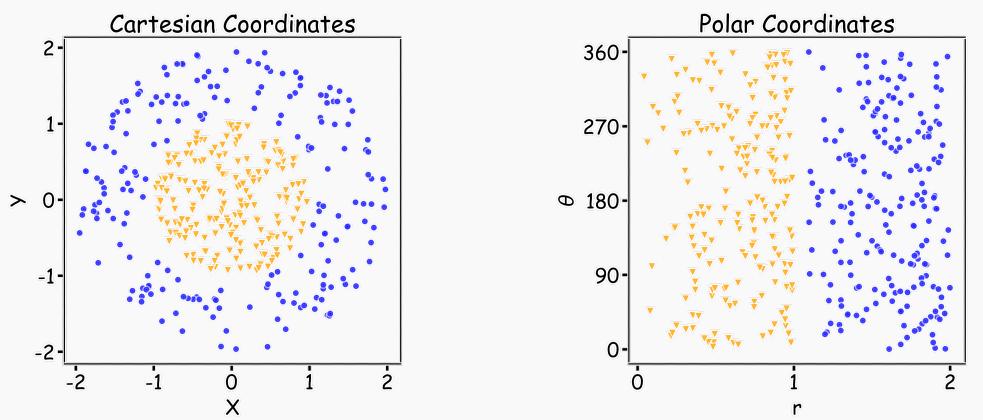


Layers



Why layers?

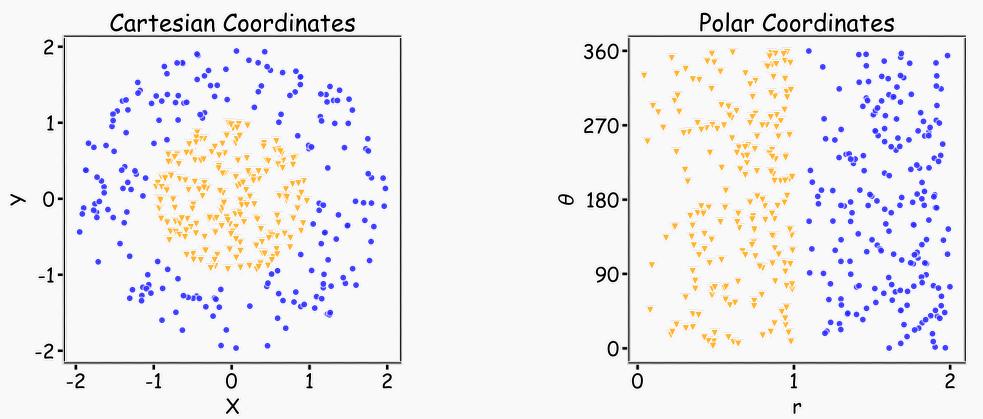
Representation matters!



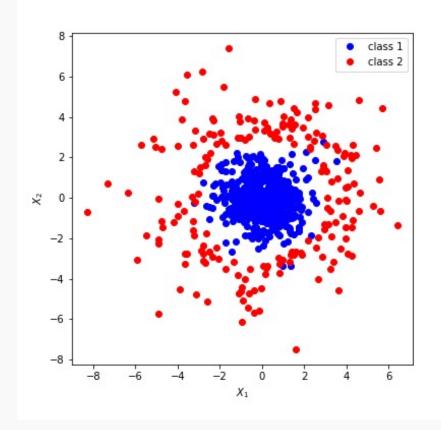
Neural networks can **learn useful representations** for the problem. This is another reason why they can be so powerful!

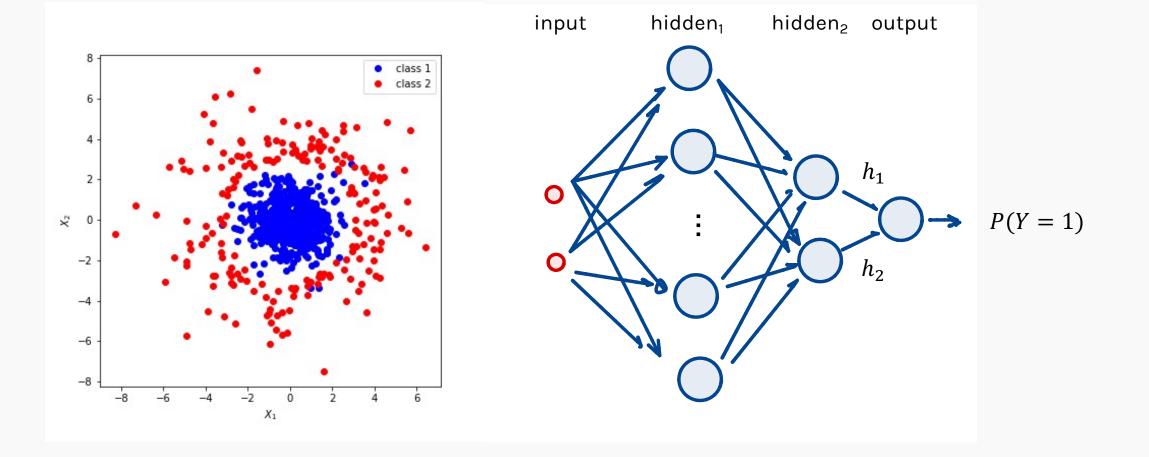
Why layers?

