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"Redesigning your application to run 
multithreaded on a multicore machine is a little 
like learning to swim by jumping into the deep 

end"

Herb Sutter, Chair of the ISO C++ Standards 
Committee, Microsoft, 2008
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Linpack Competition Results

Position Name GFLOPs

1 Minhuan Li 37.7

2 You Wu 37.3

3 Junkai Ong 36.8

3 Saul Holding 36.8
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Before We Start
Where We Are

Computing Foundations for Computational and Data Science

How to use modern computing platforms in solving scientific problems

Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

B. Parallel Computing

B.1. Foundations of Parallel Computing

B.2. Performance Optimization

B.3. Accelerated Computing

B.4. Shared-memory Parallel Processing

B.5. Distributed-memory Parallel Processing

C. Parallel Data Processing

Wrap-Up: Advanced Topics
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Optimization
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Context
Shared-Memory Parallel Processing

Single-core

How can I make efficient use of 
multiple cores?

Multi-core

In
te

rc
on

ne
ct

io
n 

Multi-node
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Shared-Memory Basics

OpenMP Fundamentals

Data Dependencies

Automatic Parallelization

Parallelization Process

Roadmap
Shared-Memory Parallel Processing



SHARED MEMORY BASICS
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Preguntas Previas a la Optimización de Código
Thread Programming

Shared-Memory Basics

• A process can have 1 or 
several threads 

• A process is an instance of 
a computer program that 
is being executed

• The kernel of the OS 
schedule threads to 
multiple cores
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6. Paradigma de Memoria Compartida
• Programación por Medio de Threads

Multi-Processing vs Multi-Threading

MULTI-PROCESSING

MULTI-THREADING

Multi-processing Basics
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Preguntas Previas a la Optimización de Código
Thread Programming

Shared-Memory Basics

• Threads of execution: most popular abstraction for concurrency 
ü Created before parallel systems to allow concurrency 
ü Example: Threaded web server for many clients simultaneously 

• All threads in one process share same memory, file descriptors, etc. 
• Allows one process to use multiple cores and CPUs
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Preguntas Previas a la Optimización de Código
Elements of Programming

Shared-Memory Basics

• Shared Memory Collaboration

ü Threads share memory address space

• Fork/join threads 

• Synchronization to ensure no data corruption 

ü Barrier

ü Mutual exclusive (mutex and lock/unlock) 

• Assign/distribute work to threads 

ü Work share 

• Run time control 

ü Query/request available resources 

ü Interaction with OS, compiler, etc. 
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Preguntas Previas a la Optimización de Código
Race Conditions

SUMA

(1) MOV SUM, Reg1
(2) ADD #1, Reg1

(3) MOV Reg1, SUM

(1’) MOV SUM, Reg1
(2’) ADD #1, Reg1

(3’) MOV Reg1, SUM

(1’)(1)(2)(3)(2’)(3’) => SUM = SUM +1
(1)(1’)(2’)(3’)(2)(3) => SUM = SUM +1
(1)(2)(3)(1’)(2’)(3’) => SUM = SUM +2

Synchronization needed to prevent race conditions 
MUTUAL EXCLUSION

Prevents simultaneous access to a shared resource

P1 P2

P1
P2

. . .
SUM = SUM+1

. . .

. . .
SUM = SUM+1

. . .

A Race Condition occurs, if 
• Two or more processes manipulate a shared resource 

concurrently, and 
• The outcome of the execution depends on the particular 

order in which the access takes place

Shared-Memory Basics
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Preguntas Previas a la Optimización de Código
Synchronization 

Variable mutex: S
Boolean: 0 / 1 
General: Integer >= 0

Functions:
Lock(S)

If S == 0 then wait to S > 0
If S > 1 then S = S - 1

Unlock(S):
S = S + 1

P1: Lock(S)
Critical Section
Unlock(S)

P2: Lock(S)
Critical Section
Unlock(S)

P1
P2

. . .
Lock(S)
SUM = SUM+1
Unlock(S)
. . .

. . .
Lock(S)
SUM = SUM+1
Unlock(S)
. . .

