
1

“Civilization advances by extending the number of
important operations which we can perform without

thinking about them”

Alfred North Whitehead, Professor at Harvard,
1910s

2

Hands-on H4
MapReduce Design Patterns

CS205: Computing Foundations for Computational Science
Dr. David Sondak
Spring Term 2021

Lectures adapted from Ignacio M. Llorente

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
3

Before We Start
Where We Are

Computing Foundations for Computational and Data Science
How to use modern computing platforms in solving scientific problems

Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

C. Parallel Data Processing
C1. Batch Data Processing
C2. Dataflow Processing
C3. Stream Data Processing

Wrap-Up: Advanced Topics

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
4

CS205: Contents
APPLICATION SOFTWARE

Application Software

Platform

Architecture

Programming Model
Map-Reduce

Spark

Slurm Yarn

Cloud Computing Computing Cluster

BI
G

 D
AT

A

BI
G

 C
O

M
PU

TE

Application Parallelism Program Design

OpenACC

OpenMP MPI

Optimization

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
5

Before We Start
Where We Are

Week 9: Batch Data Processing => MapReduce
3/22 3/23

Hands-on H4
MapReduce

Programming

Lab I8
Hadoop

3/25
Lecture C2
Dataflow

Processing
(Quiz & Reading)

3/26

Concepts Platform Programming

Week 10: Dataflow Processing => Spark
3/29 3/30

Hands-on H5
Spark

Programming

Lab I9
Spark Single

Node

4/1
Lecture C3

Stream Data
Processing

4/2

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
6

MapReduce Programming Model
Context

The programmer essentially only specifies two (sequential) functions

STEP 1. MAP: map(k1,v1) → list(k2,v2)

• Inputs data record and outputs a set of intermediate key-value pairs, each of type k2 and v2
• Types can be simple or complex user-defined objects
• Each map call is fully independent (no execution ordering, sync or comm)

STEP 2. SHUFFLING: Internal grouping of all intermediate pairs with same key together and
passes them to the workers executing reduce

STEP 3. REDUCE: reduce(k2,list(v2)) → list(k3,v3)

• Combines information across records that share this same intermediate key
• Each reduce call is fully independent

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
7

MapReduce Programming Model
Context

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
8

Hands-on Examples
Requirements

1. Unix-like shell (Linux, Mac OS or Windows/Cygwin)

2. Python installed

$ cat files | ./mapper.py| sort | ./reducer.py

Both the mapper and the reducer should be python executable scripts that read the input
from stdin (line by line) and emit the output to stdout

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
9

Design Patterns

Summarization

Inverted Index

Filtering

Other Patterns

Roadmap
MapReduce Design Patterns

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
10

Design Patterns
What Are Design Patterns?

ü Reusable solutions to problems (HWC!)

ü Domain independent

ü Not a cookbook

ü Not a guide

ü Not a finished solution

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
11

Design Patterns
Why Design Patterns?

ü Makes the intent of model and platform easier to
understand

ü Provides a common language for solutions

ü Be able to reuse code

ü Describes known performance profiles and limitations
of solutions

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
12

Design Patterns
When Should I Use MapReduce?

Query

• Index and Search: inverted index

• Filtering

• Classification

Analytics

• Summarization and statistics

• Sorting and merging

• Frequency distribution

• SQL-based queries: group-by, having, etc.

• Generation of graphics: histograms, scatter plots.

. . . large datasets in off-line mode for boosting other on-line
processes

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
13

Design Patterns
Main Functions and Patterns

Main Patterns

1. Summarization

2. Inverted Index

3. Filtering

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
14

Summarization
Calculating Aggregate Statistical Values

Examples
1.Word count
2.Record count
3.Min/Max/Count
4.Average/Median/Standard deviation
5. ...

Description
• A general pattern for calculating aggregate statistical values over your data

Intent
• Group records together by a key field and calculate a numerical aggregate per

group to get a top-level view of the larger data set

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
15

Summarization
Word Count

map

input: [line of text file]
for each word
output: <word, 1>

input: [<word, 1>]
count for same word
output: <word, sum>

Find the frequency of each word in text files
• Map: Process lines and generate as output <word, 1>
• Reduce: Add all values for the same word

reduce

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
16

mapper.py reducer.py

Summarization
Word Count

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
17

Summarization
Record Count

input: [line of log file]
for each line with a URL
output: <URL, 1>

input: [<URL, 1>]
Count for same URL
output: <URL, #>

Find the frequency of each URL in web logs
• Map: Process web page access logs and generate <URL, 1> as output
• Reduce: Add all values for the same URL

map reduce

64.242.88.10 - - [07/Mar/2004:16:37:27 -0800] "GET /twiki/bin/view/TWiki/DontNotify HTTP/1.1" 200 4140
64.242.88.10 - - [07/Mar/2004:16:39:24 -0800] "GET /twiki/bin/view/Main/TokyoOffice HTTP/1.1" 200 3853
…

