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Convexity

A convex set does not have any dents on its boundary, and contains no 
holes.

Mathematically, given a convex set, the line between any two points in the 
set is also contained in the set.
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https://www.quora.com/Why-might-a-set-of-points-equidistant-from-a-center-point-form-a-round-shape
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Is This Convex?
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https://ghehehe.nl/the-daily-blob/
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Is This Convex?
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https://radiganengineering.com/2016/04/platonic-solids-in-solidworks/
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Is This Convex?
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https://en.wikipedia.org/wiki/Solid_torus
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Convex Functions

• Convex functions “curve 
upward”

• The area above a convex 
function (the epigraph) is a 
convex set

• Convex functions must have 
a domain that is a convex set 
(by definition)
• In this case, the domain is 

, which is convex.
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Eli Osherovich https://en.wikipedia.org/wiki/Convex_function
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Convex Functions

Definition of Convex Function:
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Eli Osherovich https://en.wikipedia.org/wiki/Convex_function

i.e. the line connecting two 
points on the curve of the 
function is not below the 
function
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Is This a Convex Function?
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https://pytorch.org/docs/stable/nn.html
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Why do we care about convex functions?

Convex Optimization:
• Every local minimum is a 

global minimum

• Gradient Descent is 
guaranteed to find a 
global minimum (with 
appropriate step size)

• Heavily relied on in proofs 
in machine learning 
papers
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O’Reilly Media



CS109B, PROTOPAPAS, GLICKMAN

Gradient Descent

We move in the opposite direction of the gradient, with a step 
size (learning rate) of    , If          is a loss, then with every step 
we try to decrease it.

can be very complex, like the loss of a neural network. 

Because the gradient of a neural network is easily computable 
through backpropagation, it’s not overstating the matter to 
say deep learning was built on gradient descent
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Stochastic Gradient Descent
In SGD we only require that the expected value at each iteration will equal the 

gradient direction
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Gradient Descent SGD

In black we have Ruppert-Polyak
averaging, a well-known way to 
minimize asymptotic variance 
of SGD:

Understanding Machine Learning, Shalev-Shwartz, Ben-David 
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Subdifferentiation and Subgradients

We also want to apply gradient descent to some functions that aren’t differentiable:
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It would be nice if we could have a 
generalization of the derivative to help 
with problematic points.
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Subdifferentiation and Subgradients

For a convex function               the following can be proven: 
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This is basically saying that a convex function is everywhere 
above any of its tangent lines.

We use this to generalize the notion of a gradient:

Any vector      satisfying this inequality is called a subgradient of 
the function       at       , and the set of these subgradients is 
called the differential set and denoted               .

This allows us to perform stochastic subgradient descent.
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Lipschitz Continuity

Another important term in analyzing convergence in ML 
problems is Lipschitz continuity. This is a subset of 
the set of continuous functions that is one step 
weaker than continuous differentiability
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https://www.reddit.com/r/math/comments/3f6x5d/is_fx_abscosx_lipschitz_continuous_or_just/

Basically, can the function be excluded from a double-
cone at every point.

Can you see how this might be related to subgradients
when applied to convex functions?
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Convergence of Ruppert-Polyak SGD

Things to note: 

• We get an expectation of how close we are to the true minimum

• Time to get there depends on how much the function can vary

• Assumes convexity! But deep neural networks aren’t generally convex.
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Understanding Machine Learning: http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

and
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SGD for Risk Minimization

How is SGD applied in practice? How do we obtain       , which is supposed to have an 
expected value equal to the gradient of the true loss function?

Remember, we want to minimize 

Where                   is the loss given random data point      .
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Then,

So, simply taking  the gradient of the loss given one or a few points (i.e. on-line or 
minibatches) provides an unbiased estimate of the true loss.
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SGD vs Batch Gradient Descent

Imagine each data point pulling various parts of a rubber sheet (according to                    ), 
and a ball rolling on this surface.

• When all are considered, you have a very accurate understanding of the true loss
• Batch gradient descent. Good but computationally expensive – consider every point before taking a 

step!

• When just a few are considered, you get a rough idea of the true loss
• SGD. Much cheaper but the ball will change directions as different points are drawn each step.

18
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Local Minima in Non-Convex Functions
SGD assumes convexity, but we know that this doesn’t hold for neural networks with 

hidden layers. How do we deal with local minima?

Turns out we don’t need to.

19

In large N-dimensional domains, local minima are extremely 
rare.

