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State-Space Models
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State-space models (SSM)

A state-space models is a latent process that varies over time, with
noisy observations of the underlying process.

Image credit: Bulla (2006)
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SSM Example: SIR Model
• Common model for epidemiology

• SIR = susceptible, infected, recovered

• If we have a noisy measurement of number of infections, can
we estimate the true number of patients in each category over
time?

Image credit: Wikipedia
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https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology


Example model

Linear Gaussian model:

yt = βθt + εt

θt = αθt−1 + ηt

ϵt
iid∼ N(0, σ2

ϵ
)

ηt
iid∼ N(0, σ2

η
)

Also known as Normal random walk, Dynamic linear model.
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SSM Components: Transition model

• θt is the latent state at time t

• yt is the observation at time t

• Note: can easily be extended to multidimensional setting

• Also called innovation model

Transition model

• p(θt | θt−1): describes how latent process varies over time

• Assumes Markov property:
p(θt | θt−1) = p(θt | θ1, θ2, . . . θt−2, θt−1)

Linear Gaussian transition model: p(θt | θt−1) ∼ N(αθt−1, σ2η)
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SSM Components: Observation model

• θt is the latent state at time t

• yt is the observation at time t

Observation model

• p(yt | θt): describes how latent states translate into
observations

• Also called measurement model

Linear Gaussian observation model: p(yt | θt) ∼ N(βθt, σ2ϵ )
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Applications of state-space models

Note that SSMs can also apply to variation over position rather than
time, such as a DNA sequence or spatial variation.

• Epidemiology: SIR and
more complicated
models

• Ecology: population
abundance (on your
homework!)

• Geology: earthquake
risk

Image credit: Wikimedia
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https://upload.wikimedia.org/wikipedia/commons/thumb/9/90/Little_Owl-2.jpg/1280px-Little_Owl-2.jpg


Applications of state-space models

Image credit: Wikimedia

• Meteorology: storm
strength

• Health: blood
pressure or other
noisy/imperfect
measurements

• Bioinformatics: DNA
sequencing
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https://upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Andrew_1992-08-23_1231Z_(Cropped).png/520px-Andrew_1992-08-23_1231Z_(Cropped).png


Hidden Markov Models

• Hidden Markov Models (HMM) and State-Space Models (SSM)
have identical structure

• Sometimes the terms are used interchangeably!

• Essentially the same from a statistical point of view! Just
impacts probability distributions.
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SSMs and HMMs

• HMMmodels assume latent state is discrete, e.g. a binary
indicator or category: is it sunny or raining? which gene
mutation does the patient have?

• SSM models assume latent states can be continuous: what is
the true value a company’s stock? what is the patient’s
immunity level?
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Questions of interest for SSMs

• Filtering: estimating the latent Markov process given the noisy
observations up to and including that time point

– p(θt | y1:t)
– Can also sometimes refer to the goal of estimating the whole

latent process p(θ1:T | y1:T) or a subset p(θ1:t | y1:t).
• Smoothing: estimating the latent Markov process given the

noisy observations at all time points (including future
observations)

– p(θt | y1:T)
• Model parameter estimation: estimating parameters that

inform the state-space model. For today, we will always assume
these are known!

– p(α, β, σ2
ϵ
, σ2

η
| y1:T)
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Questions of interest for SSMs

I will be focusing on filtering. Generally the easiest of these three
aims.

First we consider Linear, Gaussian models:

• All of these problems are easier.

• Can often derive analytic, closed-form solutions (i.e. you can
write down a solution for p(θt | y1:t)).

Next for non-linear or non-Gaussian models:

• Much more difficult!

• Solution: particle filters.
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Kalman Filter
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Filtering for Linear Gaussian model

Returning to Linear Gaussian model:

yt = βθt + εt

θt = αθt−1 + ηt

ϵt
iid∼ N(0, σ2

ϵ
)

ηt
iid∼ N(0, σ2

η
)

Filtering: interested in posterior distribution p(θ1, . . . θT | y1, . . . yT).
We assume α, β, σ2

ϵ
, σ2

η
are known.
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Filtering: prior distribution

Result 1: sequential distribution of prior.

First, consider the prior density p(θ1, . . . θT).

p(θ1, . . . θT) = p(θT | θT−1, . . . θ1)p(θT−1, . . . θ1)

= p(θT | θT−1)p(θT−1, . . . θ1) by Markov property

= p(θT | θT−1)p(θT−1 | θT−2)p(θT−2, . . . θ1)

= . . .

