
Particle Filters and Sequential Monte Carlo

AC 209b: Advanced Section
February 16, 2022

Outline

1. State-space models

2. Kalman Filter

3. Building blocks of particle filters

4. Particle filter algorithm

5. Extensions and modifications

1/66

State-Space Models

2/66

State-space models (SSM)

A state-space models is a latent process that varies over time, with
noisy observations of the underlying process.

Image credit: Bulla (2006)

3/66

SSM Example: SIR Model
• Common model for epidemiology

• SIR = susceptible, infected, recovered

• If we have a noisy measurement of number of infections, can
we estimate the true number of patients in each category over
time?

Image credit: Wikipedia
4/66

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

Example model

Linear Gaussian model:

yt = βθt + εt

θt = αθt−1 + ηt

ϵt
iid∼ N(0, σ2

ϵ
)

ηt
iid∼ N(0, σ2

η
)

Also known as Normal random walk, Dynamic linear model.

5/66

SSM Components: Transition model

• θt is the latent state at time t

• yt is the observation at time t

• Note: can easily be extended to multidimensional setting

• Also called innovation model

Transition model

• p(θt | θt−1): describes how latent process varies over time

• Assumes Markov property:
p(θt | θt−1) = p(θt | θ1, θ2, . . . θt−2, θt−1)

Linear Gaussian transition model: p(θt | θt−1) ∼ N(αθt−1, σ2η)
6/66

SSM Components: Observation model

• θt is the latent state at time t

• yt is the observation at time t

Observation model

• p(yt | θt): describes how latent states translate into
observations

• Also called measurement model

Linear Gaussian observation model: p(yt | θt) ∼ N(βθt, σ2ϵ)

7/66

Applications of state-space models

Note that SSMs can also apply to variation over position rather than
time, such as a DNA sequence or spatial variation.

• Epidemiology: SIR and
more complicated
models

• Ecology: population
abundance (on your
homework!)

• Geology: earthquake
risk

Image credit: Wikimedia

8/66

https://upload.wikimedia.org/wikipedia/commons/thumb/9/90/Little_Owl-2.jpg/1280px-Little_Owl-2.jpg

Applications of state-space models

Image credit: Wikimedia

• Meteorology: storm
strength

• Health: blood
pressure or other
noisy/imperfect
measurements

• Bioinformatics: DNA
sequencing

9/66

https://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Andrew_1992-08-23_1231Z_(Cropped).png/520px-Andrew_1992-08-23_1231Z_(Cropped).png

Hidden Markov Models

• Hidden Markov Models (HMM) and State-Space Models (SSM)
have identical structure

• Sometimes the terms are used interchangeably!

• Essentially the same from a statistical point of view! Just
impacts probability distributions.

10/66

SSMs and HMMs

• HMMmodels assume latent state is discrete, e.g. a binary
indicator or category: is it sunny or raining? which gene
mutation does the patient have?

• SSM models assume latent states can be continuous: what is
the true value a company’s stock? what is the patient’s
immunity level?

11/66

Questions of interest for SSMs

• Filtering: estimating the latent Markov process given the noisy
observations up to and including that time point

– p(θt | y1:t)
– Can also sometimes refer to the goal of estimating the whole

latent process p(θ1:T | y1:T) or a subset p(θ1:t | y1:t).
• Smoothing: estimating the latent Markov process given the

noisy observations at all time points (including future
observations)

– p(θt | y1:T)
• Model parameter estimation: estimating parameters that

inform the state-space model. For today, we will always assume
these are known!

– p(α, β, σ2
ϵ
, σ2

η
| y1:T)

12/66

Questions of interest for SSMs

I will be focusing on filtering. Generally the easiest of these three
aims.

First we consider Linear, Gaussian models:

• All of these problems are easier.

• Can often derive analytic, closed-form solutions (i.e. you can
write down a solution for p(θt | y1:t)).

Next for non-linear or non-Gaussian models:

• Much more difficult!

• Solution: particle filters.

