
1

“When you come to a fork in the road, take it”

Yogi Bera, 1925

2

Hands-on H.1:
Python Multiprocessing

CS205: Computing Foundations for Computational Science
Dr. David Sondak
Spring Term 2021

Lectures developed by Dr. Ignacio Illorente

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
3

Before We Start
Where We Are

Computing Foundations for Computational and Data Science

How to use modern computing platforms in solving scientific problems

Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

B.1. Foundations of Parallel Computing

B.2. Performance Optimization

B.3. Accelerated Computing

B.4. Shared-memory Parallel Processing

B.5. Distributed-memory Parallel Processing

C. Parallel Data Processing

Wrap-Up: Advanced Topics

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
4

CS205: Contents
APPLICATION SOFTWARE

PLATFORM

PROGRAMMING MODEL

OpenACC

OpenMP

MPI

Map-Reduce

Spark

C. BIG DATA B. BIG COMPUTE

Optimization

A.3 APPLICATION
PARALLELISM

A.4. PARALLEL
PROGRAM DESIGN

A.2. LARGE-SCALE PROCESSING ON CLOUD A.1 PARALLEL ARCHITECTURES

Python MP

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
5

Context
Python Multiprocessing

In
te

rc
on

ne
ct

io
n

Multi-node
Multi-coreMany-core

ILP/Data

How to develop code that
can make effective use of

existing parallelism at
different levels?

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
6

Hands-on Examples
Requirements

1. Unix-like shell (Linux, Mac OS or AWS VM)

2. Python installed

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
7

Multi-processing Basics

Process Creation and Synchronization

Process Communication

Process Synchronization

Work Distribution

Examples

Roadmap
Python Multiprocessing

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
8

Preguntas Previas a la Optimización de Código
What is a Process?

Multi-processing Basics

• A process can have 1 or
several threads (1 in this
hands-on)

• A process is an instance of
a computer program that
is being executed

• The kernel of the OS
schedules threads to
multiple cores

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
9

6. Paradigma de Memoria Compartida
• Programación por Medio de Threads

Multi-Processing vs Multi-Threading

MULTI-PROCESSING

MULTI-THREADING

Multi-processing Basics

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
10

6. Paradigma de Memoria Compartida
• Programación por Medio de Threads

Multi-Processing vs Multi-Threading in Python
Multi-processing Basics

The standard Python library has two main modules for parallel computing:
• threading

• Good for I/O bound tasks
• Subject to the Global Interpreter Lock (GIL)

• multiprocessing
• Circumvents the GIL
• Useful for parallel computation

• We will focus on the multiprocessing module

The CPython implementation (called CPI, C Python Interpreter) is not thread-safe and
only permits a single thread to run at a time

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
11

Preguntas Previas a la Optimización de Código
Elements of Programming

• Memory Isolation
ü Processes do NOT share memory address space

• Fork/Join Execution Model
ü Fundamental way of expressing concurrency within a computation
ü Fork creates a new child process
ü Parent continues after the Fork operation
ü Child begins operation separate from the parent
ü Parent waits until child joins (continues afterwards)

Multi-processing Basics

…

fork()

…

…

…

join()

Process B

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
12

Preguntas Previas a la Optimización de Código
Race Conditions

Multi-processing Basics

SUMA

(1) MOV SUM, Reg1
(2) ADD #1, Reg1

(3) MOV Reg1, SUM

(1’) MOV SUM, Reg1
(2’) ADD #1, Reg1

(3’) MOV Reg1, SUM

(1’)(1)(2)(3)(2’)(3’) => SUM = SUM +1
(1)(1’)(2’)(3’)(2)(3) => SUM = SUM +1
(1)(2)(3)(1’)(2’)(3’) => SUM = SUM +2

Synchronization needed to prevent race conditions
MUTUAL EXCLUSION

Prevents simultaneous access to a shared resource

P1 P2

P1
P2

. . .
SUM = SUM+1

. . .

. . .
SUM = SUM+1

. . .

A Race Condition occurs, if
• Two or more processes manipulate a shared resource

concurrently, and
• The outcome of the execution depends on the particular

order in which the access takes place

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
13

Preguntas Previas a la Optimización de Código
Synchronization

Multi-processing Basics

Variable mutex: S
Boolean: 0 / 1
General: Integer >= 0

Functions:
Lock(S)

If S == 0 then wait to S > 0
If S > 1 then S = S - 1

Unlock(S):
S = S + 1

P1: Lock(S)
Critical Section
Unlock(S)

P2: Lock(S)
Critical Section
Unlock(S)

P1
P2

. . .
Lock(S)
SUM = SUM+1
Unlock(S)
. . .

. . .
Lock(S)
SUM = SUM+1
Unlock(S)
. . .

(1)(2)(3)(1’)(2’)(3’) => SUM = SUM +2

(1’)(2’)(3’)(1)(2)(3) => SUM = SUM +2

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
14

Work on example1.py, example2.py, example3.py, and example4.py.

If you finish early, feel free to work on the next set of examples with your group.

Breakout Room
20 minutes

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
15

Join/Fork Model
Process Creation and Synchronization

• The multiprocessing module includes a very simple and intuitive API for dividing
work between multiple processes

import multiprocessing

def print_cube(num):

…

def print_square(num):

…

if __name__ == "__main__":

creating processes

p1 = multiprocessing.Process(target=print_square, args=(10,))

p2 = multiprocessing.Process(target=print_cube, args=(10,))

starting process 1 and 2

p1.start()

p2.start()

wait until process 1 and 2 are finished

p1.join()

p2.join()

both processes finished

print("Done!")