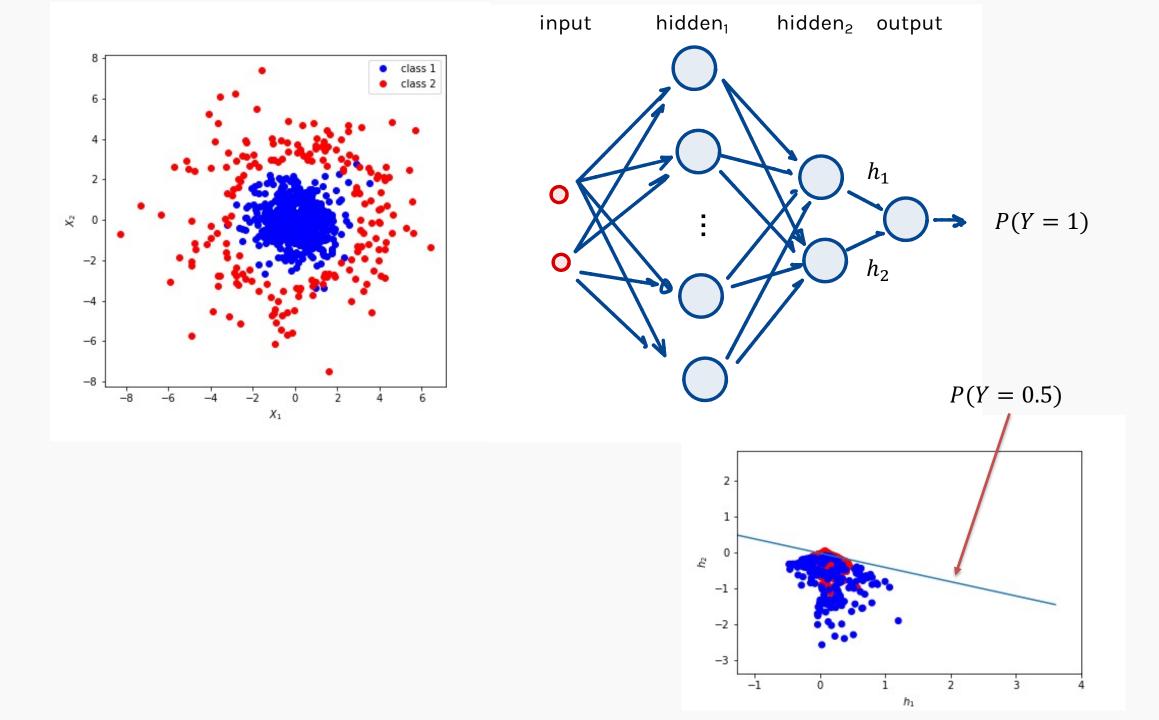
Representation matters!



