"Redesigning your application to run
multithreaded on a multicore machine is a little
like learning to swim by jumping into the deep
end"

Herb Sutter, Chair of the ISO C++ Standards
Committee, Microsoft, 2008

Lecture B.4:
Shared-Memory Parallel Processing

CS205: Computing Foundations for Computational Science
Dr. David Sondak
Spring Term 2021

10 100 JGS;

HARVARD PXOSN |NSTITUTE FOR APPLIED
N

School of Engineering 'é"i'ﬁé‘ COMPUTATIONAL SCIENCE
AT HARVARD UNIVERSITY

o . s ~
and Applied Sciences 4

Lectures developed by Dr. Ignacio Llorente

Linpack Competition Results

Position Name GFLOPs
1 Minhuan Li 37.7
2 You Wu 37.3
3 Junkai Ong 36.8
3 Saul Holding 36.8

HARVARD MY iNsTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering ,‘%‘;‘g COMPUTATIONAL SCIENCE

and Applied Sciences AP /T HARVARD UNIvERSITY CS205: Computing Foundations for Computational Science 3

Before We Start
Where We Are

Computing Foundations for Computational and Data Science

How to use modern computing platforms in solving scientific problems
Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

B.1. Foundations of Parallel Computing

B.2. Performance Optimization

B.3. Accelerated Computing

B.4. Shared-memory Parallel Processing
B.5. Distributed-memory Parallel Processing

C. Parallel Data Processing

Wrap-Up: Advanced Topics

HARVARD XS |nsTiTUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering %}qggfjg COMPUTATIONAL SCIENCE €S205: C ti F dati for C tati I Sci 4
and Applied Sciences GG~ Farao ers : Computing Foundations for Computational Science

CS205: Contents

APPLICATION SOFTWARE

APPLICATION PARALLEL PROGRAM
PARALLELISM DESIGN
| Optimization | PROGRAMMING MODEL
OpenACC I Spark I

I Map-Reduce I

B. BIG COMPUTE C. BIG DATA

PLATFORM

\C
N

0

~
_ AN : l FasCi (C ANNON
.'..- amazon : : HARVARD'S LARGEST CLUSTER
¢ webservices . : | , ’
A : :
™ n
u n
| | | ™ u
u n
|] [|
n u
BIE) -
[| n
u
u
CLOUD COMPUTING PARALLEL ARCHITECTURES
arvaro EEXOEE wstirute For apeLiED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering Qs COMPUTATIONAL SCIENCE . . i . .
and Applied Sciences "34" AT HARVARD UNIVERSITY C€S205: Computing Foundations for Computational Science 5

Context
Shared-Memory Parallel Processing

How can | make efficient use of
multiple cores?

LLLLL

‘N
0o
00|

-

5 &

(32KB)

L2 cache
(256 KB)

— c
= :
Dlt’ cache L2 cache "6

ALU (a big one) (256 KB) q,
(Execute) :

L3 cache c

(8 MB) o

o

| 5

Q

)

c

aaaaa

‘ Single-core ‘

‘ Multi-core ‘

‘ Multi-node

NSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
COMPUTATIONAL SCIENCE
AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 6

HARVARD IACS

School of Engineering
and Applied Sciences

Roadmap
Shared-Memory Parallel Processing

Shared-Memory Basics
OpenMP Fundamentals
Data Dependencies
Automatic Parallelization

Parallelization Process

EEE] narvarD IEXSEA \nstituTe For APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering ﬂ"ﬁ'ﬁié COMPUTATIONAL SCIENCE
and Applied Sciences G AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 7

SHARED MEMORY BASICS

Shared-Memory Basics
Thread Programming

* A process is an instance of
a computer program that
is being executed

Process P1 Process P2
User Space
Thread Uibrary Thread Ubrary

* A process can have 1 or
several threads

Kernel Space

* The kernel of the OS
schedule threads to
multiple cores

CPU CPU CPU CPU

EEEd warvaro EEXSEN \nstitute FoR APPLIED
School of Engineering COMPUTATIONAL SCIENCE
and Applied Sciences AT HARVARD UNIVERSITY

