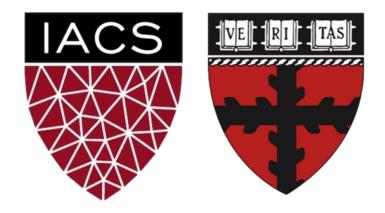
Advanced Section: Gaussian Mixture Models

CS 109B

Spring, 202**1**



NON (PROBABILISTIC) MODEL BASED CLUSTERING				
	BIRTH WEIGHTS HISTOGRAM	· HOW Many clusters are there? · How do we find them?		
	HEU	K-MEANS: 1. Assign points to clusters based on cluster means 2. Based on point assign- ments update cluster means		
		· How do we evaluate the quality of the clusters?		
· · · · · · · ·	. .	· · · · · · · · · · · · · · · · · · ·		

VUES INE V	PATA COME FR	ON N(M,Z):
· · · · · · · · · · · ·		
	 - - - 	
	/ / ×/ / / • • •	
	• . / /	
	fa af a 🔸 a sa sa sa	
ASSUMPTION	NS ABOUT C	LUSTERS
EXPLICITLY	SIAICY	
		ASSUMPTIONS ABOOT C EXPLICITLY STATED

PROBABILISTIC MODELS FOR CLU	STERING	
	GAUSSIAN MIXTURE MODEL (GMM)	
BIRTH WEIGHTS HISTOGRAM	$l = \pi_1 N(y_{nj} \mu_1, \sigma_1^2) +$	
	$T_2 N(y_1, M_2, 6^2) +$	
	$\Pi_{\mathbf{x}} N(y_{n}; \mathcal{M}_{\mathbf{x}}, 6_{\mathbf{x}}^{2})$	
	ASSUMPTIONS	
	· Each cluster is a Gaussian	
	· clusters are "mixed" as Gaussians Overlap	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

A Similarity Measure for Distributions: Kullback–Leibler Divergence

Visually comparing models to the *empirical distribution* of the data is impractical. Fortunately, there are a large number of quantitative measures for comparing two distributions, these are called *divergence measures*. For example, the *Kullback-Leibler (KL)* **Divergence** is defined for two distributions $p(\theta)$ and $q(\theta)$ supported on Θ as:

$$D_{\mathrm{KL}}[q \parallel p] = \int_{\Theta} \log \left[\frac{q(\theta)}{p(\theta)} \right] d\theta$$

The KL-divergence $D_{\text{KL}}[q \parallel p]$ is bounded below by 0, which happens if and only if q = p. The KL-divergence has information theoretic interpretations that we will explore later in the course.

Note: The KL-divergence is defined in terms of the pdf's of p and q. If p is a distribution from which we only have samples and not the pdf (like the empirical distribution), we can nontheless estimate $D_{\text{KL}}[q \parallel p]$. Techniques that estimate the KL-divergence from samples are called *non-parametric*. We will use them later in the course.

$q(\theta)d\theta$

INFERENCE FOR GMM'S : LIKELIHOOD A	AXIMIZATION
$l(\pi_k, \mu_k, G_k^2) = \log \frac{N}{M} \sum_{k=1}^{k} $	$\pi_{\kappa} N(y_{n}; \mathcal{M}_{\kappa}, \mathcal{G}_{\kappa}^{2})$
join + likelihood of the data set = $\sum_{n=1}^{N} \log \sum_{K=1}^{K}$	$\pi_{k} N(y_{n}; \mu_{k}, \epsilon_{k}^{2})$
· · · · · · · · · · · · · · · · · · ·	likelihood of each point
GOAL: find TIK, MK, OK to Maximize +	
How: Want to do gradient descent:	Want:
$L \neq \nabla_{\pi_{\kappa}, \mu_{\kappa}, \sigma_{\kappa}^{2}} l$	1. Guess which Gaussians gets which points
But: Gradient seem complicated This is secretly a constraine opt problem	2. Then it's easy to compute MLE of TIK, MK, 6K
$l \in G_{K} = 0$ $l = 1$ $l = 1$	EX: Uk is empirical mean of pts in K-th Graussian

Class Membership as a Latent Variable

We observe that there are three *clusters* in the data. We posit that there are three *classes* of infants in the study: infants with low birth weights, infants with normal birth weights and those with high birth weights. The numbers of infants in the classes are not equal.

