
1

“In God we Trust, all others bring data.”

W. Edwards Deming, Professor at UColumbia, 1980s

2

Lecture C.3:
Stream Data Processing

CS205: Computing Foundations for Computational Science
Dr. David Sondak
Spring Term 2021

Contributions from Dr. Ignacio M. Llorente and Bill Richmond (AWS)

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
3

Before We Start
Where We Are

Computing Foundations for Computational and Data Science
How to use modern computing platforms in solving scientific problems

Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

C. Parallel Data Processing
C.1. Batch Data Processing
C.2. Dataflow Processing
C.3. Stream Data Processing

Wrap-Up: Advanced Topics

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
4

CS205: Contents
APPLICATION SOFTWARE

PLATFORM

PROGRAMMING MODEL

OpenACC

OpenMP

MPI

Map-Reduce

Spark

C. BIG DATA B. BIG COMPUTE

Optimization

APPLICATION
PARALLELISM

PARALLEL PROGRAM
DESIGN

CLOUD COMPUTING PARALLEL ARCHITECTURES

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
5

Context
Stream Data Processing

Stream Batch

Computes a function of one data element, or
a small window of recent data

Computes on entire data, usually extremely
large sets of data

Computes something relatively simple Might compute something big and complex

Optimize for latency, complete each
computation in near-real-time

Optimize for throughput, data processed per
second

Computations are generally independent,
like trends over time

Calculations access to a complete set of
records, like totals and averages

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak

6

Challenge
They needed a way to

process and analyze over

100 PB of data

(125M events/min)

ingested from game clients

and game servers to

understand and adapt to

player engagement.

Solution
Epic Games turned to AWS

for an Amazon S3 data lake

in combination with

Amazon EMR, Amazon

EC2, and

Amazon Kinesis.

Benefits
The data provides a

constant feedback loop for

designers, and an up to

the minute analysis

of gamer satisfaction to

drive gamer engagement.

Epic Games continually improves
Fortnite for 250+ million players globally

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
7

Data is a strategic asset for every organization

The world’s most
valuable resource is no
longer oil, but data.*

*Copyright: The Economist, 2017, David Parkins

“
”

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
8

The pace of transformation is increasing…

Source: IDC, Worldwide Global DataSphere IoT Device and Data Forecast, 2019–2023

B Y 2 0 2 5 T H E W O R L D W I L L S E E :

I o T C O N N E C T E D D E V I C E S D ATA C R E AT E D P E R Y E A R

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
9

Users want more value from their data

Growing
exponentially

From new
sources

Increasingly
diverse

Used by
many people

Analyzed by
many applications

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
10

Types of analytics users

Database admins (DBAs)

DevOps engineers

LOB knowledge workers

Product managers

IT operations

IT security and governance

VP/director analytics

Architects

Application developers

Business intelligence (BI) analysts

CxO

Data engineers, operations

Data modelers

Data scientists

Data warehouse admins

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
11

Common analytics use cases

Data warehouse modernization

Big data and data lakes

Real-time streaming and analytics

Operational and search analytics

Self-service business analytics

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
13

Big Streaming Data
Big Picture

Prediction and Statistical
Learning

Data Integration,
Processing and Analysis

REPORTS

Data Collection
and Cleaning

PL
AT

FO
RM

PR
OG

RA
M

M
IN

G
M

OD
EL

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
14

Big Streaming Data
Streaming Data

Stream Datasets
• Unbounded: The total dataset is only defined as the amount of data that has entered

the system so far.
• Non-Persistent: The working dataset is perhaps more relevant, and is limited to a single

item at a time.
• Processing is event-based and does not "end" until explicitly stopped. Results are

immediately available and will be continually updated as new data arrives.

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
15

Big Streaming Data
Big Streaming

Stream Processing
• Results based on current data, typically one data record or small window
• Perform simple analysis on data in motion
• Optimize for latency: average time taken for a record
• Processing with near real-time requirements where you must respond to changes or

spikes and where you're interested in trends over time

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
16

Streaming Infrastructure
Parallel Processing Needs
• Achieves very low latency (real-time) => 1 second is too long!
• Integrate with big compute or big data resources
• Close to users (edge)
• Requires elasticity to address variable demands (cloud)
• Recovers from failures (cloud)
• Scales to thousand of nodes (cloud)

Big Streaming Data

REPORTS

PL
A

TF
O

R
M

PR
O

G
R

A
M

M
IN

G
 M

O
D

EL

Number of cores/nodes streams to be able to receive
all data within the interval

Number of cores/nodes streams to be able to process
all data within the interval

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
18

Big Streaming Data – Use Case

Tens of millions of users search Zillow daily for
information on 100+ million homes and apartments
across the U.S.

“We can compute Zestimates in seconds, as opposed to hours, by using
Amazon Kinesis Streams and Spark on Amazon EMR.

As a result, the Zestimates are more up-to-date and accurate, because they’re
built with the absolute latest data.