Intuitively – the eigenvalues of the Hessian have 0.5 
probability of being positive or negative (Wigner’s semicircle 
law)

What is the chance of getting heads N times in a row?

Saddle points are very common in high-dimensional spaces. 
Plain SGD is good at convex functions, how do we modify it 
to deal with non-convex ones filled with saddle points? 

https://stackoverflow.com/questions/31805560/how-to-create-surface-plot-

from-greyscale-image-with-matplotlib

https://en.wikipedia.org/wiki/Saddle_point
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Escaping Saddle Points

Somewhat counterintuitively, the best way to escape saddle points is to just move in 
any direction, quickly.

Then we can get somewhere with more substantial curvature for a more informed 
update.

20

Rubick Runner
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SGD with Momentum

Maintain some of the previous “velocity”. The larger the      , the heavier the ball (or the 
less friction). 
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https://ruder.io/optimizing-gradient-descent/index.html#momentum

SGD SGD with momentum
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SGD with Momentum

Maintain some of the previous “velocity”. The larger the      , the heavier the ball (or the 
less friction). 

22

https://emiliendupont.github.io/2018/01/24/optimization-visualization/

Spiraling can happen though
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Adagrad

We’d like to adapt the gradient in each dimension – i.e. large steps in flatter 
directions, careful steps in steep directions.
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i.e. to avoid this:

https://www.bonaccorso.eu/2017/10/03/a-brief-and-comprehensive-guide-to-stochastic-gradient-descent-algorithms/

We see that in directions where derivatives are large, we shrink the learning rate.

But, it just keeps shrinking – after a while the learning rate will be infinitely small! 
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RMSprop
A way to counteract the vanishing learning rates by using a decaying average of past 

squared gradients.

24

Now, if there were large gradients in the past, their contribution to the average will 
decay exponentially with the timesteps.

If we were taking careful steps in a steep area, once we get to a flat region this allows 
us to crank up the speed again.
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Adam
Currently the most popular gradient descent algorithm.

Stands for Adaptive Moment Estimation. Basically, combines the ideas of 
momentum with exponentially-decaying squared past gradients.
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Average gradient (momentum)

Average squared gradient

Bias correction

Update

Adam: A Method for Stochastic Optimization, 2015
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Animated Comparison
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https://ruder.io/optimizing-gradient-descent/index.html
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Animated Comparison
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https://ruder.io/optimizing-gradient-descent/index.html
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Not everything is great with the new algos
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https://emiliendupont.github.io/2018/01/24/optimization-visualization/
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Not everything is great with the new algos
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https://emiliendupont.github.io/2018/01/24/optimization-visualization/
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Adam Limitations

Adam generally performs very well compared to other methods, but recent research 
has found that it can sometimes converge to suboptimal solutions (such as in 
image classification tasks)

In fact, the original proof of convergence on convex functions had a few errors, which 
in 2018 was demonstrated to great effect with examples of simple convex functions 
on which Adam does not converge to the minimum.

Ironically, Keskar and Socher present a paper called 

“Improving Generalization Performance by Switching from Adam to SGD”
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So, which algorithm should you use?

There is no simple answer; a whole zoo of algorithms exist:

31

• SGD

• SGD with momentum

• Nesterov

• Adagrad

• Adadelta

• RMSprop

• Adam

• Adamax

• Nadam

Each has their advantages and disadvantages.

If you have sparse data, an adaptive gradient method can help you take large steps in 
flat dimensions

SGD can be robust, but slow. 

Ultimately, the choice of gradient descent algorithm can be treated as a 
hyperparameter.
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Additional Notes

• It can be useful to use a learning rate scheduler where you decrease your learning 
rate as a function of iteration.

• Shuffle data within an epoch to reduce optimization bias

• Curriculum learning is when you train your network with simpler examples first to 
get the weights in the right region before training it on more subtle cases.

• Batch Normalization can be used to improve convergence in deep networks. It 
discourages neurons from activating very high or very low by subtracting the 
batch mean and dividing by the batch standard deviation. Allows each layer to 
learn a little more independently from the rest.

• “Early stopping is beautiful free lunch,” Geoff Hinton. When the validation error is 
at its minimum, stop.

32
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Summary

• Convex functions are important to optimization 
1. But most of the ones we want to optimize aren’t convex
2. Good for proofs though.

• There are many approaches to gradient descent
1. However, it is basically an art form at the present. Pick your favorite, 

but when things don’t work, try others!
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