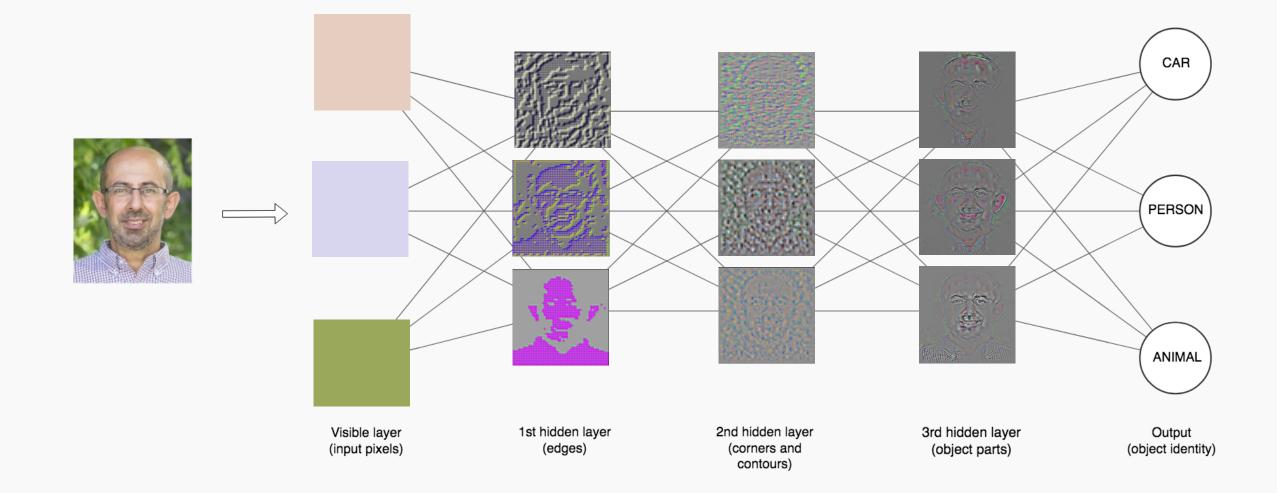
Neural networks can **learn useful representations** for the problem. This is another reason why they can be so powerful!