For each observation Y_n , we model its class membership Z_n as a categorical variable,

 $P(y_n) = \int P(y_n | z_n) p(z_n) dz_n \qquad Z_n \sim Cal(\pi),$ $= \sum_{k=n}^{k} P(z_n = k) P(y_n | z_n) \text{ where } \pi_i \text{ in } \pi = [\pi_1, \pi_2, \pi_3] \text{ is the class proportion. Note that we don't have the class membership } Z_n \text{ in the data! So } Z_n \text{ is called a$ *latent variable.* $}$ $= \sum_{k=n}^{k} \pi_{ik} P(y_n | z_n) \text{ Depending on the class, the } n \text{ -th birth weight } Y_n \text{ will have a different normal distribution,}$ $= \sum_{k=n}^{k} \pi_{ik} N(y_n; \mu_{k}, 6_{ik}^{2}) \qquad Y_n | Z_n \sim \mathcal{N}(\mu_{Z_n}, \sigma_{Z_n}^{2})$ is one of the three class means $[\mu_1, \mu_2, \mu_3]$ and $\sigma_{Z_n}^2$ is one of the three class

variances $[\sigma_1^2, \sigma_2^2, \sigma_3^2]$.

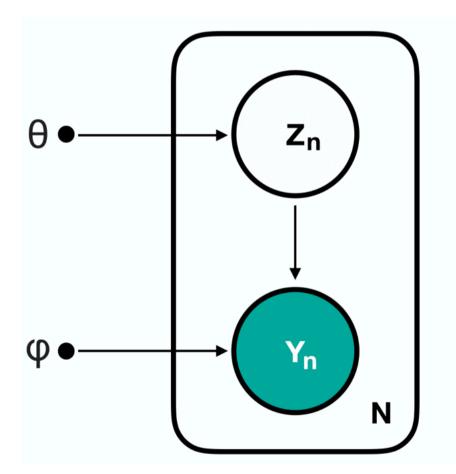
OBSERVED DATA LOG-LIKELIHOOD

$$\sigma_{Z_n}^2$$
 is one of the three class

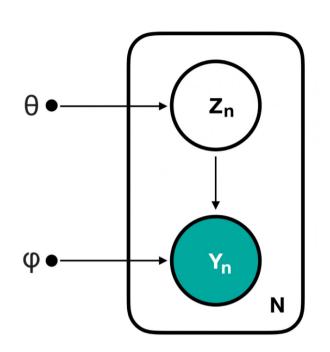
Common Latent Variable Models

Latent Variable Models

Models that include an observed variable Y and at least one unobserved variable Z are called *latent variable models*. In general, our model can allow Y and Z to interact in many different ways. Today, we will study models with one type of interaction:



 $Z_n \sim p(Z|\theta)$ $Y_n|Z_n \sim p(Y|Z,\phi)$ $n = 1, \ldots, N$



Item-Response Models

In *item-response models*, we measure an real-valued unobserved trait Z of a subject by performing a series of experiments with binary observable outcomes, Y:

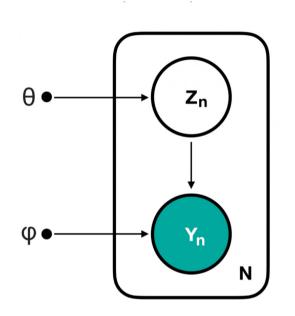
 $Z_n \sim \mathcal{N}(\mu, \sigma^2),$ $\theta_n = g(Z_n)$ $Y_n | Z_n \sim Ber(\theta_n),$

where n = 1, ..., N and g is some fixed function of Z_n .

Applications

Item response models are used to model the way "underlying intelligence" Z relates to scores Y on IQ tests.

Item response models can also be used to model the way "suicidality" Z relates to answers on mental health surveys. Building a good model may help to infer when a patient is at psychiatric risk based on in-take surveys at points of care through out the health-care system.



Factor Analysis Models

In *factor analysis models*, we posit that the observed data Y with many measurements is generated by a small set of unobserved factors Z:

> $Z_n \sim \mathcal{N}(0, I),$ $Y_n|Z_n \sim \mathcal{N}(\mu + \Lambda Z_n, \Phi),$

where $n = 1, ..., N, Z_n \in \mathbb{R}^{D'}$ and $Y_n \in \mathbb{R}^D$. We typically assume that D' is much smaller than D.