(1)(2)(3)(1’)(2’)(3’) => SUM = SUM +2

(1’)(2’)(3’)(1)(2)(3) => SUM = SUM +2

Shared-Memory Basics
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void *print_message_function( void *ptr );
pthread_mutex_t mutex;
main()
{

pthread_t thread1, thread2;
pthread_attr_t pthread_attr_default;
pthread_mutexattr_t pthread_mutexattr_default;
struct timespec delay;
char *message1 = "Hello";
char *message2 = "World\n";

delay.tv_sec = 10;
delay.tv_nsec = 0;

pthread_attr_init(&pthread_attr_default);
pthread_mutexattr_init(&pthread_mutexattr_default);

pthread_mutex_init(&mutex, &pthread_mutexattr_default);
pthread_mutex_lock(&mutex);

pthread_create( &thread1, &pthread_attr_default,
(void *) print_message_function, (void *) message1);

pthread_mutex_lock(&mutex);
pthread_create(&thread2, &pthread_attr_default,

(void *) print_message_function, (void *) message2);
pthread_mutex_lock(&mutex);
exit(0);

}

void *print_message_function( void *ptr )
{

char *message;
message = (char *) ptr;
printf("%s ", message); 
pthread_mutex_unlock(&mutex);
pthread_exit(0);  

}

Example: Hello World with Posix Threads
Shared-Memory Basics
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6. Paradigma de Memoria Compartida
• Programación por Medio de Threads

Different Libraries and Approaches 

OS Threads
OS dependent, use of low 

level functionality

Posix Threads
OS independent, but still requires thread management and 

synchronization 

OpenMP
High level of abstraction

SIMPLICITY
PORTABILITY

PERFORMANCE
FUNCTIONALITY

Shared-Memory Basics



OPENMP FUNDAMENTALS
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Preguntas Previas a la Optimización de Código
What Is it?

OpenMP Fundamentals



Lecture B.4: Shared-Memory Parallel Processing
CS205: Computing Foundations for Computational Science

Dr. David Sondak
19

Preguntas Previas a la Optimización de Código
Why OpenMP?

OpenMP Fundamentals

• Simplicity 

• It is directly supported by the compiler

• Leave thread management to the compiler  

• Widely supported

• Automatic parallelization as first step

• Work on the sequential code 

• Incremental parallelization possible
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Preguntas Previas a la Optimización de Código
Execution Model

OpenMP Fundamentals

• Programs begin as a single process: main thread 
• Main executes in serial mode until a parallel region 
• Main creates a team of parallel threads (fork) that simultaneously execute statements 

in the parallel region 
• After executing the parallel region, team threads synchronize and terminate (join), but 

main continues 

Main

Main
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A Simple Example: Parallel SAXPY
OpenMP Fundamentals

const int n = 10000; 
float x[n], y[n], a;
int i; 
for (i=0; i<n; i++) { 

y[i] = a * x[i] + y[i]; 
} 

const int n = 10000; 

float x[n], y[n], a;
int i; 
#pragma omp parallel for
for (i=0; i<n; i++) { 

y[i] = a * x[i] + y[i]; 

} 

Main programming challenges

• Shared vs. Private variables

• Loop scheduling
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A Simple Example: Parallel SAXPY (Scope of Variables)
OpenMP Fundamentals

#pragma omp parallel for
for (i=0; i<n; i++) { 

y[i] = a * x[i] + y[i]; 
} 

Thread 1 Thread 2

x

for (i1=0; i1<n/2; i1++) { 

y[i1] = a * x[i1] + y[i1]; 

} 

for (i2=n/2; i2<n; i2++) { 

y[i2] = a * x[i2] + y[i2]; 

} 

y
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A Simple Example: Parallel SAXPY (Loop Scheduling)
OpenMP Fundamentals

#pragma omp parallel for
for (i=0; i<n; i++) { 

y[i] = a * x[i] + y[i]; 
} 

Thread 1 Thread 2

for (i=0; i<n/2; i++) { 

y[i] = a * x[i] + y[i]; 

} 

for (i=n/2; i<n; i++) { 

y[i] = a * x[i] + y[i]; 

} 

for (i=0; i<n; i=i+2) { 

y[i] = a * x[i] + y[i]; 

} 

for (i=1; i<n; i=i+2) { 

y[i] = a * x[i] + y[i]; 