Lecture B.4: Shared-Memory Parallel Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
9

Multi-processing Basics
Multi-Processing vs Multi-Threading

|_singothroadedprocess __ |_singlotweaded process | |_singlethreaded process __

MULTI-PROCESSING

multithreaded process

MULTI-THREADING

EEFT] | HARVARD XS \ns7iTuTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

School of Engineeri BESEA COMPUTATIONAL SCIENCE i i . .
and Applied sciences W T navaRo universiry €S205: Computing Foundations for Computational Science 10

Shared-Memory Basics
Thread Programming

* Threads of execution: most popular abstraction for concurrency

v’ Created before parallel systems to allow concurrency

v' Example: Threaded web server for many clients simultaneously
* All threads in one process share same memory, file descriptors, etc.
* Allows one process to use multiple cores and CPUs

Coodo J[oua [oo]| ot][ama J[s

3 3 3

thread ——» ; < thread||

single-threaded multithreaded process

e R ZaO%=N INSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering &l COMPUTATIONAL SCIENCE . A . .
and Applied Sciences WY AT HARVARD UNIvERSITY CS205: Computing Foundations for Computational Science 11

Shared-Memory Basics
Elements of Programming

e Shared Memory Collaboration
v Threads share memory address space

* Fork/join threads

* Synchronization to ensure no data corruption
v’ Barrier

v" Mutual exclusive (mutex and lock/unlock)

» Assign/distribute work to threads
v" Work share

* Run time control
v' Query/request available resources

v' Interaction with OS, compiler, etc.

(HarvarD EEXSEN \nstiTuTe For APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

i i wg‘v'm COMPUTATIONAL SCIENCE .) A .
School of Engincering gy AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 12

%

and Applied Sciences X

Shared-Memory Basics
Race Conditions

A Race Condition occurs, if
* Two or more processes manipulate a shared resource

concurrently, and : e
* The outcome of the execution depends on the particular :

order in which the access takes place

....................
......
o® ®e
o .
. ®e
. .
. .
. .

moecesea,,,

(') MOV SUM, Reg1™.,
(2)ADD #1, Reg1
(3') MOV Reg1, SUM

..........
e

(4) MOV SUM, Reg1
(2) ADD #1, Reg1
7 (3) MOV Reg1, SUM

.
.
.. .®
. .
oy .®
. .
. .
.. o®
oy e
.........
...............

(1)(1)(2)(3)(2')(3") => SUM = SUM +1
(1)(1°)(2)(3)(2)(3) => SUM = SUM +1
(1)2)(3)(1')(2))(3') => SUM = SUM +2

>

.. Synchronization needed to prevent race conditions
MUTUAL EXCLUSION
Prevents simultaneous access to a shared resource

HARVARD MY iNsTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering asfggié COMPUTATIONAL SCIENCE . . dati f . I Sci 13
and Applied Sciences D AT HARVARD uNIVERSITY CS205: Computing Foundations for Computational Science

Shared-Memory Basics

Synchronization

Variable mutex: S I_P1'_ — L_ock_(S)_ - - -

Boolean: 0/1 | Critical Section |

General: Integer >= 0 | Unlock(S) |

_________ -

Functions:

Lock(S) 65 — ooy
If S==0thenwaitto S>0 | i I(_;?ict:ilé(j)Section |
fS>1thenS=S-1 | Unlock(S) |

Unlock(s: e ———— -
S=S+1

......................
OOOOOO
. .
. .
. .
. .o,
®e
.
.

.
...
o®
.

(1)2)(3)(1')(2))(3") => SUM = SUM +2

Lock(S o ‘
 somobumet | oK) (1)2)3)(1)2)(3) => SUM = SUM +2
Unlock(S) Unlock(S) '

.
.
. .®
.....
. o®
®e o
.......
""""""""
..............