Applications

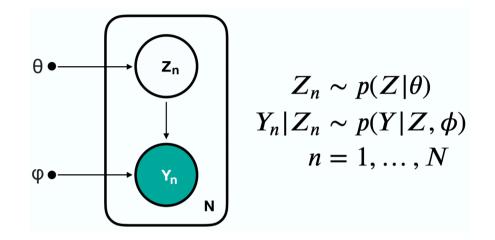
Factor analysis models are useful for biomedical data, where we typically measure a large number of characteristics of a patient (e.g. blood pressure, heart rate, etc), but these characteristics are all generated by a small list of health factors (e.g. diabetes, cancer, hypertension etc). Building a good model means we may be able to infer the list of health factors of a patient from their observed measurements.

Maximum Likelihood Estimation for Latent Variable Models: Expectation Maximization



The Expectation Maximization Algorithm

The *exepectation maximization (EM) algorithm* maximize the ELBO of the model,



- 1. Initialization: Pick θ_0, ϕ_0 .
- 2. Repeat $i = 1, \ldots, I$ times:

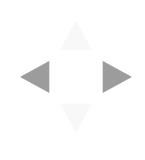
E-Step: $q_{\text{new}}(Z_n) = \operatorname{argmax} ELBO(\theta_{\text{old}}, \phi_{\text{old}}, q) = p(Z_n | Y_n, \theta_{\text{old}}, \phi_{\text{old}})$ q

M-Step:

$$\theta_{\text{new}}, \phi_{\text{new}} = \underset{\theta,\phi}{\operatorname{argmax}} ELBO(\theta, \phi, q_{\text{new}})$$

 $= \underset{\theta,\phi}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{Z_n \sim p(Z_n | Y_n, \theta_{\text{old}}, \phi_{\text{old}})} [10]$

 $\log(p(y_n, Z_n | \phi, \theta)]$.



The Gaussian mixture model for the birth weight data has 3 Gaussians with meand $\mu = [\mu_1, \mu_2, \mu_3]$ and variances $\sigma^2 = [\sigma_1^2, \sigma_2^2, \sigma_3^2]$, and the model is defined as:

$$Z_n \sim Cat(\pi),$$

$$Y_n | Z_n \sim \mathcal{N}(\mu_{Z_n}, \sigma_{Z_n}^2),$$

where n = 1, ..., N and $\sum_{k=1}^{3} \pi_k = 1$.

The E-Step

The E-step in EM computes the distribution:

$$q_{\text{new}}(Z_n) = \operatorname{argmax} ELBO(\mu_{i-1}, \sigma_{i-1}^2, \pi_{i_1}, q) = p(Z_n | Y_n, \mu_{\text{old}}, \sigma_{\text{old}}^2, \pi_{\text{old}}).$$

Since Z_n is a label, $p(Z_n|Y_n,...)$ is a categorical distribution, with the probability of $Z_n = k$ given by:

$$p(Z_{n} = k | Y_{n}, \mu_{\text{old}}, \sigma_{\text{old}}^{2}, \pi_{\text{old}}) = \frac{p(y_{n} | Z_{n} = k, \mu_{\text{old}}, \sigma_{\text{old}}^{2}) p(Z_{n} = k | \pi_{\text{old}})}{\sum_{k=1}^{K} p(y | Z_{n} = k, \mu_{\text{old}}, \sigma_{\text{old}}^{2}) p(Z_{n} = k | \pi_{\text{old}})} = \underbrace{\frac{\pi_{k,\text{old}} \mathcal{N}(y_{n}; \mu_{k,\text{old}}, \sigma_{k,\text{old}}^{2})}{\mathcal{Z}}}_{r_{n,k}}$$

where
$$\mathcal{Z} = \sum_{k=1}^{K} \pi_{k,\text{old}} \mathcal{N}(y_n; \mu_{k,\text{old}}, \sigma_{k,\text{old}}^2).$$

Setting Up the M-Step

The M-step in EM maximize the following:

$$\underset{\mu,\sigma^2,\pi}{\operatorname{argmax}} ELBO(\mu,\sigma^2,\pi,q_{\operatorname{new}}) = \underset{\mu,\sigma^2,\pi}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{Z_n \sim p(Z_n|Y_n,\mu_{k,\operatorname{old}},\sigma^2_{k,\operatorname{old}})} \left[\log \left(p(y_n,Z_n|\mu,\sigma^2,\pi) \right) \right].$$