} 

static chunk=1

default
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A Simple Example: Pi

#include <stdio.h>

#include <omp.h>

#define N 2000000000
int main(void) {  

double pi = 0.0f;  
long long i;  

#pragma omp parallel for reduction(+:pi) private(i,t), shared(N)

for (i=0; i<N; i++) {    
double t= (double)((i+0.5)/N);    
pi +=4.0/(1.0+t*t);  

}  

printf("pi=%11.10f\n",pi/N);  

return 0;
}  

OpenMP Fundamentals

Note: We don’t need to declare the loop iteration variables as private. These are private by 
default. 
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OpenMP Fundamentals
Programming Model

• Compiler directives specify parallel regions (similar to OpenACC!)
• Header file: #include <omp.h> 

#pragma omp directive [clause [[,] clause]...]

Parallel Regions
#pragma omp parallel [clause [[,] clause]...] 

Work Sharing Constructs
#pragma omp for [clause [[,] clause]...] 
#pragma omp sections [clause [[,] clause]...]
#pragma omp critical
#pragma omp single
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OpenMP Fundamentals
Parallel Region

• To fork a team of N threads, numbered 0,1,..,N-1 
• Probably the most important construct in OpenMP
• Implicit barrier 

//sequential code here (main thread) 
#pragma omp parallel [clauses] { 
// parallel computing here 
// ... 

} 
// sequential code here (main thread) 

clauses
shared nowait copyin
if reduction private 
firstprivate num_threads default 
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OpenMP Fundamentals
Parallel Region

Work Sharing

• We have not yet discussed how work is distributed among threads... 

• Without specifying how to share work, all threads will redundantly execute all the work 
(i.e. no speedup!) 

• The choice of work-share method is important for performance 

• OpenMP work-sharing constructs

ü Loop (“for” in C/C++; “do” in Fortran) 

ü Sections

ü Single

ü Critical
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OpenMP Fundamentals
Loop Construct

#pragma omp parallel shared(n,a,b) private(i) 
{ #pragma omp for 
for (i=0; i<n; i++) 
a[i]=i; 

#pragma omp for 
for (i=0; i<n; i++) 
b[i] = 2 * a[i];

} 

clauses
shared nowait schedule
lastprivate reduction private
firstprivate ordered

#pragma omp parallel for shared(n,a,b) private(i) 
for (i=0; i<n; i++) 

a[i]=i; 
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OpenMP Fundamentals
Clauses

Private Variables => Each thread maintains its own variable

• The values of private data are undefined upon entry to and exit from the specific 
construct 

• To ensure the last value is accessible after the construct, consider using 
“lastprivate” 

• To pre-initialize private variables with values available prior to the region, consider 
using “firstprivate” 

• Loop iteration variable is private by default 

Shared Variables => Each thread can read or modify the variable

• Shared among the team of threads executing the region 

• Data corruption is possible when multiple threads attempt to update the same 
memory location 

ü Data race condition 

ü Memory store operation not necessarily atomic 

• Code correctness is user’s responsibility 
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OpenMP Fundamentals
Clauses

nowait clause
• This is useful inside a big parallel region
• Allows threads that finish earlier to proceed without waiting
• Less synchronization – may improve performance  
#pragma omp for nowait
// for loop here
#pragma omp for nowait
...  

if (integer expression) clause
• Determine if the region should run in parallel 
• Useful option when data is too small (or too large)
#pragma omp parallel if (n>100) 
{ 
//...some stuff 
} 
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OpenMP Fundamentals
Loop Scheduling

CORES

THREADS

#pragma omp parallel for
for (i=0; i<n; i++) { 

b[i] = a * x[i] + y[i]; 
} 
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OpenMP Fundamentals
Loop Scheduling

Data Clauses Comment
static Each thread is assigned a fixed-size chunk (default)

dynamic Work is assigned as a thread requests it

guided Big chunks first and smaller and smaller chunks later

runtime Use environment variable to control scheduling
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OpenMP Fundamentals
Loop Scheduling

Data Clauses Comment
static Each thread is assigned a fixed-size chunk (default)

dynamic Work is assigned as a thread requests it

guided Big chunks first and smaller and smaller chunks later

runtime Use environment variable to control scheduling

Static Dynamic

From TACC (https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html)

https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-loop.html
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OpenMP Fundamentals
Sections