HARvARD EENSEN \NstiTuTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering msd)s COMPUTATIONAL SCIENCE CS205: C ing F dati for C tati I Sci 14
and Applied Sciences B AT HARvaRo univeRsiTy : Computing Foundations for Computational Science

Shared-Memory Basics
Example: Hello World with Posix Threads

void *print message function(void *ptr);
pthread mutex t mutex;
main ()

{

void *print message function(void *ptr)

pthread t threadl, thread2; (

pthread attr_t pthread attr_default;

* .
pthread mutexattr_ t pthread mutexattr defa char *message;

= * .
struct timespec delay; me§sage"0 (Shar) ptr;
char *messagel = "Hello"; printf ("%s ", message);
char *message2 = "World\n"; pthread mutex unlock (&mutex) ;

pthread exit(0);

delay.tv_sec = 10;
delay.tv _nsec = 0;
pthread attr_init(&pthread attr_ default);

pthread mutexattr_ init (&pthread mutexattr_ default);

pthread mutex init (&mutex, &pthread mutexattr default);
pthread mutex lock (&mutex) ;

pthread create(&threadl, &pthread attr_default,

(void *) print message function, (void *) messagel);
pthread mutex lock (&mutex) ;
pthread create (&thread2, &pthread attr default,

(void *) print message function, (void *) message2);
pthread mutex lock (&mutex) ;
exit (0);

EZE2 | HARVARD -' INSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering BISHAA COMPUTATIONAL SCIENCE

%’ﬁ&" AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 15

and Applied Sciences

Shared-Memory Basics
Different Libraries and Approaches

OpenMP
High level of abstraction

Posix Threads

OS independent, but still requires thread management and
synchronization

OS Threads

OS dependent, use of low
level functionality

EEE2 | HARVARD /-\CS INSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing
School of Engineering "é'ﬂ COMPUTATIONAL SCIENCE

and Applied Sciences 4 A MARVARD UNveRs CS205: Computing Foundations for Computational Science

SIMPLICITY
PORTABILITY

PERFORMANCE
FUNCTIONALITY

Dr. David Sondak
16

OPENMP FUNDAMENTALS

OpenMP Fundamentals
What Is it?

OpenM

Enabling HPC since 1997

The OpenMP API specification for parallel programming

Specifications Blog Community v Resources v News & Events v

AMDR1 @=
SROMAMEN, = — OpenMP ARB Members

’ intel
St FUﬁTSU ’ = The OpenMP APl is jointly defined by a group of major
(LS hnrene Uvermore e Los Alamos Aicron computer hardware and software vendors and major
parallel computing user facilities.

& Nec Riba

NVIDIA.

RWTHAACHEN Sl g
@ rednat UNIVERSITY @ r— ek READ MORE

TACC Ve BEEs

| HARVARD
‘ School of Engineering
and Applied Sciences

INSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
COMPUTATIONAL SCIENCE
AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 18

OpenMP Fundamentals
Why OpenMP?

e Simplicity

* Itis directly supported by the compiler

e Leave thread management to the compiler
e Widely supported

e Automatic parallelization as first step

* Work on the sequential code

* Incremental parallelization possible

(HarvarD EEXSEN \nstiTuTe For APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

. " AV,
h f E WAV COMPUTATIONAL SCIENCE
:ﬁdoz:,glie:gsl:ieee,::z "‘?égw AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 19

OpenMP Fundamentals

Execution Model

* Programs begin as a single process: main thread

* Main executes in serial mode until a parallel region

in the parallel region

main continues

* Main creates a team of parallel threads (fork) that simultaneously execute statements

» After executing the parallel region, team threads synchronize and terminate (join), but

Parallel Task | Parallel Task Il Parallel Task Il

e

Main Thread
Parallel Task | Parallel Task Il Parallel Task Il
Vain Threaq - T - —
oo e
EEXA nwarvaro IEXSEN \wsmituTe For APPLIED Lecture B.4: Shared-Memory Parallel Processing

School of Engineering W COMPUTATIONAL SCIENCE
and Applied Sciences A/ ¥ AT HARVARD UNIVERSITY