1

1

If we expand the expectation a little, we get:

$$\sum_{n=1}^{N} \mathbb{E}_{Z_n \sim p(Z_n | Y_n, \mu_{\text{old}}, \sigma_{\text{old}}^2, \pi_{\text{old}})} \left[\log \left(p(y_n, Z_n | \mu, \sigma^2, \pi) \right) \right] = \sum_{n=1}^{N} \underbrace{\sum_{n=1}^{K} \log \left(\underbrace{p(y_n | Z_n = k, \mu, \sigma^2) p(Z_n = k | \pi)}_{\text{factoring the joint } p(y_n, Z_n | \dots)} \right)}_{\text{expanding the expectation}} \right]$$

$$= \sum_{n=1}^{N} \underbrace{\sum_{k=1}^{K} \underbrace{r_{n,k}}_{p(Z_n = k | y_n, \theta_{\text{old}}, \phi_{\text{old}})}}_{\text{Term #1}} \left[\log \underbrace{\mathcal{N}(y_n; \mu_k, \sigma_k^2)}_{p(y_n | Z_n = k, \mu, \sigma^2)} + \log \underbrace{\pi_k}_{p(Z_n = k | \pi)} \right]}_{p(Z_n = k | \mu, \theta_{\text{old}}, \phi_{\text{old}})} \left[\exp \left(\frac{1}{p(y_n | Z_n = k, \mu, \sigma^2)} + \log \underbrace{\pi_k}_{p(Z_n = k | \pi)} \right) \right]$$

We can maximize each Term #1 and Term #2 individually.

Solving the M-Step

We see that the optimization problem in the M-step: $\mu_{\text{new}}, \sigma_{\text{new}}^2, \pi_{\text{new}} = \operatorname{argmax} ELBO(\mu, \sigma^2, \pi, q_{\text{new}})$ is equivalent to two problems μ, σ^2, π 1. $\underset{\mu,\sigma^2}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{n,k} \log \mathcal{N}(y_n; \mu_k, \sigma_k^2)$ N K 2. argmax $\sum_{k=1}^{n} \sum_{k=1}^{n} r_{n,k} \pi_k$ π

We can solve each optimization problem analytically by finding stationary points of the gradient (or the Lagrangian):

•
$$\mu_{\text{new}} = \frac{1}{\sum_{n=1}^{N} r_{n,k}} \sum_{n=1}^{N} r_{n,k} y_n$$

• $\sigma_{\text{new}}^2 = \frac{1}{\sum_{n=1}^{N} r_{n,k}} \sum_{n=1}^{N} r_{n,k} (y_n - \mu_{\text{new}})^2$
• $\pi_{\text{new}} = \frac{\sum_{n=1}^{N} r_{n,k}}{N}$

All Together

Initialization: Pick any π , μ , σ^2

E-Step: Compute $r_{n,k} = \frac{\pi_{k,\text{old}} \mathcal{N}(y_n; \mu_{k,\text{old}}, \sigma_{k,\text{old}}^2)}{\mathcal{Z}}$, where $\mathcal{Z} = \sum_{k=1}^{K} \pi_{k,\text{old}} \mathcal{N}(y_n; \mu_{k,\text{old}}, \sigma_{k,\text{old}}^2)$.

M-Step: Compute model parameters:

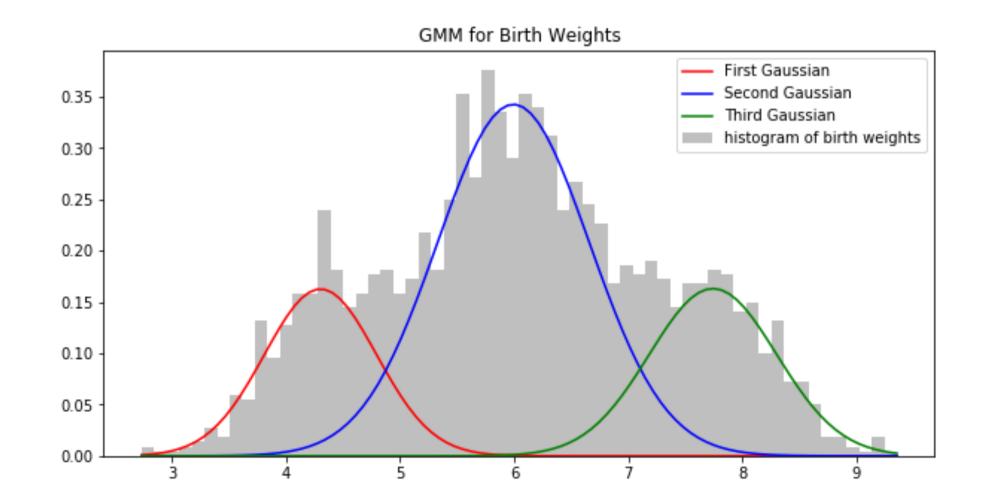
•
$$\mu_{\text{new}} = \frac{1}{\sum_{n=1}^{N} r_{n,k}} \sum_{n=1}^{N} r_{n,k} y_n$$