#pragma omp sections 
{ 
#pragma omp section 
{ foo(); } 

#pragma omp section 
{ bar(); } 

#pragma omp section 
{ beer(); } 

} // end of sections 

• One thread executes one section 
ü If “too many”, some threads execute more than one (round-robin) 
ü If “too few” sections, some threads are idle 
ü We don’t know in advance which thread will execute which section 
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OpenMP Fundamentals
Single

#pragma omp single
{ 
a = 10; 

} 
#pragma omp for
{ for (i=0; i<N; i++) 
b[i] = a; 

} 

• A “single” block is executed by one thread 

ü Useful for initializing shared variables

ü We don’t know exactly which thread will execute the block

ü Only one thread executes the “single” region; others bypass it 
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OpenMP Fundamentals
Critical

#pragma omp critical 
{ 
//...some stuff 
} 

• One thread at a time 
ü Note the difference between “single” and “critical”
ü ALL threads will execute the region eventually 
ü Mutual exclusive 
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OpenMP Fundamentals
Reduction Operations

sum = 0;
#pragma omp parallel shared(n,a,sum) private(sum_local) 

{
sum_local = 0; #pragma omp for 
for (i=0; i<n; i++) 

sum_local += a[i]; 
#pragma omp critical { 

// form per-thread local sum 

sum += sum_local; // form global sum } 
}  

sum = 0;
#pragma omp parallel for shared(...) private(...) \

reduction(+:sum) 

{
for (i=0; i<n; i++) 

sum += a[i]; 
} 

Reduction operations of +,*,-
,& |, ^, &&, || are supported 

A reduction 
variable accumulates a value 

that depends on all the iterations 
together, but is independent of 

the iteration order.
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OpenMP Fundamentals
Reduction Operations

sum = 0;
#pragma omp parallel shared(n,a,sum) private(sum_local) 

{
sum_local = 0; #pragma omp for 
for (i=0; i<n; i++) 

sum_local += a[i]; 
#pragma omp critical { 

// form per-thread local sum 

sum += sum_local; // form global sum } 
}  

sum = 0;
#pragma omp parallel for shared(...) private(...) \

reduction(+:sum) 

{
for (i=0; i<n; i++) 

sum += a[i]; 
} 

Breakout Room!
• Make sure you understand this code.
• What is your favorite OpenMP

construct so far?
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Functions and Environment Variables

Resource Query Functions

• Max number of threads: omp_get_max_threads() 
• Number of processors: omp_get_num_procs() 
• Number of threads (inside a parallel region): omp_get_num_threads() 
• Get thread ID: omp_get_thread_num() 

OpenMP Fundamentals

Control the Number of Threads 

• Parallel region: #pragma omp parallel num_threads(integer) 
• Run-time function: omp_set_num_threads() 
• Environment variable: export OMP_NUM_THREADS=n 

PR
IO

RI
TY

Environment Variables 

• Loop scheduling policy: OMP_SCHEDULE
• Number of threads: OMP_NUM_THREADS



DATA DEPENDENCIES
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Preguntas Previas a la Optimización de Código
Relationship Between Iterations of a Loop 

Data Dependencies

• Not all loops can be parallelized. 
• Parallelization of code must not affect the correctness of a program! 
• Before adding OpenMP directives need to check for any dependencies: 
ü Flow dependencies occur when an iteration depends on the result of a previous 

iteration. 

# pragma omp parallel for num_threads(thread_count) 
for (i = 2; i < n; i++) 
fibo[i] = fibo[i-1] + fibo[i-2]; 

ü Anti-dependencies occur when an iteration requires a value that is later updated. 