= p(θT | θT−1)p(θT−1 | θT−2) . . . p(θ2 | θ1)p(θ1)
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Filtering: likelihood

Result 2: sequential distribution of likelihood.

Next, consider the likelihood density p(y1, . . . yT | θ1, . . . θT).

p(y1, . . . , yT | θ1, . . . , θT) = p(yT | yT−1, . . . , y1, θT , . . . , θ1)

× p(yT−1, . . . y1, θT , . . . , θ1)

= p(yT | θT)p(yT−1, . . . y1, θT , . . . , θ1)

= . . .

= p(yT | θT) . . . p(y2 | θ2)p(y1 | θ1)
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Filtering: posterior
Result 3: sequential distribution of posterior.

Finally, consider the posterior density p(θ1, . . . θT | y1, . . . yT).
Combining results from above:

p(θ1, . . . θT | y1, . . . yT)

∝ p(θT | θT−1)p(θT−1 | θT−2) . . . p(θ2 | θ1)p(θ1)⏟  ⏞  
prior

× p(yT | θT) . . . p(y2 | θ2)p(y1 | θ1)⏟  ⏞  
likelihood

Re-arranging terms:

p(θ1, . . . θT | y1, . . . yT) ∝

p(yT | θT)p(θT | θT−1) . . . p(y2 | θ2)p(θ2 | θ1)p(θ1) 18/66



Filtering:MVN

Result 4: the posterior distribution is Multivariate Normal.

We’ve already shown:

p(θt | θt−1) ∼ N(αθt−1, σ2η)

p(yt | θt) ∼ N(βθt, σ2ϵ )

Then all components of the posterior are Normal, so
p(θ1, . . . θT | y1, . . . yT) is MVN.
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Filtering: Marginal distribution

We may be interested in just p(θt | y1:t). Could marginalize over
θ1, . . . θt−1:

p(θt | y1, . . . yt) =
∫︁

p(θ1, . . . θt | y1, . . . yt)dθ1, . . . θt−1

Could also be interested in forecast p(θt+1 | y1:t). Then would also
need to marginalize over θt.
This marginalization is potentially difficult!

More efficient approach is Kalman filter: recursive algorithm for
optimal linear forecasts θt+1 and yt+1 from y1:t.
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Kalman Filter result

Define:

at = E(θt | y1:t−1)

vt = Var(θt | y1:t−1)

Then one can show:

at+1 = αat + αvtβ
yt − βat
β2vt + σ2

ϵ

vt+1 = σ2
η
+ α2vt −

α2β2v2t
β2vt + σ2

ϵ
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Kalman Filter result

at+1 = αat + αvtβ
yt − βat
β2vt + σ2

ϵ

vt+1 = σ2
η
+ α2vt −

α2β2v2t
β2vt + σ2

ϵ

• Takeaway: recursive algorithm!

• Values of at+1 and vt+1 depend only yt, previous values at and
vt, and known constants.

• Choose appropriate starting values a1 and v1 and proceed; for
many models, initial conditions do not make a big impact (for
inference on θT at the end of the process).
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Derivation of Kalman filter: MVN distribution

p(θt+1 | y1:t) ∝
∫︁

p(yt | θt)⏟  ⏞  
likelihood

p(θt+1 | θt)⏟  ⏞  
transition

p(θt | y1:t−1)⏟  ⏞  
“prior”

dθt

Again, all distributions on the right are Normal, so left side is MVN,
and joint distribution of p(θt+1, yt) is MVN.

23/66



Derivation of Kalman filter

Then we can use MVN properties. If two (scalar) variables X and Y
are joint MVN:

E(X | Y) = E(X) +
Cov(X, Y)

Var(Y)
(Y − E(Y)))

Var(X | Y) = Var(X) −
Cov(X, Y)2

Var(Y)

Take X = θt+1 and Y = yt. We will always be conditioning on y1:t−1.
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Derivation of Kalman filter

Plugging in to our context:

E(θt+1 | yt, y1:t−1) =

E(θt+1 | y1:t−1) +
Cov(θt+1, yt | y1:t−1)

Var(yt | y1:t−1)
(yt − E(yt | y1:t−1)))

We will now need to evaluate each of the expressions on the
right-hand side.
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Derivation of Kalman filter