13/66

Kalman Filter

14/66

Filtering for Linear Gaussian model

Returning to Linear Gaussian model:

yt = βθt + εt

θt = αθt−1 + ηt

ϵt
iid∼ N(0, σ2

ϵ
)

ηt
iid∼ N(0, σ2

η
)

Filtering: interested in posterior distribution p(θ1, . . . θT | y1, . . . yT).
We assume α, β, σ2

ϵ
, σ2

η
are known.

15/66

Filtering: prior distribution

Result 1: sequential distribution of prior.

First, consider the prior density p(θ1, . . . θT).

p(θ1, . . . θT) = p(θT | θT−1, . . . θ1)p(θT−1, . . . θ1)

= p(θT | θT−1)p(θT−1, . . . θ1) by Markov property

= p(θT | θT−1)p(θT−1 | θT−2)p(θT−2, . . . θ1)

= . . .

= p(θT | θT−1)p(θT−1 | θT−2) . . . p(θ2 | θ1)p(θ1)

16/66

Filtering: likelihood

Result 2: sequential distribution of likelihood.

Next, consider the likelihood density p(y1, . . . yT | θ1, . . . θT).

p(y1, . . . , yT | θ1, . . . , θT) = p(yT | yT−1, . . . , y1, θT , . . . , θ1)

× p(yT−1, . . . y1, θT , . . . , θ1)

= p(yT | θT)p(yT−1, . . . y1, θT , . . . , θ1)

= . . .

= p(yT | θT) . . . p(y2 | θ2)p(y1 | θ1)

17/66

Filtering: posterior
Result 3: sequential distribution of posterior.

Finally, consider the posterior density p(θ1, . . . θT | y1, . . . yT).
Combining results from above:

p(θ1, . . . θT | y1, . . . yT)

∝ p(θT | θT−1)p(θT−1 | θT−2) . . . p(θ2 | θ1)p(θ1)⏟ ⏞
prior

× p(yT | θT) . . . p(y2 | θ2)p(y1 | θ1)⏟ ⏞
likelihood

Re-arranging terms:

p(θ1, . . . θT | y1, . . . yT) ∝

p(yT | θT)p(θT | θT−1) . . . p(y2 | θ2)p(θ2 | θ1)p(θ1) 18/66

Filtering:MVN

Result 4: the posterior distribution is Multivariate Normal.

We’ve already shown:

p(θt | θt−1) ∼ N(αθt−1, σ2η)

p(yt | θt) ∼ N(βθt, σ2ϵ)

Then all components of the posterior are Normal, so
p(θ1, . . . θT | y1, . . . yT) is MVN.

19/66

Filtering: Marginal distribution

We may be interested in just p(θt | y1:t). Could marginalize over
θ1, . . . θt−1:

p(θt | y1, . . . yt) =
∫︁

p(θ1, . . . θt | y1, . . . yt)dθ1, . . . θt−1

Could also be interested in forecast p(θt+1 | y1:t). Then would also
need to marginalize over θt.
This marginalization is potentially difficult!

More efficient approach is Kalman filter: recursive algorithm for
optimal linear forecasts θt+1 and yt+1 from y1:t.

20/66

Kalman Filter result

Define:

at = E(θt | y1:t−1)

vt = Var(θt | y1:t−1)

Then one can show:

at+1 = αat + αvtβ
yt − βat
β2vt + σ2

ϵ

vt+1 = σ2
η
+ α2vt −

α2β2v2t
β2vt + σ2

ϵ

21/66

Kalman Filter result

at+1 = αat + αvtβ
yt − βat
β2vt + σ2

ϵ

vt+1 = σ2
η
+ α2vt −

α2β2v2t
β2vt + σ2

ϵ

• Takeaway: recursive algorithm!

• Values of at+1 and vt+1 depend only yt, previous values at and
vt, and known constants.

• Choose appropriate starting values a1 and v1 and proceed; for
many models, initial conditions do not make a big impact (for
inference on θT at the end of the process).

22/66

Derivation of Kalman filter: MVN distribution

p(θt+1 | y1:t) ∝
∫︁

p(yt | θt)⏟ ⏞
likelihood

p(θt+1 | θt)⏟ ⏞
transition

p(θt | y1:t−1)⏟ ⏞
“prior”

dθt

Again, all distributions on the right are Normal, so left side is MVN,
and joint distribution of p(θt+1, yt) is MVN.

