“If you torture the data long enough, it will
confess”

Ronald Coase, Professor at UChicago, 1981

Lecture C1
Batch Data Processing

CS205: Computing Foundations for Computational Science
Dr. Ignacio M. Llorente
Spring Term 2021

ELT] ‘ HARVARD FX®SR |NSTITUTE FOR APPLIED

L L "‘
School of Engineering amv”ﬂ COMPUTATIONAL SCIENCE

and Applied Sciences «A;@' AT HARVARD UNIVERSITY

Before We Start
Where We Are

Computing Foundations for Computational and Data Science

How to use modern computing platforms in solving scientific problems
Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

C. Parallel Data Processing
C1. Batch Data Processing
C2. Dataflow Processing
C3. Stream Data Processing

Wrap-Up: Advanced Topics

babadoad | HARVARD st ForAPPLED | ecture C1. Batch Data Processing Dr. Ignacio M. Llorente
o N
School of Engineering gty L vuve onversiry CS205: Computing Foundations for Computational Science 3

i

and Applied Sciences ww

CS205: Contents

APPLICATION SOFTWARE

I Application Parallelism I I Program Design I

Application Software

W | OpenACC || Optimization | [spark |
D)
a | Openmp || MPI | | | E
> P '
rogramming Model
[®) \ ()
o = O
O m
m I Slurm I Platform | Hadoop |
Architecture
o e : ODYSS
- - . HARVARD FAS
.L.l amazon - RESEARCH COMPUTING
uF webservices = -
=] - o
Gli1) : =] FAS[{T=
I Cloud Computing I . I Computing Cluster I
HARVARD gy NsTuteForapeLED | ecture C1. Batch Data Processing Dr. Ignacio M. Llorente
P o Ay CS205: Computing Foundations for Computational Science 4

Before We Start
Where We Are

B Prorarming RN Pitiorn

Batch Data Processing => MapReduce

3/18 3/23 Lab
Lecture C1 Hands-on H4 Lab 18
Batch Data MapReduce MapReduce
Processing Programming Hadoop Cluster

(Quiz & Reading)

Dataflow Processing => Spark

3/25 3/30 Lab Lab
Lecture C2 Hands-on HS Lab 19 Lab 110
Dataflow Spark Spark Single Spark Cluster
Processing Programming Node
(Quiz & Reading)

edetd | HARVARD SR INSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente
School of Engineering ugﬁi& °°M"UTAT'°|’:;'-SI'§$'ENCE

and Applied Sciences MW AT HARvARD U CS205: Computing Foundations for Computational Science 5

Context
Big Compute vs Big data

“Big” Compute Big Data

A . m
1.00

0.70 0.75 0.80 0.85 0.90 0.95

e

1o, @

2 &W
o 7o e qi
o S L

\
@

Compute-intensive Data-intensive
Bringing data to compute Bringing compute to data

=

022
ee

INSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente

Al COMPUTATIONAL SCIENCE

AAAAAAAAAAAAAAAAAAA CS205: Computing Foundations for Computational Science 6

EE31 | HARVARD IACS
School of Engineering ‘%
and Applied Sciences

Context
Big Compute

Paradigm Independent parallel tasks that are performed
simultaneously to address a particular part of the problem

Challenge Decompose the application into tasks and define their
communication and synchronization

Bottleneck CPU

Input data Gigabyte-scale to describe initial conditions

Programming OpenMP, OpenACC and MPI

|_[|_[|_[|_[- INPUT DATA
Q000 00600

| - , . OUTPUT DATA

HTC HPC

B "ARVARD SR INSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente
School of Engineering ugﬁi@ °°M"UTAT'°|’:;'-SI§S'EN°E

and Applied Sciences MW AT HARvARD U CS205: Computing Foundations for Computational Science 7

Context

Big Data
Paradigm Same task is applied to large volumes of data
Challenge Partition the data into multiple segments and the

subsequent combination of the intermediate results in
multiple stages

Bottleneck Storage

Input data Far beyond gigabyte-scale: datasets are commonly on the
order of tens, hundreds, or thousands of terabytes