Creates a process structure to execute a target
function with args

Start a process

Wait for process termination

example1.py

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
16

Process Creation and Synchronization

• Each process is completely independent

example2.py

PID=41550
main

PID=41551
worker1

PID=41552
worker2

Join/Fork Model

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
17

Shared Memory
Process Communication

• Each process runs independently and has its own memory space

import multiprocessing

empty list with global scope

result = []

def square_list(mylist):

global result

append squares of mylist to global list result

for num in mylist:

result.append(num * num)

print global list result

print("Result(in process p1): {}".format(result))

if __name__ == "__main__":

input list

mylist = [1,2,3,4]

p1 = multiprocessing.Process(target=square_list, args=(mylist,))

p1.start()

p1.join()

print global result list

print("Result(in main program): {}".format(result))

example3.py

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
18

multiprocessing module provides Array and Value objects to share data between
processes.
• Array: a ctypes array allocated from shared memory.
• Value: a ctypes object allocated from shared memory.

import multiprocessing

def square_list(mylist, result, square_sum):

…

if __name__ == "__main__":

…

creating Array of int data type with space for 4 integers

result = multiprocessing.Array('i', 4)

creating Value of int data type

square_sum = multiprocessing.Value('i')

creating new process

p1 = multiprocessing.Process(target=square_list, args=(mylist, result, square_sum))

example4.py

Shared variables passed as arguments

Array integers of size 4

Single variable type integers

Shared Memory
Process Communication

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
19

Most efficient way to share memory across processes

result

square_sum

worker1main

multiprocessing module provides manager class (Advanced!) that
• Shares arbitrary object types like lists, dictionaries, Queue, Array, etc.
• A single manager can be shared by processes on different computers
• However, they are slower than using shared memory.

Shared Memory
Process Communication

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
20

Work on example5.py, example6.py, example7.py, and example8.py.

Breakout Room
30 minutes

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
21

Queues

• A simple way to communicate between processes with multiprocessing is to use a
Queue to pass messages back and forth. Any Python object can pass through a Queue.

def square_list(mylist, q):

append squares of mylist to queue

for num in mylist:

q.put(num * num)

def print_queue(q):

print("Queue elements:")

while not q.empty():

print(q.get())

print("Queue is now empty!")

if __name__ == "__main__":

…

creating multiprocessing Queue

q = multiprocessing.Queue()

creating new processes

p1 = multiprocessing.Process(target=square_list, args=(mylist, q))

p2 = multiprocessing.Process(target=print_queue, args=(q,))

example5.py

Put value in queue

Read values from queue

Process Communication

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
22

PID=41551
worker1

PID=41552
worker2

16 9 4 1

q.put

q.get

A more efficient two-way communication can be performed with the pipe class
(Advanced!)

Queues
Process Communication

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
23

Race Conditions
Process Synchronization

• Simultaneous access to shared variable: Why is 100 not the final value?

function to withdraw from account

def withdraw(balance):

for _ in range(10000):

balance.value = balance.value - 1

function to deposit to account

def deposit(balance):

for _ in range(10000):

balance.value = balance.value + 1

def perform_transactions():

initial balance (in shared memory)

balance = multiprocessing.Value('i', 100)

creating new processes

p1 = multiprocessing.Process(target=withdraw, args=(balance,))

p2 = multiprocessing.Process(target=deposit, args=(balance,))

example6.py

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
24

Locks

• multiprocessing module provides a Lock class to deal with the race
conditions. Lock is implemented using a Semaphore object provided by the Operating
System

function to withdraw from account

def withdraw(balance, lock):

for _ in range(10000):

lock.acquire()

balance.value = balance.value - 1

lock.release()

…

…

initial balance (in shared memory)

balance = multiprocessing.Value('i', 100)

creating a lock object

lock = multiprocessing.Lock()

creating new processes

p1 = multiprocessing.Process(target=withdraw, args=(balance,lock))

p2 = multiprocessing.Process(target=deposit, args=(balance,lock))

example7.py

Process Synchronization

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
25

Pools
Work Distribution

• Simple serial program to calculate squares of elements of a given list

Python program to find squares of numbers in a given list

def square(n):

return (n*n)

if __name__ == "__main__":

input list

mylist = [1,2,3,4,5]

empty list to store result

result = []

for num in mylist:

result.append(square(num))

print(result)

example8.py

def square(n):
return (n*n) CPU2

1 2 3 4

1 4 9 16

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
26

• multiprocessing module provides a Pool class that represents a pool of worker
processes. It has methods which allows tasks to be offloaded to the worker processes
in a few different ways

Python program to find squares of numbers in a given list

import multiprocessing

import os

def square(n):

print(”Id for {0}: {1}".format(n, os.getpid()))

return (n*n)

if __name__ == "__main__":

input list

mylist = [1,2,3,4,5]

creating a pool object

p = multiprocessing.Pool()

map list to target function

result = p.map(square, mylist)

example9.py

def square(n):
return (n*n)

def square(n):
return (n*n)

1 2 3 4

1 4 9 16

Pools
Work Distribution

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
27

Work on pi1.py.

Bonus: Have a look at pi2.py. It is current written as a serial code. How would you go
about parallelizing it with the tools you learned today?

Breakout Room
Work Until Called Back

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
28

Example: pi using the Monte Carlo Method
Examples

pi1.py

Area of the circle is πr2

The area of the square is 4r2

If we divide the area of circle by the area of square we get π/4
Same ratio can be used between the number of points within the square and the
number of points within the circle.
Hence we can use the following formula to estimate Pi:

π ≈ 4 x (number of points in the circle / total number of points)

What is the speed-up in your system?

Lecture H.1: Python Multiprocessing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
29

Exercise: pi Using Numerical Approximation to Integral
Example

pi2.py

30

Questions
Python Multiprocessing

Some of the examples have been downloaded from https://www.geeksforgeeks.org/ (Nikhil Kumar))