23/66

Derivation of Kalman filter

Then we can use MVN properties. If two (scalar) variables X and Y
are joint MVN:

E(X | Y) = E(X) +
Cov(X, Y)

Var(Y)
(Y − E(Y)))

Var(X | Y) = Var(X) −
Cov(X, Y)2

Var(Y)

Take X = θt+1 and Y = yt. We will always be conditioning on y1:t−1.

24/66

Derivation of Kalman filter

Plugging in to our context:

E(θt+1 | yt, y1:t−1) =

E(θt+1 | y1:t−1) +
Cov(θt+1, yt | y1:t−1)

Var(yt | y1:t−1)
(yt − E(yt | y1:t−1)))

We will now need to evaluate each of the expressions on the
right-hand side.

25/66

Derivation of Kalman filter

We can evaluate the “unconditional” expectation of θt+1 (not
conditional on yt):

E(θt+1 | y1:t−1) = E(αθt + ηt | y1:t−1)

= αat

And the expectation of yt:

E(yt | y1:t−1) = E(E(yt | θt, y1:t−1) | y1:t−1)

= E(βθt | y1:t−1) = βat

26/66

Derivation of Kalman filter

Unconditional variance of θt+1:

Var(θt+1 | y1:t−1) = Var(αθt + ηt | y1:t−1)

= α2vt + σ2
η

Variance of yt:

Var(yt | y1:t−1) = Var(βθt + εt | y1:t−1)

= β2vt + σ2
ϵ

27/66

Derivation of Kalman filter

Finally covariance:

Cov(θt+1, yt | yt−1) = Cov(αθt + ηt, βθt + εt | yt−1)

= αβVar(θt | yt−1)

= αβvt

Plugging all of these expressions gets us to our original result.

28/66

Summary: Kalman Filter

With the following model:

yt = βθt + εt

θt = αθt−1 + ηt

ϵt
iid∼ N(0, σ2

ϵ
)

ηt
iid∼ N(0, σ2

η
)

Define:

at = E(θt | y1:t−1)

vt = Var(θt | y1:t−1)

We can show:

at+1 = αat + αvtβ
yt − βat
β2vt + σ2

ϵ

vt+1 = σ2
η
+ α2vt −

α2β2v2t
β2vt + σ2

ϵ

29/66

Building blocks of particle filters

30/66

What is a particle?

• The term particle refers to approximating a distribution given a
finite number of random values (or vectors, if multivariate).

• For example, we may approximate p(θt) by the empirical
distribution of N particles drawn from p(θt).

• Just another name for a sample!

• Note that a particle can be multidimensional: each particle
could contain a vector of parameters all sampled at once, such
as if θt is multivariate, or if we want to jointly sample from
θt, α, β, etc.

31/66

Particle filter algorithm

First, a basic sketch of the particle filter algorithm. At each time
point:

• Transition particles according to latent transition model
p(θt | θt−1) to get θt.

• Calculate weights according to the observation model
wt ∝ p(yt | θt).

• Resample particles so that each has equal probability.

32/66

Building blocks of particle filters

To understand particle filters, first we need to backtrack and build up
our understanding! Particle filters are built on a long history of other
sampling procedures.

• Monte Carlo sampling

• Bayesian weighted bootstrap

• Resampling

33/66

Short review: Monte Carlo sampling

Let’s begin with a short review of Monte Carlo sampling. I will start
with a simpler problem than filtering, but it easily extends to more
complicated problems.

• Goal: approximate some function f(X) of a random variable,
such as the mean μ = E(X) for some random variable X ∼ p(x)

• Strategy: sample N values Xi ∼ p(x) for i = 1, . . . ,N

• Estimator: μ̂MC =
1
N

∑︀N
i=1 Xi

34/66

When sampling is useful

When do we even need Monte Carlo sampling?

• Sometimes calculating f(X) analytically is difficult/impossible
but sampling from p(x) is easy.