CS205: Computing Foundations for Computational Science

Dr. David Sondak
20

OpenMP Fundamentals
A Simple Example: Parallel SAXPY

const int n = 10000;
const int n = 10000;
float x[n], yIn], a;

float x[n], yIn], a; int 1i;

nt i
Tt #pragma omp parallel for
for (1i=0; i<n; i++) {) . .

for (i=0; i<n; i++) {

ylil = a * x[i] + y[i]; y(i] = a * x[i] + y[i];

Main programming challenges
* Shared vs. Private variables
* Loop scheduling
HARVARD 'ACS INSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering COMPUTATIONAL SCIENCE . A . .
and Applied Sciences AT HARVARD UNIVERSITY C€S205: Computing Foundations for Computational Science 21

= =4 | HARVARD

OpenMP Fundamentals

A Simple Example: Parallel SAXPY (Scope of Variables)

#pragma omp parallel for

for (i=0; i<n; i++) {

yl(i] = a * x[1] + yI[1];

i2<n;

i2++)

{

= a * x[12] + yl[i2];

School of Engineering
and Applied Sciences

COMPUTATIONAL SCIENCE

AAAAAAAAAAAAAAAAA TY

for (11=0; il<n/2; il++) { for (i2=n/2;
y[il] = a * x[il] + y[il]; y[i2]
} }
Thread 1
V2SN |NSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing

C€S205: Computing Foundations for Computational Science

Thread 2

Dr. David Sondak
22

OpenMP Fundamentals
A Simple Example: Parallel SAXPY (Loop Scheduling)

#pragma omp parallel for
for (i=0; i<n; i++)

yli] = a * x[i] + y[1];
}

static chunk=1

for
yli]
}

(1=0; i<n;

= a * x[1i]

i=i+2) |

+ yl[i];

for
yli]
}

(i=0; i<n/2; i++) {

= a * x[1] + yl[i];

HARVARD ACS
School of Engineering

and Applied Sciences

IS COMPUTATIONAL SCIENCE
AT HARVARD UNIVERSITY

Thread 1

INSTITUTE FOR APPLIED

default

for (i=1; i<n; 1i=1i+2) {
yli] = a * x[1] + yl[1];
}
for (i=n/2; i<n; 1i++) {
yli]l] = a * x[1i] + yl[i];
}

Thread 2

Lecture B.4: Shared-Memory Parallel Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
23

OpenMP Fundamentals
A Simple Example: Pi

#include <stdio.h>
#include <omp.h>
#define N 2000000000
int main(void) {
double pi = 0.0f;
long long 1i;
#pragma omp parallel for reduction(+:pi) private(i,t), shared(N)
for (i=0; i<N; i++) {
double t= (double) ((i4+0.5)/N);
pi +=4.0/(1.0+t*t);
}
printf ("pi=%11.10f\n",pi/N);

return 0;

Note: We don'’t need to declare the loop iteration variables as private. These are private by
default.

(HarvarD EEXSEN \nstiTuTe For APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

Pa— AV,
School of Engineering %‘ﬁ COMPUTATIONAL SCIENCE
and Applied Sciences 'ééw AT HARVARD UNIVERSITY

CS205: Computing Foundations for Computational Science

24

OpenMP Fundamentals

Programming Model

* Compiler directives specify parallel regions (similar to OpenACC!)
* Headerfile: #include <omp.h>

fpragma omp directive [clause [[,] clause]...]

Parallel Regions

#fpragma omp parallel [clause [[,] clause]...]

Work Sharing Constructs

#fpragma omp for [clause [[,] clause]...]
#fpragma omp sections [clause [[,] clause]...]
#fpragma omp critical

#fpragma omp single

warvaro EEXSER nstiuTe FoR APPLIED Lecture B.4: Shared-Memory Parallel Processing

3 s COMPUTATIONAL SCIENCE
School of Engineering AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science

and Applied Sciences K

Dr. David Sondak
25

OpenMP Fundamentals

Parallel Region

* To fork a team of N threads, numbered 0,1,..,N-1
* Probably the most important construct in OpenMP

* Implicit barrier

//sequential code here (main thread)
fpragma omp parallel [clauses] {

// parallel computing here

/...
}

// sequential code here (main thread)

clauses
shared nowait copyin
if reduction private
firstprivate num threads default
HARVARD LXSE |NSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

School of Engineering

COMPUTATIONAL SCIENCE
. . HARVARD UNIVERSITY
and Applied Sciences

C€S205: Computing Foundations for Computational Science 26

OpenMP Fundamentals

Parallel Region

Work Sharing
* We have not yet discussed how work is distributed among threads...