That’s a huge benefit for our users, who depend on this information to influence
their buying or selling decisions.”

- Jasjeet Thind, Vice President of Data Science and Engineering, Zillow Group

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
21

TRANSF

wordcounts = sc.textFile('input.txt')

RDD

Stream Processing with Spark
The Spark Programming Model

The Fundamental Data Structure - Resilient Distributed Dataset

• Resilient: Fault-tolerant
• Distributed: Multiple-node
• Dataset: Collection of partitioned data

organized in records

(the, 7)

(od, 4)

(spark, 1)

(at, 1)

(bok, 8)

(home, 1)

(cloud, 76)

(data, 5)

(set, 34)

RDD

.filter(lambda line: ”spark" in line)

valueACTION

.count()

Operations: Transformations and Actions

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
22

Stream Processing with Spark

New file in dir
New content in file

TCP socket
Flume
Kafka

Kinesis
Twitter

…

How Does It Work?

• Split data streams into batches within a time window
• Spark treats each batch of data as RDDs and processes them using RDD operations
• Processed results are pushed out in batches

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
23

Stream Processing with Spark

Discretized Stream (DStream)
• Represents a stream of data
• Implemented as a sequence of RDDs

Discretized Streaming

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
24

Stream Processing with Spark
Discretized Streaming – Application Anatomy (1)

• Define the streamingContext

• Define the input sources by creating input DStreams

• Define the streaming computations by applying transformation and output operations to Dstreams
(RDD-like)

• Start receiving data and processing it using streamingContext.start()

• Wait for the processing to be stopped (manually or due to any error)
using streamingContext.awaitTermination()

• The processing can be manually stopped using streamingContext.stop()

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
25

Stream Processing with Spark
Discretized Streaming – Application Anatomy (2)

Points to remember:
• Once a context has been started, no new streaming computations can be set up or added to

it.

• Once a context has been stopped, it cannot be restarted.

• Only one StreamingContext can be active in a JVM at the same time.

• stop()on StreamingContext also stops the SparkContext. To stop only the
StreamingContext, set the optional parameter of stop()called stopSparkContext to
false.

• A SparkContext can be re-used to create multiple StreamingContexts, as long as the
previous StreamingContext is stopped (without stopping the SparkContext) before the
next StreamingContext is created.

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
26

Stream Processing with Spark
Streaming Word Count Example

sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 1)

• Create a local StreamingContext with two threads and batch interval of 1 second

lines = ssc.socketTextStream("localhost", 9999)

• Create a DStream that will connect to hostname:port, like localhost:9999

words = lines.flatMap(lambda line: line.split(" "))

• Split each line into words

pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)

• Count each word in each batch

wordCounts.pprint()

• Print the first ten elements of each RDD generated in this DStream to the console

ssc.start()
ssc.awaitTermination()

• Start the computation and wait for the computation to terminate

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
27

Hands-on
Streaming Word Count – Supplementary Material Requirements

1. Unix-like shell (Linux, Mac OS or Windows/Cygwin)

2. Python installed

3. Installation of Spark (see guide “Install Spark in Local Mode”)

Full examples can be found at:
https://spark.apache.org/docs/latest/streaming-programming-guide.html

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
28

Hands-on
Streaming Word Count – Supplementary Material

• Access your Spark instance
• You can do this locally as well.

• Copy network_wordcount.py example to your home directory
• Check its contents
• Parallelize execution to use 2 threads
• Change logging level to ERROR by adding this attribute just after spark context creation

• Change interval to 5 seconds
sc.setLogLevel("ERROR")

• When running a Spark Streaming program locally, do not use “local” or “local[1]” because these
mean that only one thread will be used for running tasks locally.

• If you are using an input DStream based on a receiver (e.g. sockets), then the single thread will be
used to run the receiver, leaving no thread for processing the received data.

• Hence, when running locally, always use “local[n]”, where n > number of receivers to run

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
29

Hands-on
Streaming Word Count - Streaming Word Count – Supplementary Material

TERMINAL 1: Running Netcat
$ nc -lk 9999
hello world
...

TERMINAL 2: Running network_wordcount.py
$ spark-submit network_wordcount.py localhost 9999

Time: 2014-10-14 15:25:21

(hello,1)
(world,1) ...

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
30

Stream Processing with Spark

Discretized Stream (DStream)

• DStreams representing the stream of input data received from streaming sources

• Every input DStream (except file stream) is associated with a Receiver object which receives the data
from a source and stores it in Spark’s memory for processing

DStreams Sources and Transformations

Types of DStream Sources

• Basic sources: Sources directly available in the StreamingContext API. Examples: file systems, and
socket connections.

• Advanced sources: Sources like Kafka, Flume, Kinesis, etc. are available through extra utility classes.

DStream Transformations

• Similar to that of RDDs, transformations allow the data from the input DStream to be modified.

• DStreams support many of the transformations available on normal Spark RDD’s.