• Example: X is a random variable where we first sample
Y ∼ Pois(4), then if Y > 4, then we sample from
X ∼ Gamma(4, 3) and if Y < 4 then we sample from
Exponential(1.2).

• Though we can still calculate E(X) in this case...

• Easy to imagine a situation where sampling is easy, analytic
calculations are hard!

35/66

Review: Bayesian weighted bootstrap

We are interested in sampling from posterior:
h(θ) = p(θ | y) ∝ p(θ)L(θ | y).

• Simulate values θ1, . . . , θN from prior p(θ).

• Calculate wi proportional to likelihood L(θi | y) (sometimes
called importance weights).

• Normalize:Wi = wi/
∑︀N

i=1wi.

• Sample θ⋆ from θ1, . . . , θN from p(θ) with probabilities
W1, . . .WN.

• Then θ⋆ is approximately from p(θ | y).

36/66

Building blocks: Bayesian weighted bootstrap

Connecting back to state-space models...

• We may not be able to sample directly from p(θ1:t | y1:t) with a
complex state-space model.

• Example: high dimensional, non-linear, non-Gaussian.

• Even if we can, it may be computationally expensive!

37/66

Building blocks: Bayesian weighted bootstrap

Connecting back to state-space models...Interested in sampling from
“posterior” p(θ1:t | y1:t).

• Sample from “prior” p(θ1:t | θ1:t−1).

• Update based on “likelihood” p(yt | θt).

• Resample.

38/66

Building blocks: Multinomial resampling

Different types of sampling/resampling exist. One common method
used in particle filters is Multinomial resampling.

Multinomial resampling

Given a N vector z and an N vector of weightsW, draw values of z
with replacement to arrive at a new N vector z⋆.

• Same idea as in Bayesian bootstrap.

• Approximation of distribution is better with more draws N.

39/66

Multinomial resampling

Example: Generate z ∼ Pois(10)

z =
(︁
13 10 21 10

)︁
w =

(︁
0.07 0.13 0.00 0.13

)︁
W =

(︁
0.21 0.395 0.00 0.395

)︁
After multinomial resampling:

z⋆ =
(︁
10 13 10 10

)︁
We have discarded the unlikely value of 21.

40/66

Particle filter algorithm

41/66

Recursion in filtering

We can express p(θt | y1:t) recursively:

p(θ1:t | y1:t) = p(θ1:t−1 | y1:t−1)
p(yt | θt)p(θt | θt−1)

p(yt | y1:t−1)

with

p(yt | y1:t−1) =
∫︁

p(θt | θt−1)p(θt−1 | y1:t−1)p(yt | θt)dθt−1:t

Consequence: we can compute distributions sequentially!

Reminder: very similar to results from Kalman filter, but we are not
assuming specific forms of distributions here, so we cannot get
closed-form result on left-hand side.

42/66

Sequential sampling

• Sequential procedure is much more computationally efficient.

• Option 1: sample entire vector p(θ1:t) then calculate
importance weights based on y1:t.

• Easy to imagine many of these importance weights will be zero!

43/66

Resampling and sequential sampling

• Option 2: sample θ1, calculate importance weights based on y1.

• Resample: consequence is to discard unlikely values of θ1.

• Transition to θ2 based only on these likely values of θ1.

• Rinse and repeat until we reach θt.

• Much more likely to end up with paths θ1:t that are likely based
on y1:t!

44/66

Full algorithm: Initialize

Initialize

For particles i = 1, . . . ,N:

1. Sample θ(i)1 ∼ p(θ1)

2. Calculate weights w(i)1 ∝ p(y1 | θ(i)1) and normalize weights
W(i)1 = w(i)1 /

∑︀N
i=1w

(i)
1

45/66

Full algorithm: Recursion

Recursion

For steps/time points t = 1, . . . , T and for particles i = 1, . . . ,N:

1. Resample: sample θ̃(i)t−1 from θ(i)t−1 with weightsW
(i)
t−1.

2. Transition: simulate θ(i)t ∼ p(θt | θ̃(i)t−1).

3. Calculate weights: w(i)t ∝ p(yt | θ(i)t) and get normalized
weightsW(i)t .

46/66

Particle filter algorithm

https://umbertopicchini.wordpress.com/2016/10/19/sequential-monte-carlo-bootstrap-filter/

47/66

Final step: inference

We now have N values of θt for each time point. Inference is
straightforward. For example, we may be interested in inference on
the posterior mean, μ = E(θt | y1:t)

We can use either re-sampled or weighted non-resampled values.