* Without specifying how to share work, all threads will redundantly execute all the work
(i.e. no speedup!)

* The choice of work-share method is important for performance

OpenMP work-sharing constructs
v Loop (“for” in C/C++; “do” in Fortran)

v’ Sections
v’ Single
v’ Critical
(Harvarp EEXSEN \nstirute For AppLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

. . V)
School of Engineering 'ﬁ"&.ﬂv% COMPUTATIONAL SCIENCE
¥ AT HARV/ NIVERSITY

and Applied Sciences A C€S205: Computing Foundations for Computational Science 27

OpenMP Fundamentals

Loop Construct

#fpragma omp parallel shared(n,a,b) private (i)
{ #pragma omp for
for (i=0; i<n; i++)
ali]l=1;
fpragma omp for
for (i=0; i<n; i++)
b[1] = 2 * al[il;
}

#fpragma omp parallel for shared(n,a,b) private (i)

for (i=0; i<n; i++)

ali]l=1;
clauses
shared nowalt schedule
lastprivate reduction private
firstprivate ordered

HARVARD IACS

School of Engineering
and Applied Sciences

INSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing
COMPUTATIONAL SCIENCE
HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science

Dr. David Sondak
28

OpenMP Fundamentals

Clauses

Private Variables => Each thread maintains its own variable

* The values of private data are undefined upon entry to and exit from the specific
construct

* To ensure the last value is accessible after the construct, consider using
“lastprivate”

* To pre-initialize private variables with values available prior to the region, consider
using “firstprivate”

* Loop iteration variable is private by default

Shared Variables => Each thread can read or modify the variable

Shared among the team of threads executing the region

Data corruption is possible when multiple threads attempt to update the same
memory location

v" Data race condition

v' Memory store operation not necessarily atomic

Code correctness is user’s responsibility

HARVARD XN |nsTiTUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

ineeri NS COMPUTATIONAL SCIENCE
hool of E B
gﬁd":'l);“e;gs'zie:;:z K< iy €S205: Computing Foundations for Computational Science 29

"'% AT HARVARD UNIVER:!
X

OpenMP Fundamentals

Clauses

nowait clause
* This is useful inside a big parallel region
* Allows threads that finish earlier to proceed without waiting

* Less synchronization — may improve performance

fpragma omp for nowait

// for loop here

fpragma omp for nowait

if (integer expression) clause
* Determine if the region should run in parallel

* Useful option when data is too small (or too large)

fpragma omp parallel if (n>100)

{
//...some stuff

}

HARVARD 'ACS INSTITUTE FOR APPLIED

School of Engineering 55 COMPUTATIONAL SCIENCE
. . AT HARVARD UNIVERSITY

and Applied Sciences

Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
C€S205: Computing Foundations for Computational Science 30

OpenMP Fundamentals
Loop Scheduling

#pragma omp parallel for
for (i=0; i<n; i++) {

b[i] = a * x[1] + y[1];

THREADS

CORES

EEEZ] | HARVARD INSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
i i "ﬁv*"‘ COMPUTATIONAL SCIENCE