We can evaluate the “unconditional” expectation of θt+1 (not
conditional on yt):

E(θt+1 | y1:t−1) = E(αθt + ηt | y1:t−1)

= αat

And the expectation of yt:

E(yt | y1:t−1) = E(E(yt | θt, y1:t−1) | y1:t−1)

= E(βθt | y1:t−1) = βat
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Derivation of Kalman filter

Unconditional variance of θt+1:

Var(θt+1 | y1:t−1) = Var(αθt + ηt | y1:t−1)

= α2vt + σ2
η

Variance of yt:

Var(yt | y1:t−1) = Var(βθt + εt | y1:t−1)

= β2vt + σ2
ϵ
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Derivation of Kalman filter

Finally covariance:

Cov(θt+1, yt | yt−1) = Cov(αθt + ηt, βθt + εt | yt−1)

= αβVar(θt | yt−1)

= αβvt

Plugging all of these expressions gets us to our original result.
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Summary: Kalman Filter

With the following model:

yt = βθt + εt

θt = αθt−1 + ηt

ϵt
iid∼ N(0, σ2

ϵ
)

ηt
iid∼ N(0, σ2

η
)

Define:

at = E(θt | y1:t−1)

vt = Var(θt | y1:t−1)

We can show:

at+1 = αat + αvtβ
yt − βat
β2vt + σ2

ϵ

vt+1 = σ2
η
+ α2vt −

α2β2v2t
β2vt + σ2

ϵ
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Building blocks of particle filters
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What is a particle?

• The term particle refers to approximating a distribution given a
finite number of random values (or vectors, if multivariate).

• For example, we may approximate p(θt) by the empirical
distribution of N particles drawn from p(θt).

• Just another name for a sample!

• Note that a particle can be multidimensional: each particle
could contain a vector of parameters all sampled at once, such
as if θt is multivariate, or if we want to jointly sample from
θt, α, β, etc.
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Particle filter algorithm

First, a basic sketch of the particle filter algorithm. At each time
point:

• Transition particles according to latent transition model
p(θt | θt−1) to get θt.

• Calculate weights according to the observation model
wt ∝ p(yt | θt).

• Resample particles so that each has equal probability.
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Building blocks of particle filters

To understand particle filters, first we need to backtrack and build up
our understanding! Particle filters are built on a long history of other
sampling procedures.

• Monte Carlo sampling

• Bayesian weighted bootstrap

• Resampling
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Short review: Monte Carlo sampling

Let’s begin with a short review of Monte Carlo sampling. I will start
with a simpler problem than filtering, but it easily extends to more
complicated problems.

• Goal: approximate some function f(X) of a random variable,
such as the mean μ = E(X) for some random variable X ∼ p(x)

• Strategy: sample N values Xi ∼ p(x) for i = 1, . . . ,N

• Estimator: μ̂MC =
1
N

∑︀N
i=1 Xi
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When sampling is useful

When do we even need Monte Carlo sampling?

• Sometimes calculating f(X) analytically is difficult/impossible
but sampling from p(x) is easy.

• Example: X is a random variable where we first sample
Y ∼ Pois(4), then if Y > 4, then we sample from
X ∼ Gamma(4, 3) and if Y < 4 then we sample from
Exponential(1.2).

• Though we can still calculate E(X) in this case...

• Easy to imagine a situation where sampling is easy, analytic
calculations are hard!
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Review: Bayesian weighted bootstrap

We are interested in sampling from posterior:
h(θ) = p(θ | y) ∝ p(θ)L(θ | y).

• Simulate values θ1, . . . , θN from prior p(θ).

• Calculate wi proportional to likelihood L(θi | y) (sometimes
called importance weights).

• Normalize:Wi = wi/
∑︀N

i=1wi.

• Sample θ⋆ from θ1, . . . , θN from p(θ) with probabilities
W1, . . .WN.

• Then θ⋆ is approximately from p(θ | y).
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Building blocks: Bayesian weighted bootstrap

Connecting back to state-space models...

• We may not be able to sample directly from p(θ1:t | y1:t) with a
complex state-space model.

• Example: high dimensional, non-linear, non-Gaussian.

• Even if we can, it may be computationally expensive!
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Building blocks: Bayesian weighted bootstrap

Connecting back to state-space models...Interested in sampling from
“posterior” p(θ1:t | y1:t).