Programming MapReduce, Spark

INPUT DATA

OUTPUT DATA

rbtoc) l:AhRVAlR‘;E st ForAPPLED | ecture C1. Batch Data Processing Dr. Ignacio M. Llorente
i i WAV
and Applied Sciences A AT Haraso unvessiy CS205: Computing Foundations for Computational Science 8

Hands-on Examples

Requirements

1. Unix-like shell (Linux, Mac OS or Windows/Cygwin)
2. Python installed

3. Download example python codes

https://harvard-iacs.github.io/2020-CS205/lectures/C1/

HARVARD ey INSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente

AV
School of Engi i A COMPUTATIONAL SCIENCE .)))
i Aoplicd Sencer WGP vamso e CS205: Computing Foundations for Computational Science 9

AAAAAAA

School of Engineering ATy

and Applied Sciences

Roadmap

Batch Data Processing

Why |Is Big Data Processing Different?
The MapReduce Programming Model

The Hadoop Processing Framework

- INSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente
R COMPUTATIONAL SCIENCE . N . .
CS205: Computing Foundations for Computational Science 10

Why Is Big Data Processing Different?

The WordCount HelloWorld Example
LARGE DOC

i] WORD
COLLECTION Sequential Execution EREQUENCY

all 5790
also 3789

S counter.py < input.txt

counter.py _
#!/usr/bin/python Implementatlon
: Centralized key-value data structure,
import sys .o
import re hash table (dictionary sums) to keep
track of counts
sums = {}
for line in sys.stdin: Scalability Limitations
line = re.sub(r'~\W+|[\W+$', '', line) . _ ciAAd
words = re.split(r'\W+', line) Compute-bound: Limited by the
speed of the system
for word in words: « Memory-bound: Limited by the
word = word. lower() _
sums [word] = sums.get(word, @) + 1 memory size of the system
print sums
HARVARD W 'NSTITUTE FOR APPLIED Lecture C1. Batch Data Processing

. . "av)
School of Englneenng 'As"‘gaw COMPUTATIONAL SCIENCE
A NIVERSITY

Dr. Ignacio M. Llorente
and Applied Sciences 'é}‘;ﬁ" AT HARVARD U

n

CS205: Computing Foundations for Computational Science

Why Is Big Data Processing Different?
The WordCount Example

LARGE DOC i WORD
COLLECTION Parallel Execution FREQUENCY

—_]] S

Is the counter application limited by the CPU?

How would you develop a parallel version of the
counter application?

LR darvaro EESER \stiTute For AppLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente

A
School of Engi . A COMPUTATIONAL SCIENCE
and Applied Scences G~ eese CS205: Computing Foundations for Computational Science 12

Why Is Big Data Processing Different?

The WordCount Example

Shared Memory (OpenMP)

#!/usr/bin/python

Implementation
import sys
import re Each thread processes a part of each doc
sums = {} OMP Parallel * Single parallel instance of the counter
for line in sys.stdin: code and shared data structure between
line = re.sub(r'M\W+|\W+$', '', line)
words = re.split(r'\W+', line) threads
for word in words:
word = word. lower()
sums [word] = sums.get(word, @) + 1
print sums Sca|ablllty Limitations

« Memory access synchronization to
shared data structure
 Shared memory architecture (bus

............................. bottleneck)

M1 lllllllllllllllllllllllllllll Mn

B "ARVARD SR INSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente
School of Engineering "gav‘ié COMPUTATIONAL SCIENCE

and Applied Sciences W AT HARVARD univeRsiTy CS205: Computing Foundations for Computational Science 13

Why Is Big Data Processing Different?
The WordCount Example

Distributed Memory (MPI)

] . Implementation
_ _\ _\ « Each node processes a subset in parallel

« Each node executes a sequential
instance of the counter code and keeps
its own local data structure
\ \ / * Big final reduction operation for the
complete data structure

Scalability Limitations
« Communication-bound: Cost of final

M, M, aggregation with reduction of all the
data structure
« Memory-bound: Limited by the
ST P, .
memory size of each node

Interconnection Network

Gateted | HARVARD mstmuterorarrer L ecture C1. Batch Data Processing Dr. Ignacio M. Llorente
o N
School of Enginering BEGHEY <rarvaro crversiy CS205: Computing Foundations for Computational Science 14

i

and Applied Sciences B

Why Is Big Data Processing Different?