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
31

Stream Processing with Spark

Windowed Computations
• Apply transformations over a sliding window of data

Advanced Feature: Windows Operations

windowedWordCounts = pairs.reduceByKeyAndWindow(lambda x, y: x + y, lambda x, y:
x - y, 30, 10)

• Generating word counts over the last 30 seconds of data, every 10 seconds

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
32

Stream Processing with Spark
Advanced Feature: Stateful Stream Processing

Computation Maintains Contextual State
• This state is used to store information derived from the previously-seen events
• Virtually all non-trivial stream processing applications require stateful stream

processing

Accumulated
word count

Streaming word
count

Trend
detection

updateStateByKey(func)

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
33

Hands-on
Trend Detection in Social Media

The Use Case
• Use Twitter to detect trends in real time in the Boston area

Architectural Components
• Twitter Client that collects and cleans tweets in the area
• Streaming Application that does real-time processing for the incoming tweets and

shows hashtags in the interval and accumulated

Prediction and Statistical
Learning

Data Integration,
Processing and Analysis

REPORTS
#biden
#...
#...
#

Data Collection
and Cleaning

SP
AR

K

ST
RE

AM
IN

G

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
34

Hands-on
Trend Detection in Social Media

The Twitter Client
• Collect: Call the Twitter API URL and return a stream of tweets
• Clean: Extract the tweet text from the JSON structure
• Transmit: Send each tweet text through a TCP port to the application

Creation of Credential for Twitter App
• Go to https://apps.twitter.com and create new app
• Go to “Keys and Access Tokens” tab and then click on “Generate my access token.”

https://apps.twitter.com/

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
35

Hands-on
Trend Detection in Social Media

The Streaming Application
• Define Stream: Stream process with window size of 10 seconds
• Define Source: Socket port
• Stream Processing: Split DStream into words, filter to get words with hashtags, and

reduce by key
• Interval Reporting: Trend in the interval
• Global State Update: Update global state
• Global State Reporting: Accumulated trend

Exercise
• Adapt code to know in real time the frequency of references to Harvard and the words

used to describe it (sentiment analysis)

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
36

Stream Processing with Spark
Application Architecture

Twitter
Client

Streaming
Application

SOCKET

REPORTS
#biden
#...
#...
#

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
38

Next Steps

• HWC due on Monday 4/19!

• Final Project (upcoming milestones):
Project proposal presentation (4/6 and 4/8)
Project design (4/20 and 4/22)
Project presentation (5/10)
More info at:

https://harvard-iacs.github.io/2021-CS205/

https://harvard-iacs.github.io/2021-CS205/

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
39

Project Requirements

• Demonstrate the need for big compute and/or big data processing, and what
can be achieved thanks to large-scale parallel processing.

• Solve a problem for a non-trivial computation graph and with hierarchical
parallelism.

• Be implemented on a distributed-memory architecture with either a many-core
or a multi-core compute node, and evaluated on at least 8 compute nodes
(note: each compute node on Cannon is a multi-core with 32, or 64 cores or
with a many-core GPU with hundreds of cores)

• Use a hybrid parallel program in either, for example: MPI + OpenMP, MPI +
OpenACC (or OpenCL), Spark or MapReduce + OpenACC (or OpenCL) or MPI +
Spark or MapReduce

• Be evaluated on large data sets or problem sizes to demonstrate both weak and
strong scaling using appropriate metrics (throughput, efficiency, iso-
efficiency...).

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
40

Project Proposal Presentation

You will have 5, and ONLY 5, minutes to briefly summarize your
proposal answering bellow questions. You have to prepare 4 slides

for your proposal. We will enforce the 5-minute time limit.

What is the problem you are trying to solve with this application?

What is the need for big compute and/or big data
processing and what can be achieved thanks to large-scale

parallel processing?

Describe your model and/or data in detail: where does it come
from, what does it mean, etc.

Which tools and infrastructures you are planning to use to build
the application?

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
41

Zoom Presentation Guidelines

Record your video ahead of time and submit on Canvas one day
before your presentation.

Each group member should present.

Practice ahead of time!

Make sure your mics are muted when you are not presenting.

Lecture C.3: Stream Data Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
42

ERP CRM

LOB OLTP

Devices Web

Sensors Social

Voice Video

Image

Sources

Managed
Endpoints

Intelligent
Devices

SageMaker

Greengrass

Machine Learning

Build Train Deploy

SageMaker

AI Services

Personalize+Forecast

Label

Pipeline

Batch Data
Movement

Real-time Data
Movement

Glue

Kinesis

IoT

Lambda

Batch

Data Lake

Raw
Data

Enriched
Data

3rd Party
Data S3

Glue
Catalog

&
Search

DynamoDB

Elasticsearch

API Gateway
Access &

User
Interface

IAM

Cognito

Manage &
Secure

STS

CloudWatch

CloudTrail

KMS

Analytics

Data
Warehouse

Interactive
Query

EMRRedshift Athena

Data
Processing

Bigger Picture