• $\sigma_{\text{new}}^2 = \frac{1}{\sum_{n=1}^{N} r_{n,k}} \sum_{n=1}^{N} r_{n,k} (y_n - \mu_{\text{new}})^2$
• $\pi_{\text{new}} = \frac{\sum_{n=1}^{N} r_{n,k}}{N}$

< - I

Implementing EM for the Gaussian Mixture Model of Birth Weight

```
In [3]: fig, ax = plt.subplots(1, 1, figsize=(10, 5))
        ax.hist(y, bins=60, density=True, color='gray', alpha=0.5, label='histogram of b
        irth weights')
        ax.plot(x, pi current[0] * sp.stats.norm(mu current[0], sigma current[0]**0.5).p
        df(x), color='red', label='First Gaussian')
        ax.plot(x, pi current[1] * sp.stats.norm(mu current[1], sigma current[1]**0.5).p
        df(x), color='blue', label='Second Gaussian')
        ax.plot(x, pi current[2] * sp.stats.norm(mu current[2], sigma current[2]**0.5).p
        df(x), color='green', label='Third Gaussian')
        ax.set title('GMM for Birth Weights')
        ax.legend(loc='best')
        plt.show()
```



Sanity Check: Log-Likelihood During Training

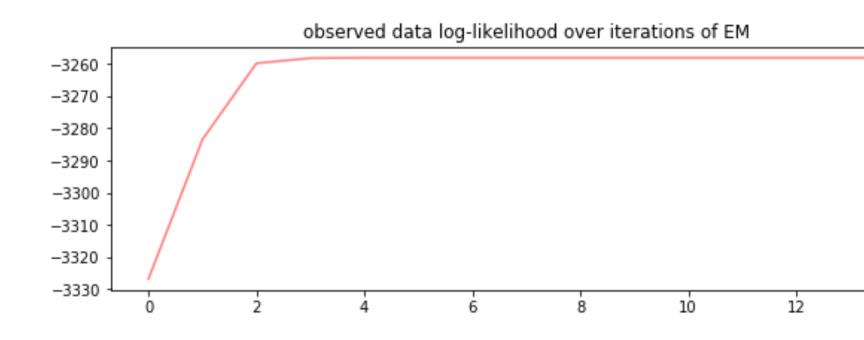
Remember that ploting the MLE model against actual data is not always an option (e.g. highdimensional data).

A sanity check for that your EM algorithm has been implemented correctly is to plot the observed data log-likelihood over the iterations of the algorithm:

$$\mathscr{C}_{y}(\mu, \sigma^{2}, \pi) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \mathcal{N}(y_{n};$$

In [4]:

fig, ax = plt.subplots(1, 1, figsize=(10, 3))
ax.plot(range(len(log_lkhd)), log_lkhd, color='red', alpha=0.5)
ax.set_title('observed data log-likelihood over iterations of EM')
plt.show()



 $(\mu_k, \sigma_k^2)\pi_k$

Expectation Maximization versus Gradient-based Optimization

Pros of EM:

- 1. No learning rates to adjust
- 2. Don't need to worry about incorporating constraints (i.e. $p(Z_n|Y_n)$ is between 0 and 1)
- 3. Each iteration is guaranteed to increase or maintain observed data log-likelihood
- 4. Is guaranteed to converge to local optimum
- 5. Can be very fast to converge (when parameters are fewer)

Cons of EM:

- 1. Can get stuck in local optima

- 2. May not maximize observed data log-likelihood (the ELBO is just a lower bound) 3. Requires you to do math - you need analytic solutions for E-step and M-step 4. May be much slower than fancier gradient-based optimization