School of Engineering Wy

and Applied Sciences W AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 31

OpenMP Fundamentals
Loop Scheduling

static Each thread is assigned a fixed-size chunk (default)
dynamic Work is assigned as a thread requests it
guided Big chunks first and smaller and smaller chunks later
runtime Use environment variable to control scheduling
0 Static N-1
thr 0 thr 1 thr 2 thr 3
0 Static,n N-1

thr 0 thr 1 thr 2 thr 3 thr 0 thr 1 thr 2 thr 3 thr 0 thr 1 ||thr 2

0 Dynamic N-1

thr 0 thr 1 thr 2 thr 3 thr 1 thr 0 thr 2 thr 1 thr 3 thr 1 t0

) Guided N-1
thr @ thr 1 thr 2 thr 3 to || t1 || t2 | £3||to|t1|t2][t3] |[toftllt2

i1teration number
(Harvarp EEXSEN \nstirute For AppLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering 'ﬁ“ﬁnviw COMPUTATIONAL SCIENCE c 2 . C . d . f c . I S . 32
and Applied Sciences WGP ATHARVARD unveRsiTY $205: Computing Foundations for Computational Science

OpenMP Fundamentals
Loop Scheduling

static Each thread is assigned a fixed-size chunk (default)
dynamic Work is assigned as a thread requests it
guided Big chunks first and smaller and smaller chunks later
runtime Use environment variable to control scheduling
| 4 (8] | 4 | | 5
Thread | 3 A Thread || 3 6
| 2 L6 | | 2 | 7]
| 1 | 5 | | 1 |
Time Time
Static Dynamic
From TACC (https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html)
HARVARD XN |nsTiTUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

ineeri WISHEA cOMPUTATIONAL SCIENCE
School of Engine A0,
and App“edgsdee,:lg ":ﬁf; AT HARVARD UNIVERS CS205: Computing Foundations for Computational Science 33

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html

OpenMP Fundamentals

Sections

* One thread executes one section
v If “too many”, some threads execute more than one (round-robin)
v If “too few” sections, some threads are idle

v" We don’t know in advance which thread will execute which section

#fpragma omp sections
{
#fpragma omp section
{ foo()7 }
#fpragma omp section
{ bar(); }
#fpragma omp section
{ beer(); }

} // end of sections

(HarvarD EEXSEN \nstiTuTe For APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

. " [N
hool of E COMPUTATIONAL SCIENCE X i . .
gﬁd"::):“e:gs':ie:;l'z Y comruTaTionL s €S205: Computing Foundations for Computational Science 34

OpenMP Fundamentals
Single

* A “single” block is executed by one thread
v’ Useful for initializing shared variables
v" We don’t know exactly which thread will execute the block

v" Only one thread executes the “single” region; others bypass it

#fpragma omp single
{

a = 10;
}

fpragma omp for
{ for (1i=0; 1i<N; 1i++)

bl[i] = a;
warvaro EEXSER nstiuTe FoR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering g‘ COMPUTATIONAL SCIENCE
AT HARVARD UNIVERSITY

and Applied Sciences C€S205: Computing Foundations for Computational Science 35

OpenMP Fundamentals
Critical

* One thread at a time
v Note the difference between “single” and “critical”

v ALL threads will execute the region eventually
v" Mutual exclusive

#fpragma omp critical
{

//...some stuff

}

HARVARD IACS

School of Engineering
and Applied Sciences

INSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing

Dr. David Sondak
COMPUTATIONAL SCIENCE
AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science

36

HARVARD

OpenMP Fundamentals

Reduction Operations

sum = 0;
#pragma omp parallel shared(n,a,sum) private(sum local)

{

sum local = 0; #pragma omp for

A reduction
variable accumulates a value

for (i=0; i<n; i++)
that depends on all the iterations

together, but is independent of
the iteration order.

sum local += al1i];

#fpragma omp critical {

// form per-thread local sum

sum += sum local; // form global sum }

sum = 0;
#fpragma omp parallel for shared(...) private(...) \

reduction (+:sum)

{ for (i=0; i<n; i++) Reduction operations of +,*,-
' ' & |, A, &&, || are supported

sum += al[i];

School of Engineering
and Applied Sciences

Dr. David Sondak
37

STITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing
£ OMPUTATIONAL SCIENCE
T HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science

OpenMP Fundamentals

Reduction Operations

sum = 0;

#pragma omp parallel shared(n,a,sum) private(sum local)

{

sum local = 0; #pragma omp for

for (i=0; i<n; i++) Breakout Room!
* Make sure you understand this code.

sum local += al1i];

* What is your favorite OpenMP

#fpragma omp critical {
construct so far?