• Sample from “prior” p(θ1:t | θ1:t−1).

• Update based on “likelihood” p(yt | θt).

• Resample.
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Building blocks: Multinomial resampling

Different types of sampling/resampling exist. One common method
used in particle filters is Multinomial resampling.

Multinomial resampling

Given a N vector z and an N vector of weightsW, draw values of z
with replacement to arrive at a new N vector z⋆.

• Same idea as in Bayesian bootstrap.

• Approximation of distribution is better with more draws N.
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Multinomial resampling

Example: Generate z ∼ Pois(10)

z =
(︁
13 10 21 10

)︁
w =

(︁
0.07 0.13 0.00 0.13

)︁
W =

(︁
0.21 0.395 0.00 0.395

)︁
After multinomial resampling:

z⋆ =
(︁
10 13 10 10

)︁
We have discarded the unlikely value of 21.
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Particle filter algorithm
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Recursion in filtering

We can express p(θt | y1:t) recursively:

p(θ1:t | y1:t) = p(θ1:t−1 | y1:t−1)
p(yt | θt)p(θt | θt−1)

p(yt | y1:t−1)

with

p(yt | y1:t−1) =
∫︁

p(θt | θt−1)p(θt−1 | y1:t−1)p(yt | θt)dθt−1:t

Consequence: we can compute distributions sequentially!

Reminder: very similar to results from Kalman filter, but we are not
assuming specific forms of distributions here, so we cannot get
closed-form result on left-hand side.
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Sequential sampling

• Sequential procedure is much more computationally efficient.

• Option 1: sample entire vector p(θ1:t) then calculate
importance weights based on y1:t.

• Easy to imagine many of these importance weights will be zero!
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Resampling and sequential sampling

• Option 2: sample θ1, calculate importance weights based on y1.

• Resample: consequence is to discard unlikely values of θ1.

• Transition to θ2 based only on these likely values of θ1.

• Rinse and repeat until we reach θt.

• Much more likely to end up with paths θ1:t that are likely based
on y1:t!
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Full algorithm: Initialize

Initialize

For particles i = 1, . . . ,N:

1. Sample θ(i)1 ∼ p(θ1)

2. Calculate weights w(i)1 ∝ p(y1 | θ(i)1 ) and normalize weights
W(i)1 = w(i)1 /

∑︀N
i=1w

(i)
1
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Full algorithm: Recursion

Recursion

For steps/time points t = 1, . . . , T and for particles i = 1, . . . ,N:

1. Resample: sample θ̃(i)t−1 from θ(i)t−1 with weightsW
(i)
t−1.

2. Transition: simulate θ(i)t ∼ p(θt | θ̃(i)t−1).

3. Calculate weights: w(i)t ∝ p(yt | θ(i)t ) and get normalized
weightsW(i)t .
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Particle filter algorithm

https://umbertopicchini.wordpress.com/2016/10/19/sequential-monte-carlo-bootstrap-filter/
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Final step: inference

We now have N values of θt for each time point. Inference is
straightforward. For example, we may be interested in inference on
the posterior mean, μ = E(θt | y1:t)

We can use either re-sampled or weighted non-resampled values.

• μ̂ = 1
N

∑︀N
i=1 x̃

(i)
t

• μ̂ =
∑︀N

i=1W
i
tx
(i)
t

The weighted estimator is generally preferred, as the resampling step
immediately injects additional randomness into the estimator, and
thus can result in higher variance.
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Terminology

The term particle filter is sometimes used interchangeably with
sequential Monte Carlo (SMC).

• SMC methods are a general class of Monte Carlo methods that
sample sequentially from a sequence of target probability
densities {pt(θ1:t)} of increasing dimension.

• Particle filters are a special case of SMC methods.

• They are also the most common use, and thus they are often
conflated.

• However, SMC also includes other settings, and some filtering
methods do not rely on a sequence of target distributions.
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Extensions and modifications
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SMC/Particle filter research

I have presented a vanilla version of SMC. SMC is a very active area
of research! Some broad categories of modifications:

• Increase efficiency (lower variance)

• Specialized for certain domains

• Faster

• Resolve path degeneracy (explanation to follow)

• Algorithms for smoothing

• Algorithms for parameter estimation (particularly hard)

• Relaxing assumptions (such as Markov assumption)

• Many more!
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Adaptive resampling

One way to reduce variance...