Data-Intensive Applications: Bring Compute to the Data

We want to avoid

« Centralized resources that are likely bottlenecks
 Replication of data structures across nodes

« Communication of too much intermediate data

We need a programming model with data locality

« Same computation to be applied to large volumes of data

« Assign tasks to machines that already have the input data

o Efficient combination of intermediate results from multiple processors

* Highly distributed and scale-out

7 "4

LN
N
:
™~
oy
L
(=

Schoolof IS} \wsrureroraveien — Lecture Cl. Batch Data Processing Dr. Ignacio M. Llorente
méw COMPUTATIONAL SCIENCE

:EZOXL;{IEEE§2feEJLZE YUY AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 15

The MapReduce Programming Model

Core Idea and Benefits

MapReduce is a programming model for processing big data sets with a
parallel, distributed algorithm on a cluster

The core idea behind MapReduce is mapping your data set into a
collection of <key, value> pairs, and then reducing over all pairs with the
same key

The concept is quite powerful because almost all data can be mapped
into <key, value> pairs somehow, and keys and values can be of any type
(strings, integers, user-defined...)

The concept is very simple because developers are required to only
write simple map and reduce functions, while distribution and
parallelism are handled by the MapReduce framework

The concept is very efficient because computation operations are
performed on data local to the computing node, data transfer over the
network is reduced to a minimum

3 o o5

HARVARD LXEE |NSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente

P vy,
School of Engineering 9‘;7*;“%‘ COMPUTATIONAL SCIENCE
. . UNIVERSITY
and Applied Sciences (X0 '

CS205: Computing Foundations for Computational Science

16

The MapReduce Programming Model

Not So New

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown

in tha nanar

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

OSDI'04, San Francisco, CA, December, 2004

https://www.usenix.org/legacy/event/osdiO4/tech/full_papers/dean/dean.p
df

o o NeTuTeroRAPRLED - Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente
A
arcldolt\)p;lie:gslzsaeer:lgi ety CS205: Computing Foundations for Computational Science 17

The MapReduce Programming Model

Assigh Compute to Machines that already Have the Data

The programmer essentially only specifies two (sequential) functions

STEP 1. MAP: map(kl,vil) — list(k2,v2)

Inputs each record consisting of key of type k1 and value of type vl
Outputs a set of intermediate key-value pairs, each of type k2 and v2
Types can be simple or complex user-defined objects

Each map call is independent

STEP 2. SUFFLING: Internal grouping of all intermediate pairs with same key
together and passes them to the workers executing reduce

STEP 3. REDUCE: reduce(k2,/ist(v2)) — list(k3,v3)

« Combines information across records that share this same intermediate key

This is too abstract!

HarvarD EXSEN \nstirute For APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente

P ISEAY COMPUTATIONAL
School of E XX . ! . !
a§d°2p3ue3g£2§’§n'll'§ "e‘,i;f-g%? CS205: Computing Foundations for Computational Science 18

The MapReduce Programming Model

WordCount Example on a Single System
STEP 1. MAP: map(kl,vil) — list(k2,v2)

mapper.py
#!/usr/bin/python

import sys
import re

for line in sys.stdin:
line = re.sub(r'~\W+[\W+$', '', line) « Parse input text lines
words = re.split(r"\W+", line)
« Extract words

for word in words: o For each word writes the “word” as
print(word.lower() + "\t1") output key and “1” as value

S mapper.py < input.txt

email 1
newsletter 1
to 1

hear 1

about 1

new 1

HARVARD L= |NSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente

School of Engineering Y COMPUTATIONAL SCIENCE

and Applied Sciences gy T HARVARD UNveRSITY CS205: Computing Foundations for Computational Science 19