• μ̂ = 1
N

∑︀N
i=1 x̃

(i)
t

• μ̂ =
∑︀N

i=1W
i
tx
(i)
t

The weighted estimator is generally preferred, as the resampling step
immediately injects additional randomness into the estimator, and
thus can result in higher variance.

48/66

Terminology

The term particle filter is sometimes used interchangeably with
sequential Monte Carlo (SMC).

• SMC methods are a general class of Monte Carlo methods that
sample sequentially from a sequence of target probability
densities {pt(θ1:t)} of increasing dimension.

• Particle filters are a special case of SMC methods.

• They are also the most common use, and thus they are often
conflated.

• However, SMC also includes other settings, and some filtering
methods do not rely on a sequence of target distributions.

49/66

Extensions and modifications

50/66

SMC/Particle filter research

I have presented a vanilla version of SMC. SMC is a very active area
of research! Some broad categories of modifications:

• Increase efficiency (lower variance)

• Specialized for certain domains

• Faster

• Resolve path degeneracy (explanation to follow)

• Algorithms for smoothing

• Algorithms for parameter estimation (particularly hard)

• Relaxing assumptions (such as Markov assumption)

• Many more!

51/66

Adaptive resampling

One way to reduce variance...

• Resampling removes particles with low weights, multiplies
particles with high weights

• However, at the cost of immediately introducing more variance!

• Do we always want to resample?

• Proposal: choose a criteria, only resample if criteria is not met.

52/66

Effective sample size

Effective Sample Size (ESS)

ESSt =

(︃ N∑︁
i=1

(Wi
t)
2

)︃−1

Special cases:

• If a weight is zero, that particle is not contributing to the
sampler.

• If all weights are 1/N, ESSt =
(︁∑︀N

i=1(W
i
t)
2
)︁−1
= N

Resampling criteria: Only resample if ESS < N/2
53/66

Particle filter paths

The sequence of values that a particle takes over time can be called a
path or trajectory.

54/66

Path degeneracy

Particle filter challenge: the effective number of particles may be
smaller than the actual number of particles.

• Path degeneracy occurs when the algorithm degenerates into
only exploring a small number of paths.

• Also called sample impoverishment: effective number of
particles decreases over time.

55/66

Path Degeneracy

• Only exploring a small part of the model space.

• Particularly likely with high-dimensional spaces, or as length of
time T increases.

• Inference is no longer reliable due to small effective sample size.

• Convergence to the right answer is no longer guaranteed!

56/66

Solving path degeneracy

• Resample-move methods uses an MCMC kernels to “jitter” the
particle locations and thus to reduce degeneracy

• Block sampling: rather than sampling based on the just the
current value θt, can sample based on (part of) the previous
path

• Rao-Blackwellised (Marginalised) Particle Filters: if we have nice
distributions (Normal), we can marginalize some components of
the state process because they are analytically tractable, and
only conduct filter on a lower-dimensional space.

• Use other resampling strategies (besides multinomial): residual,
stratified, systematic resampling.

57/66

Particle Gibbs

Idea: add a reference trajectory.

• Run a complete “vanilla” SMC algorithm with N particles (for all
time points).

• A single trajectory is sampled from these N trajectories using
multinomial sampling with weights proportional to the
likelihood of the observed data for each trajectory.

58/66

Particle Gibbs

Now, repeat the whole SMC procedure!

• At each time point, fix the last particle to be the reference
trajectory.

• It will never be resampled away.

• Idea: reference trajectory guides the particles to a relevant
region of the space.

• Can show that the reference trajectory results in valid draws
from target distribution, regardless of number of particles!

• Problem: prone to path degeneracy.