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
18

Summarization
Max-Min

input: [<username, date, text>]
for each line
output: <username, date, 1>

input: [<username, date, 1>]
First, Last and Count for same
username
output: <username, first_date,
last_date>

Given a list of tweets determine first and last time a user commented and the number
of times.
• Data is a set of lines < username, date, text >

map reduce

Peter [07/Mar/2020:16:39:24 -0800] “Stay at home”
John [07/Mar/2020:16:39:25 -0800] “Me too”
…

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
19

Summarization
Average

input: [<date, company,
start_price, end_price>]
output: [<company, end_price-
start_price>]

input: [<company, end_price-
start_price>]
Average for same company
output: <company, average>

Find average daily gains in stock for each company
• Data is a set of lines <date, company, start_price, end_price>
• This example is for company from 1/1/2000 – 12/31/2015

map reduce

Date,Company,Open,Close
2009-01-02,Alphabet,153.302917,159.870193
…

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
20

Inverted Index
Mapping Content to Location

Description
• A general pattern for mapping content, such as words or numbers, to its locations

in a database file or in a document or a set of documents

Intent
• Most of the text searching systems rely on inverted index to search for documents

that contain a given word or a term

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
21

Inverted Index
Word to Documents

input: [line from document
doc_id]
for each word
output: <word, doc_id>

input: [<word, doc_id>]
concatenate for same word
output: <word, [doc_ids]>

Find what documents contain a specific word
• Map: Parse document and generate <word, doc_id> pairs
• Reduce: For each word, sort the corresponding document IDs

map reduce

all id_432, id_76
also id_432
…

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
22

Hands-on
Word to Documents – Inverted Index

ü Before beginning, run file_name_ii.py and write the output to
a file

ü The result is a file that has the file name as the first item in each
line

ü Implement word to documents

ü Adapt mapper and reducer from wordcount

ü Run it with the output file that you generated in the first step

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
23

Inverted Index
Reverse Web-link Graph

input: [line of HTML file
URL_source]

for each URL_target
output: <URL_target,
URL_source>

input: [<URL_target,
URL_source>]

concatenate for same
URL_target
output: <URL_target,
[URL_sources]>

Find where page links come from
• Map: Output <target, source> for each link to target in a page source
• Reduce: Concatenate the list of all source URLs associated with a target

map reduce

Xxx
URL_target
Yyy
zzz

URL_sources

URL_target, URL_sources

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
24

Filtering
Filtering Out Records

Examples
1.Closer view of dataset
2.Data cleansing
3.Tracking a thread of events
4.Simple random sampling
5.Distributed Grep
6.Removing low scoring dataset
7.Log Analysis
8.Data Querying and Validation
9.…

Description
• It evaluates each record separately and decides, based on some condition, whether

it should stay or go

Intent
• Filter out records that are not of interest and keep ones that are.

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
25

Filtering
Distributed Grep

input: [line of text file]
if pattern matches
output: <“”, line>

input: [<“”, line>]
output: line

Search for words in a document
• Map: Generate a line if it matches a given pattern
• Reduce: Just copy the intermediate data to the output

map reduce

Lecture H4. MapReduce Design Patterns
CS205: Computing Foundations for Computational Science

Dr. David Sondak
26

Other Patterns
Organization, Join and Input/Output

ü Summarization patterns: Get a top-level view by summarizing and grouping data

ü Filtering patterns: View data subsets such as records generated from one user

ü Data organization patterns: Reorganize data to work with other systems, or to make MapReduce
analysis easier

ü Join patterns: Analyze different datasets together to discover interesting relationships

ü Metapatterns: Piece together several patterns to solve multi-stage problems, or to perform several
analytics in the same job

ü Input and output patterns: Customize the way you use Hadoop to load or store data

27

Next Steps

• Get ready for next lecture:
C2. Dataflow Processing (Thursday 3/25)

• Project proposal presentations in two weeks!

28

Questions
MapReduce Design Patterns