// form per-thread local sum

sum += sum local; // form global sum }

sum = 0;
#fpragma omp parallel for shared(...) private(...) \

reduction (+:sum)

{
for (i=0; i<n; i++)

sum += al[i];

(Harvarp EEXSEN \nstirute For AppLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering "j‘g"ﬁ@ COMPUTATIONAL SCIENCE A i . .
and Applied Sciences ¢ ?éy AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 38

OpenMP Fundamentals

Functions and Environment Variables

Resource Query Functions

Max number of threads: omp get max threads ()

Number of processors: omp get num procs ()

Number of threads (inside a parallel region): omp get num threads ()
Get thread ID: omp get thread num()

Control the Number of Threads

>
=

* Parallel region: #pragma omp parallel num threads (integer) o)

* Run-time function: omp set num threads|() &

* Environment variable: export OMP NUM THREADS=n

Environment Variables

* Loop scheduling policy: OMP SCHEDULE

* Number of threads: OMP NUM THREADS

EEXI warvaro EEXSEN \nstivuTe For APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

. . 7
School of Engineering g“ COMPUTATIONAL SCIENCE
AT HARVARD UNIVERSITY

and Applied Sciences C€S205: Computing Foundations for Computational Science 39

DATA DEPENDENCIES

Data Dependencies
Relationship Between lterations of a Loop

* Not all loops can be parallelized.
* Parallelization of code must not affect the correctness of a program!
* Before adding OpenMP directives need to check for any dependencies:

v" Flow dependencies occur when an iteration depends on the result of a previous
iteration.

pragma omp parallel for num threads(thread count)
for (1 = 2; 1 < n; i++)
fibo[i] = fibo[i-1] + fibol[i-2];

v" Anti-dependencies occur when an iteration requires a value that is later updated.
pragma omp parallel for num threads(thread count)

for (1 = 1; 1 < n; 1i++)
fibo[i] = fibo[i+1l] + fibo[i+2];

Can be solved!

HARVARD XN |nsTiTUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

ineeri NS COMPUTATIONAL SCIENCE
hool of E B
gﬁd":'l);“e;g;zie:xz 921;%,3?' AT HARVARD UNIVERSITY €S205: Computing Foundations for Computational Science 41

Data Dependencies

Relationship Between Iterations of a Loop

Bold= private

NO DEPENDENCY
for (i=0; i<n; i++)
ali] = x + b[i] * c[i]
} PARALLEL
NO DEPENDENCY
for (i=1; i<n; 1i+2)
ali] = b[i] - a[i-1]
} PARALLEL
FUNCTION CALL
for (i=1; i<n; i++){

x = sqgrt(ali])

b[i] = x * c[1i] + x * d[1]
) FUNCTION DEPENDENT
HARVARD X®ISY |NSTITUTE FOR APPLIED

ISBYAY COMPUTATIONAL SCIENCE
IVERSITY

School of Engineering AWy
AT HARVARD UNIVER:!

. . A NY
and Applied Sciences KX

Lecture B.4: Shared-Memory Parallel Processing
CS205: Computing Foundations for Computational Science

DATA DEPENDENCY

for (i=1; i<n; i++)
ali] = b[i]

} SEQUENTIAL

- a[i-1]

VARIABLE LOCAL

for (i=1; i<n; i++){
x = al[i] + b[i]
b[i] = x + b[i] * x

) PARALLEL

* ali]

NO DEPENDENCY

indx = 0

for (i=1; i<n; i++) {
indx = indx + 1i
ali] = b[i]

} RESTRUCTURE

* c[indx]

Dr. David Sondak

AUTOMATIC PARALLELIZATION

Automatic Parallelization
A Parallel Version in Seconds!

Vision: Take a sequential program and automatically convert it into a parallel version
v’ Lots of research in the early 1990s, then tapered off. (it’s hard!)

v' Renewed interest now since multicores are so common. (it’s still hard!)