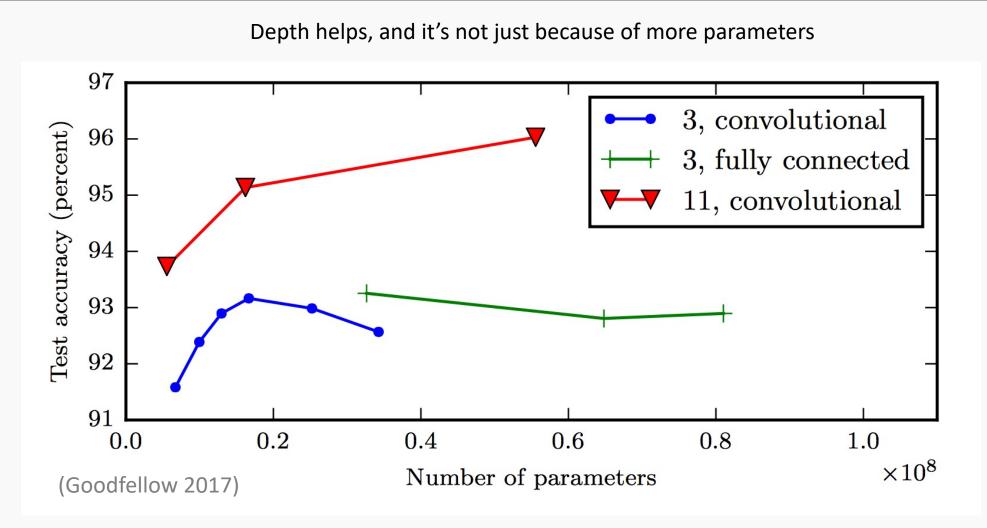


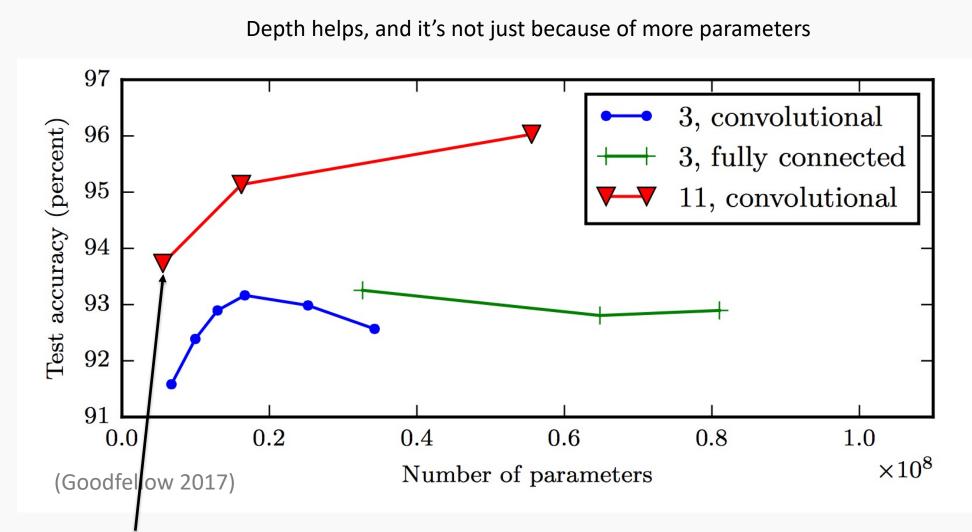




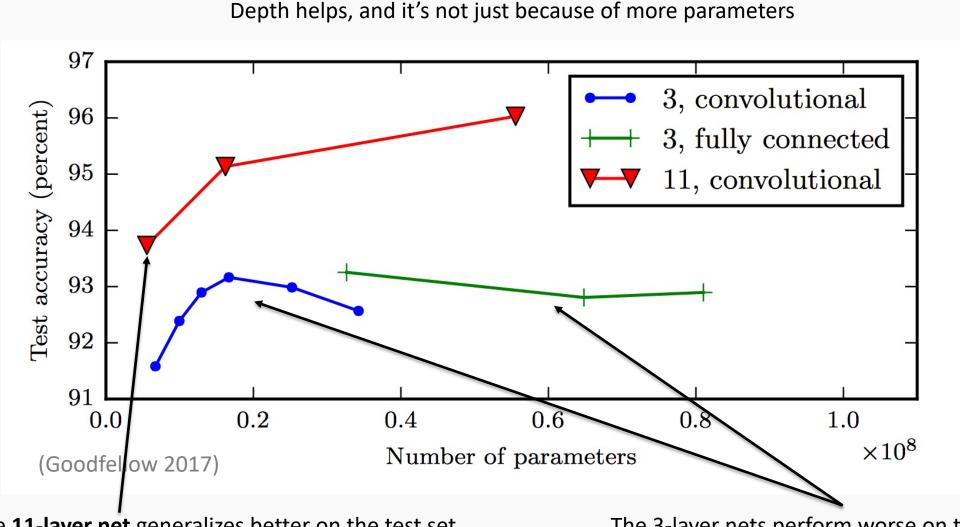
Depth = Repeated Compositions





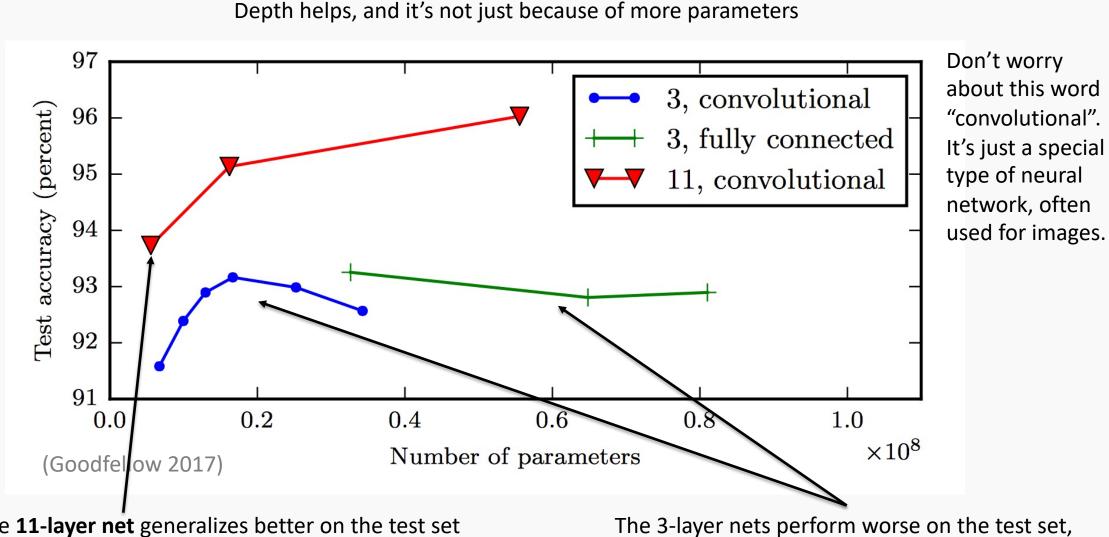


The **11-layer net** generalizes better on the test set when controlling for number of parameters.



The **11-layer net** generalizes better on the test set when controlling for number of parameters.

The 3-layer nets perform worse on the test set, even with similar number of total parameters.



The **11-layer net** generalizes better on the test set when controlling for number of parameters.

even with similar number of total parameters.