The MapReduce Programming Model

WordCount Example on a Single System
STEP 2. SUFFLING

$ mapper.py < input.txt | sort

zodiac 1
zodiac 1
zogranda 1
zone 1
zone
zone
zone
zone
zoned
zoned
zones
zones
zones 1
zoology 1
zoology 1
zoroaster 1

e

I N S S

HARVARD ey INSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente

School of Engineeri W4 COMPUTATIONAL SCIENCE :) . .
and Applied Sciences ";"‘.::'ﬁa‘? CS205: Computing Foundations for Computational Science 20

The MapReduce Programming Model

WordCount Example on a Single System

STEP 3. REDUCE: reduce(k2,/ist(v2)) — list(k3,v3)

reducer.py

#!/usr/bin/python Count the number of times each key
import sys occurs by summing values as long as
_ they have the same key
previous = None .
sum = 0 Publish the result once the key changes

for line in sys.stdin:
key, value = line.split('\t')

if key != previous:
if previous is not None:
print str(sum) + '\t' + previous
previous = key
sum = 0@

sum = sum + int(value)

print str(sum) + '\t' + previous

$ mapper.py < input.txt | sort | reducer.py

3 zones
2 zoology
1l zoroaster

HARVARD L= |NSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente

School of Engineering Y COMPUTATIONAL SCIENCE

and Applied Sciences Wl AT HARVARD UNIvERSITY CS205: Computing Foundations for Computational Science 21

The MapReduce Programming Model

Prototyping and Debugging - Hadoop Streaming

Both the mapper and the reducer should be python executable scripts that
read the input from stdin (line by line) and emit the output to stdout

$ cat files | mapper.py| sort | reducer.py

1. Copy files to HDFS
bin/hadoop dfs -copyFromLocal /tmp/gutenberg /user/hduser/gutenberg

2. Execute Hadoop command

$ bin/hadoop jar contrib/streaming/hadoop-*streaming*.jar \ -file
/home/hduser/mapper.py -mapper /home/hduser/mapper.py \ -file
/home/hduser/reducer.py -reducer /home/hduser/reducer.py \ -input
/user/hduser/input/* -output /user/hduser/g-output

3. Read all output files (one per reducer)

=4 | HARVARD Mlales=N INSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente
School of Engineen’ng ’\I‘&)ﬁ;{t COMPUTATIONAL SCIENCE
LXK

and Applied Sciences Wl AT HARVARD UNIvERSITY CS205: Computing Foundations for Computational Science 22

The MapReduce Programming Model

It Is All about the Framework for Parallel Processing
JOB DESCRIPTION

INPUT
DATA

OUTPUT
DATA

results

Programmer focus on the algorithm while the framework takes care of:

» Parallelizing program execution

* Partitioning input data

* Delivering data chunks to the different worker machines

« Scheduling the map/reduce tasks for execution on the worker machines
« Handling machine failures and slow responses

Gag i UESS wstmurerorarruen - Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente
:EZOXL;LEEE;:;&;;ZE P~ vesaeo vy CS205: Computing Foundations for Computational Science 23

The MapReduce Programming Model

WordCount Example on a Parallel System

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result
Bear,1 ——w»{ Bear, 2
Deor 1 b By,
Deer Bear River ——»={ Bear, 1
River, 1
Car, 1
Car,1 ——w Car,3 Bear, 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River Car Car River ——— = Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer,1 ——w»= Deer, 2
Deer, 1
Deer, 1
Deer CarBear ——» Car, 1
Bear, 1 River, 1 —— = River, 2
River, 1
HARVARD L= |NSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente

P— S
School of Engineering %%iw COMPUTATIONAL SCIENCE

and Applied Sciences W AT HARVARD univeRsiTy CS205: Computing Foundations for Computational Science 24

The Hadoop Processing Framework

Apache Hadoop and Alternatives

a fi*@: 5D sTorRM

=HBRSsE arA LB spQr OPEN MPI
OTHER
BATCH NTERACTIVE|| ONLINE ||STREAMING || GRAPH [[IN-MEMORY|| HPCMmPI (search)
(MapReduce) (HBase) | |[(Storm, S4,..)[| (Giraph) (Spark) (OpenMPI) (Weave...)
) - - - - - -
O
E zZz YARN (Cluster Resource Management) 2
a<h r
o E 5 = (d/o/a/0
5 0
o) HDFS2 (Redundant, Reliable Storage)