59/66

Particle Gibbs with ancestor sampling (PGAS)

• When particles are resampled, this induces an
ancestor-offpsring relationship.

• Instead of sampling particles, we can think about sampling
ancestors.

• Can also resample the ancestor of the reference trajectory.

• Weight is proportional to the transition density p(θt | θt−1).

• Can show that we still successfully draw from target
distribution.

• Substantial improvement in path degeneracy!

60/66

Bonus: Parameter estimation with PGAS

Up until now, have assumed model parameters are known. If we
wanted to conduct inference on some model parameter α and θ1:T:

Parameter estimation algorithm

• Set arbitrary α[0] and θ1:T[0]

For s ≥ 1:

• Draw θ1:T[s] conditional on α[s− 1] using PGAS algorithm
(with θ1:T[s− 1] as reference trajectory)

• Draw α[s] ∼ p(α | θ1:T[s] , y1:T)

Gibbs sampler, but with entire SMC algorithm in the middle!

61/66

Summary: SMC/Particle Filters

What is sequential Monte Carlo?

• SMC is a sequential algorithm for sampling from a target
distribution.

• Particularly suited to sequential Bayesian inference for
nonlinear, non-Gaussian state-space models.

• When tackling the problem of filtering for a state-space model,
synonymous with particle filters.

62/66

Summary: SMC/Particle Filters

Comparison to MCMC

• Easily parallelizable (compared to MCMC for example): except
for normalization of weights, all operations only consider one
particle at a time.

• In some settings, better properties for high dimensional,
irregular, or multimodal settings.

• Sequential nature is tailored to settings with changing/updating
information.

63/66

Summary: SMC/Particle Filters

Takeaways

• Almost all flavors can be seen as a combination of sampling and
resampling steps.

• In addition to filtering, also suited to a wide variety of other
Bayesian applications!

• Both strong theory and empirical evidence that these
algorithms have good properties.

Want to see an example SMC in practice?
Hunter, Glickman, Campos (2022) Inferring medication adherence
from time-varying health measures.
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9351

64/66

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9351

References I

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain
Monte Carlo methods. Journal of the Royal Statistical Society:
Series B, 72(3):269–342, 2010.

J. K. Blitzstein and C. N. Morris. Probability for statistical science
(draft textbook). Chapter 8.

J. Bulla. Application of hidden markov models and hidden
semi-markov models to financial time series. University Library of
Munich, Germany, MPRA Paper, 01 2006.

N. Chopin and O. Papaspiliopoulos. An Introduction to Sequential
Monte Carlo. Springer Nature, Switzerland, 2020.

A. Doucet and A. M. Johansen. A tutorial on particle filtering and
smoothing: Fifteen years later. https://www.stats.ox.ac.uk/
~doucet/doucet_johansen_tutorialPF2011.pdf. 65/66

https://www.stats.ox.ac.uk/~doucet/doucet_johansen_tutorialPF2011.pdf
https://www.stats.ox.ac.uk/~doucet/doucet_johansen_tutorialPF2011.pdf

References II

P. Fearnhead. Modern computational statistics: Alternatives to
mcmc. https://www.maths.lancs.ac.uk/~fearnhea/GTP/
GTP_Practicals.pdf.

N. Kantas, A. Doucet, S. S. Singh, J. Maciejowski, and N. Chopin. On
particle methods for parameters estimation in state-space models.
Statistical Science, 30(3):328–351, 2015.

F. Lindsten, M. I. Jordan, and T. B. Schön. Particle gibbs with ancestor
sampling. Journal of Machine Learning Research, 15:2145–2184,
2014.

T. Rothenberg. State space models and the kalman filter. https:
//eml.berkeley.edu/~rothenbe/Fall2007/kalman.pdf,
2007.

66/66

https://www.maths.lancs.ac.uk/~fearnhea/GTP/GTP_Practicals.pdf
https://www.maths.lancs.ac.uk/~fearnhea/GTP/GTP_Practicals.pdf
https://eml.berkeley.edu/~rothenbe/Fall2007/kalman.pdf
https://eml.berkeley.edu/~rothenbe/Fall2007/kalman.pdf

	References