# pragma omp parallel for num_threads(thread_count) 
for (i = 1; i < n; i++) 
fibo[i] = fibo[i+1] + fibo[i+2]; Can be solved!
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Preguntas Previas a la Optimización de Código
Relationship Between Iterations of a Loop 

Data Dependencies

NO DEPENDENCY

NO DEPENDENCY
VARIABLE LOCAL

FUNCTION CALL NO DEPENDENCY

Bold= private

PARALLEL SEQUENTIAL

PARALLEL
PARALLEL

FUNCTION DEPENDENT
RESTRUCTURE

for (i=0; i<n; i++) 
a[i] = x + b[i] * c[i]

}  

for (i=1; i<n; i++) 
a[i] = b[i] - a[i-1]

}  

for (i=1; i<n; i+2) 
a[i] = b[i] - a[i-1]

}  

for (i=1; i<n; i++){
x = a[i] * a[i] + b[i]
b[i] = x + b[i] * x

}  

DATA DEPENDENCY

for (i=1; i<n; i++){
x = sqrt(a[i])
b[i] = x * c[i] + x * d[i]

}  

indx = 0

for (i=1; i<n; i++){
indx = indx + i
a[i] = b[i] * c[indx]

}  



AUTOMATIC PARALLELIZATION
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Preguntas Previas a la Optimización de Código
A Parallel Version in Seconds!

Automatic Parallelization

• Vision: Take a sequential program and automatically convert it into a parallel version
ü Lots of research in the early 1990s, then tapered off. (it’s hard!) 
ü Renewed interest now since multicores are so common. (it’s still hard!) 

• Some languages are easier than others (FORTRAN!). C can be easy to parallelize, given 
the right code (avoid dynamic data), plus compiler hints

• “The right code” = Arrays with no loop-carried dependencies.

• Under the hood, most parallelization frameworks use OpenMP
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Preguntas Previas a la Optimización de Código
Conditions for Automatic Parallelization 
Automatic Parallelization

A Loop must

• have a recognized loop style, e.g., for loops with bounds that don’t vary per-iteration

• have no dependencies between data accessed in loop bodies for each iteration

• not conditionally change scalar variables read after the loop terminates, or change any 
scalar variable across iterations

• have enough work in the loop body to make parallelization profitable 
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Preguntas Previas a la Optimización de Código
Automatic Parallelization in gcc

Automatic Parallelization

gcc (since 4.3) can also auto-parallelize loops, with several limitations: 

1 It does not tell which loops it parallelizes

2 It only operates with a fixed number of threads

3 The profitability metrics are quite simple 

4 Only operates in simple cases

Relevant flags

-ftree-parallelize-loops=N to parallelize where N is the number of threads

-fdump-tree-parloops-details shows the automatic parallelization (quite 
unreadable )
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Preguntas Previas a la Optimización de Código
Some Examples

Automatic Parallelization

for (i=0; i<1000; i++) 
x[i]=i+3; 

for (i=0; i<100; i++)
for (j=0; j<100; j++) 

X[i][j] = X[i][j] +Y[i−1][j]; 

for (i=0; i<10; i++) 

X[2∗i+1] =X[2∗i]; 

for (j = 0; j <= 10; j++)
if (j>5)X[i]=i+3; 

for (i=0; i<100; i++)
for (j = i; j < 100; j++) 

X[i][j] = 5 

Loops that gcc’s Automatic Parallelization Can Handle 

Single Loop Nested loops with simple dependency 

Single loop with not-very-simple dependency 

Single loop with if statement Triangle loop

Loops that gcc’s Automatic Parallelization Can’t Handle 



PARALLELIZATION PROCESS
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Preguntas Previas a la Optimización de CódigoParallelization Process

1. Use Optimized Sequential Version (baseline execution time and results for validation)

2. Apply Automatic Parallelization

3. Evaluate execution time and speedup for a growing number of processors with a fixed and a growing problem size

4. Explicit Parallelization Using Directives (use info from automatic parallelization)

Start with the loops with high CPU usage (profiling tools)

Verify results for different number of processors (race conditions), and evaluate execution time and speedup for a 
growing number of processors with a fixed and a growing problem size

Consider the sched type

Repeat until results are good enough in terms of time and/or speedup 

5. Explicit Parallelization Adapting Code

J Restructure loops to enhance parallelism and eliminate data dependencies
K Change the numerical algorithm

5. Explicit Parallelization adopting a coarser-grain domain decomposition approach

Continuous Process
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Next Steps

• Get ready for lab sessions:
I6 - OpenMP on AWS

• Get ready for second hands-on:
H2. OpenMP Programming

Check Canvas for access to RC Compute cluster


