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NON (PROBABILISTIC ) MODEL BASED CLUSTERING

A BIRTH WEIGHTS HISTOGRAM • How many clusters are there?
• How do we find them ?
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PROBABILISTIC VS NON- PROBABILISTIC APPROACHES
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ASSUMPTIONS ABOUT ASSUMPTIONS ABOUT CLUSTERS

CLUSTERS UNSTATED EXPLICITLY STATED



PROBABILISTIC MODELS FOR CLUSTERING
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• Each cluster is a Gaussian
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• clusters are "mixed " as
Gaussian overlap



A Similarity Measure for Distributions: Kullback–Leibler
Divergence
Visually comparing models to the empirical distribution of the data is impractical.
Fortunately, there are a large number of quantitative measures for comparing two
distributions, these are called divergence measures. For example, the Kullback–Leibler (KL)
Divergence is defined for two distributions  and  supported on  as:

The KL-divergence  is bounded below by 0, which happens if and only if .
The KL-divergence has information theoretic interpretations that we will explore later in the
course.

Note: The KL-divergence is defined in terms of the pdf's of  and . If  is a distribution from
which we only have samples and not the pdf (like the empirical distribution), we can
nontheless estimate . Techniques that estimate the KL-divergence from samples
are called non-parametric. We will use them later in the course.
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INFERENCE FOR GMM 'S : LIKELIHOOD MAXIMIZATION
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Class Membership as a Latent Variable
We observe that there are three clusters in the data. We posit that there are three classes of
infants in the study: infants with low birth weights, infants with normal birth weights and
those with high birth weights. The numbers of infants in the classes are not equal.

For each observation , we model its class membership  as a categorical variable,

where  in  is the class proportion. Note that we don't have the class
membership  in the data! So  is called a latent variable.

Depending on the class, the -th birth weight  will have a different normal distribution,

where  is one of the three class means  and  is one of the three class

variances .
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Common Latent Variable Models



Latent Variable Models
Models that include an observed variable  and at least one unobserved variable  are
called latent variable models. In general, our model can allow  and  to interact in many
different ways. Today, we will study models with one type of interaction:
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Item-Response Models
In item-response models, we measure an real-valued unobserved trait  of a subject by
performing a series of experiments with binary observable outcomes, :

where  and  is some fixed function of .

Applications

Item response models are used to model the way "underlying intelligence"  relates to
scores  on IQ tests.

Item response models can also be used to model the way "suicidality"  relates to answers
on mental health surveys. Building a good model may help to infer when a patient is at
psychiatric risk based on in-take surveys at points of care through out the health-care
system.
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Factor Analysis Models
In factor analysis models, we posit that the observed data  with many measurements is
generated by a small set of unobserved factors :

where ,  and . We typically assume that  is much
smaller than .

Applications

Factor analysis models are useful for biomedical data, where we typically measure a large
number of characteristics of a patient (e.g. blood pressure, heart rate, etc), but these
characteristics are all generated by a small list of health factors (e.g. diabetes, cancer,
hypertension etc). Building a good model means we may be able to infer the list of health
factors of a patient from their observed measurements.
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Maximum Likelihood Estimation for Latent Variable
Models: Expectation Maximization





The Expectation Maximization Algorithm
The exepectation maximization (EM) algorithm maximize the ELBO of the model,

1. Initialization: Pick , .

2. Repeat  times:

E-Step:

M-Step:
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Example: EM for the Gaussian Mixture Model of Birth Weight

Solving the M-Step
We see that the optimization problem in the M-step: 

 is equivalent to two problems

We can solve each optimization problem analytically by finding stationary points of the
gradient (or the Lagrangian):
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Example: EM for the Gaussian Mixture Model of Birth Weight

All Together
Initialization: Pick any , , 

E-Step: Compute , where 

.

M-Step: Compute model parameters:
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Implementing EM for the Gaussian Mixture Model of Birth Weight
In [3]: fig, ax = plt.subplots(1, 1, figsize=(10, 5))

ax.hist(y, bins=60, density=True, color='gray', alpha=0.5, label='histogram of b
irth weights')
ax.plot(x, pi_current[0] * sp.stats.norm(mu_current[0], sigma_current[0]**0.5).p
df(x), color='red', label='First Gaussian')
ax.plot(x, pi_current[1] * sp.stats.norm(mu_current[1], sigma_current[1]**0.5).p
df(x), color='blue', label='Second Gaussian')
ax.plot(x, pi_current[2] * sp.stats.norm(mu_current[2], sigma_current[2]**0.5).p
df(x), color='green', label='Third Gaussian')
ax.set_title('GMM for Birth Weights')
ax.legend(loc='best')
plt.show()



Sanity Check: Log-Likelihood During Training
Remember that ploting the MLE model against actual data is not always an option (e.g. high-
dimensional data).

A sanity check for that your EM algorithm has been implemented correctly is to plot the
observed data log-likelihood over the iterations of the algorithm:
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In [4]: fig, ax = plt.subplots(1, 1, figsize=(10, 3))
ax.plot(range(len(log_lkhd)), log_lkhd, color='red', alpha=0.5)
ax.set_title('observed data log-likelihood over iterations of EM')
plt.show()



Expectation Maximization versus Gradient-based Optimization
Pros of EM:

1. No learning rates to adjust
2. Don't need to worry about incorporating constraints (i.e.  is between 0

and 1)
3. Each iteration is guaranteed to increase or maintain observed data log-likelihood
4. Is guaranteed to converge to local optimum
5. Can be very fast to converge (when parameters are fewer)

Cons of EM:

1. Can get stuck in local optima
2. May not maximize observed data log-likelihood (the ELBO is just a lower bound)
3. Requires you to do math - you need analytic solutions for E-step and M-step
4. May be much slower than fancier gradient-based optimization
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