• Resampling removes particles with low weights, multiplies
particles with high weights

• However, at the cost of immediately introducing more variance!

• Do we always want to resample?

• Proposal: choose a criteria, only resample if criteria is not met.
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Effective sample size

Effective Sample Size (ESS)

ESSt =

(︃ N∑︁
i=1

(Wi
t)
2

)︃−1

Special cases:

• If a weight is zero, that particle is not contributing to the
sampler.

• If all weights are 1/N, ESSt =
(︁∑︀N

i=1(W
i
t)
2
)︁−1
= N

Resampling criteria: Only resample if ESS < N/2
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Particle filter paths

The sequence of values that a particle takes over time can be called a
path or trajectory.
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Path degeneracy

Particle filter challenge: the effective number of particles may be
smaller than the actual number of particles.

• Path degeneracy occurs when the algorithm degenerates into
only exploring a small number of paths.

• Also called sample impoverishment: effective number of
particles decreases over time.
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Path Degeneracy

• Only exploring a small part of the model space.

• Particularly likely with high-dimensional spaces, or as length of
time T increases.

• Inference is no longer reliable due to small effective sample size.

• Convergence to the right answer is no longer guaranteed!
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Solving path degeneracy

• Resample-move methods uses an MCMC kernels to “jitter” the
particle locations and thus to reduce degeneracy

• Block sampling: rather than sampling based on the just the
current value θt, can sample based on (part of) the previous
path

• Rao-Blackwellised (Marginalised) Particle Filters: if we have nice
distributions (Normal), we can marginalize some components of
the state process because they are analytically tractable, and
only conduct filter on a lower-dimensional space.

• Use other resampling strategies (besides multinomial): residual,
stratified, systematic resampling.

57/66



Particle Gibbs

Idea: add a reference trajectory.

• Run a complete “vanilla” SMC algorithm with N particles (for all
time points).

• A single trajectory is sampled from these N trajectories using
multinomial sampling with weights proportional to the
likelihood of the observed data for each trajectory.
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Particle Gibbs

Now, repeat the whole SMC procedure!

• At each time point, fix the last particle to be the reference
trajectory.

• It will never be resampled away.

• Idea: reference trajectory guides the particles to a relevant
region of the space.

• Can show that the reference trajectory results in valid draws
from target distribution, regardless of number of particles!

• Problem: prone to path degeneracy.
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Particle Gibbs with ancestor sampling (PGAS)

• When particles are resampled, this induces an
ancestor-offpsring relationship.

• Instead of sampling particles, we can think about sampling
ancestors.

• Can also resample the ancestor of the reference trajectory.

• Weight is proportional to the transition density p(θt | θt−1).

• Can show that we still successfully draw from target
distribution.

• Substantial improvement in path degeneracy!
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Bonus: Parameter estimation with PGAS

Up until now, have assumed model parameters are known. If we
wanted to conduct inference on some model parameter α and θ1:T:

Parameter estimation algorithm

• Set arbitrary α[0] and θ1:T[0]

For s ≥ 1:

• Draw θ1:T[s] conditional on α[s− 1] using PGAS algorithm
(with θ1:T[s− 1] as reference trajectory)

• Draw α[s] ∼ p(α | θ1:T[s] , y1:T)

Gibbs sampler, but with entire SMC algorithm in the middle!
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Summary: SMC/Particle Filters

What is sequential Monte Carlo?

• SMC is a sequential algorithm for sampling from a target
distribution.

• Particularly suited to sequential Bayesian inference for
nonlinear, non-Gaussian state-space models.

• When tackling the problem of filtering for a state-space model,
synonymous with particle filters.
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Summary: SMC/Particle Filters

Comparison to MCMC

• Easily parallelizable (compared to MCMC for example): except
for normalization of weights, all operations only consider one
particle at a time.

• In some settings, better properties for high dimensional,
irregular, or multimodal settings.

• Sequential nature is tailored to settings with changing/updating
information.
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Summary: SMC/Particle Filters

Takeaways

• Almost all flavors can be seen as a combination of sampling and
resampling steps.

• In addition to filtering, also suited to a wide variety of other
Bayesian applications!

• Both strong theory and empirical evidence that these
algorithms have good properties.

Want to see an example SMC in practice?
Hunter, Glickman, Campos (2022) Inferring medication adherence
from time-varying health measures.
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9351
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