BIG COMPUTE
OPERATING
SYSTEM

COMPUTE NETWORK STORAGE CLOUD
;N’KV M Dr_“’cl)s @ ceph == !\A/Ilzﬂi);otl

GridGain/«m 5 DISCO

181 | HARVARD L=I8= INSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente

School of Engineering ! COMPUTATIONAL SCIENCE

and Applied Sciences CS205: Computing Foundations for Computational Science 25

The Hadoop Processing Framework
Bare-metal Deployment (On-premises)

[Map-Reduce | BIG DATA

ZEE] | HARVARD EXSER |ns7iTUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente
School of Engineen‘ng COMPUTATIONAL SCIENCE

AAAAAAAAAAAAAAAAAAA CS205: Computing Foundations for Computational Science 26

and Applied Sciences

The Hadoop Processing Framework
Cloud Deployment

Service/Provisioning Decoupling

« Common interfaces

e Custom environments
« Dynamic elasticity

L2 :“if“l'“;E R g hsturerorapeueo | ecture Cl. Batch Da ocessing Dr. Ignacio M. Llorente
and Applied sciences CS205: Computing Hbundations for Computational Science 27

The Hadoop Processing Framework
Elastic Map Reduce - AWS

\

The Amazon EMR job flow
runs on a cluster of
Amazon EC2 Instances

~ Inout data — Amazon EC2 Instance
Output results

Amazon Simple
Storage Service
Amazon EMR Job Flow

\ (S3)

Amazon CloudWatch

g Dr. Ignacio M. Llorente
28

HARVARD IX®ISH | NSTITUTE FOR APPLIED Lecture C1. Batch D
i i COMPUTATIONAL SCIENCE
School of Engineering CS205: Computing Foundations for Computational Science

and Applied Sciences

The Hadoop Processing Framework

Scale Horizontally!

Scale up Scale out

fewer, larger servers More, smaller servers

N
Bk

T
N

HARVARD IEX®SY |NSTITUTE FOR APPLIED Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente
School of Engineering Y COMPUTATIONAL SCIENCE

and Applied Sciences ~ WAg> AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 29

B s

Filter: Filter instance groups ...

» ig-RIN3SNG1805S

» ig-2MTQ4AOPQCEMD

HARVARD

School of Engineering
and Applied Sciences

The Hadoop Processing Framework
Elastic Map Reduce - AWS

2 instance groups (all loaded) C'
Status Node type & name

Runnin, CORE
9 Core Instance Group
MASTER

Runnin,
9 Master Instance Group

INSTITUTE FOR APPLIED
/X \\‘ COMPUTATIONAL SCIENCE
% AT HARVARD UNIVERSITY

Instance type

m3.xlarge
8 vCore, 15 GiB memory, 80 SSD GB storage
EBS Storage: none

m3.xlarge
8 vCore, 15 GiB memory, 80 SSD GB storage
EBS Storage: none

Lecture C1. Batch Data Processing
CS205: Computing Foundations for Computational Science

Instan Purchasing option Auto Scaling

2 In;tances On-demand Not enabled

Resize

1 Instances On-demand Not available for Master

Dr. Ignacio M. Llorente

The Hadoop Processing Framework

Clustered Architectures
PN

[Compute Nodes

MapReduce
Shared Disks
Client
. A
LUSTRE g -
. i
Compute-centric
=
—
—
HDFS
Data-centric
bdgded UARVARD e Lecture C1. Batch Data Processing Dr. Ignacio M. Llorente
School of Engineering gl L amaro umversry CS205: Computing Foundations for Computational Science 31

and Applied Sciences

Next Steps

Quiz today!

Get ready for next lab:
18. Hadoop Cluster on

Get ready for next hands-on:
H4. MapReduce Design Patterns (Tuesday 3/23)

32

Questions
Batch Data Processing

http://piazza.com/harvard/spring2021/cs205/home

33