* Some languages are easier than others (FORTRAN!). C can be easy to parallelize, given
the right code (avoid dynamic data), plus compiler hints

* “The right code” = Arrays with no loop-carried dependencies.

* Under the hood, most parallelization frameworks use OpenMP

HARVARD XS |nsTiTUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

School of Engineering '5&'&@ COMPUTATIONAL SCIENCE

and Applied Sciences 'e;'ﬁw AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 45
-«

Automatic Parallelization
Conditions for Automatic Parallelization

A Loop must

* have a recognized loop style, e.g., for loops with bounds that don’t vary per-iteration

have no dependencies between data accessed in loop bodies for each iteration

not conditionally change scalar variables read after the loop terminates, or change any
scalar variable across iterations

* have enough work in the loop body to make parallelization profitable

HARVARD EXSEY |ns7iTUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

ineeri NS COMPUTATIONAL SCIENCE
School of E v
aﬁd":p;lie;g;:ieee,ﬂ';i %"f f‘?' AT HA NIVERSITY C€S205: Computing Foundations for Computational Science 46

Automatic Parallelization
Automatic Parallelization in gcc

gcc (since 4.3) can also auto-parallelize loops, with several limitations:
1 It does not tell which loops it parallelizes
2 It only operates with a fixed number of threads
3 The profitability metrics are quite simple

4 Only operates in simple cases

Relevant flags
-ftree-parallelize-1loops=N to parallelize where N is the number of threads

—-fdump-tree-parloops-details shows the automatic parallelization (quite
unreadable)

HARVARD XN |nsTiTUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

ineeri NS COMPUTATIONAL SCIENCE
fE B
School of Engineering gy C Tt LT oveneny €S205: Computing Foundations for Computational Science 47

and Applied Sciences '@Z >

Automatic Parallelization
Some Examples

Loops that gcc’s Automatic Parallelization Can Handle

Single Loop Nested loops with simple dependency

for (i=0; 1i<1000; i++) for (i=0; 1i<100; i++)
for (3j=0; j<100; J++)

X[11[3] = X[1][3] +Y[1-1]11[3J];

Single loop with not-very-simple dependency

X[1]=1+3;

for (i=0; i<10; i++)

X[2x1+1] =X[2%1];

Loops that gcc’s Automatic Parallelization Can’t Handle

Single loop with if statement Triangle loop
for (J = 0; 73 <= 10; j++) for (i=0; i<100; i++)
1if (3>5)X[1]=1+3; for (J = i; 3 < 100; J++)

X[1][3] =5

HARVARD MY iNsTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak

School of Engineering "‘Yﬁ'ﬁi\é COMPUTATIONAL SCIENCE

and Applied Sciences G AT HARvAD universiTY CS205: Computing Foundations for Computational Science 48
-«

PARALLELIZATION PROCESS

Parallelization Process
Continuous Process

1. Use Optimized Sequential Version (baseline execution time and results for validation)
2. Apply Automatic Parallelization
3. Evaluate execution time and speedup for a growing number of processors with a fixed and a growing problem size
4. Explicit Parallelization Using Directives (use info from automatic parallelization)
Start with the loops with high CPU usage (profiling tools)

Verify results for different number of processors (race conditions), and evaluate execution time and speedup for a
growing number of processors with a fixed and a growing problem size

Consider the sched type
Repeat until results are good enough in terms of time and/or speedup
5. Explicit Parallelization Adapting Code

© Restructure loops to enhance parallelism and eliminate data dependencies
© Change the numerical algorithm

5. Explicit Parallelization adopting a coarser-grain domain decomposition approach

HARVARD INSTITUTE FOR APPLIED Lecture B.4: Shared-Memory Parallel Processing Dr. David Sondak
School of Engineering msd)s COMPUTATIONAL SCIENCE CS205: C ing F dati for C . I Sci 50
and Applied Sciences A AT HARVARD UnIvERSITY 5: Computing Foundations for Computational Science

Next Steps

Get ready for lab sessions:
|16 - OpenMP on AWS

Get ready for second hands-on:
H2. OpenMP Programming
Check Canvas for access to RC Compute cluster

51

