“If you fail to plan, you are planning to fail!”

Benjamin Franklin, mid-eighteenth century
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Before We Start
Where We Are

Computing Foundations for Computational and Data Science

How to use modern computing platforms in solving scientific problems
Intro: Large-Scale Computational and Data Science

A. Parallel Processing Fundamentals

A.1. Parallel Processing Architectures

A.2. Large-scale Processing on the Cloud
A.3. Practical Aspects of Cloud Computing
A.4. Application Parallelism

A.5. Designing Parallel Programs
B. Parallel Computing
C. Parallel Data Processing

Wrap-Up: Advanced Topics
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Context

Designing Parallel Programs

First Think then
Code!
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Context

Designing Parallel Programs

~

e Sequential Version

J

e Parallelization Overheads

~

e Numerical Complexity

J

e Efficiency and Scalability \
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Roadmap
Designing Parallel Programs

Code Analysis
Parallelization Overheads
Numerical Complexity

Efficiency and Scalability

HARVARD  EEXSEX \\sTiTUTE FOR APPLIED Lecture A.5: Designing Parallel Programs Dr. David Sondak

: : ISBYAY COMPUTATIONAL SCIENCE
h f E A% . . . .
School of Engineering gy 0 o uversine €S205: Computing Foundations for Computational Science 7

. . /o r
and Applied Sciences KX




Code Analysis

Understand the Program and the Problem

The first step in developing parallel software is to understand the problem that you wish
to solve in parallel. If you are starting with a serial program, this necessitates
understanding the existing code also

PARALLEL VERSION NEW PARALLEL CODE

* Develop a parallel implementation of * Develop a completely new code from
an existing serial code scratch

* Fine grain / compiler or directive- » Coarse grain / domain
based parallelization decomposition parallelization

e Easier approach and faster to * Takes longer, but better performance
develop

CODE ANALYSIS
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Code Analysis

Execution Time Components

EXECUTION_TIME = CPU_TIME + I/O_TIME + SYSTEM_TIME

POTENTIALLY PARALLEL_TIME SECTION
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Code Analysis
Code Profiling

CLI Tools
gprof, tconv, dtime, etime, ...

GUI Tools

HorkShop File Build Debug Brouse Options Tools Help

HReHa ueesR

Loop Runtines
Progran: fftY
Tining file: FFf

fft.F, 176

fft.F, 182

Vi - [Read onlyl fft.F:

HorkShop Version ffe.F, 183

O®% T bt | B Blg | T

ffe.F, 370
TIHE = ZERO
TIHER ERD fft.F, o
TIMEI = ZERD
N =64 fft.F, 0
def SP
CONST = sqrt(65,0%513,0) fft.F,
i
e
CONST = dsqrt(65,000%513,000) fre.F, 600
d;
0

1 2 3 4
Hallclock Seconds

o

CONST = qsqrt(65,000%513,000)
dif

BEGIN THE LOOP ON THE NUMBER OF STEPS,
1080 ISTEP=1,NSTEP
INITIALIZE ARRAYS FOR TRANSFORM

|B Parallel I Serial|

Click on a bar in the graph to see the source code and hints for that loop
Show loops that account for at least 2.0 % of total runtine

Show loop times by |  seconds ) percentage

TIMEO = JOBTIM(X1)
CALL CFFTI (N,HSAVE)
00 20 J=1,512

0o

10 I=1,64

T = TOREAL((65-1)#(513-J))/CONST |
TINY = ONE/T

TEST(I,J) = TOCPLXCT, TINV)
10 CONTINUE

20 CONTINUE

INITIALIZATION TIME

TIMEI=TIMEI+JOBTIN(XI)-TIHEO

Looptool (solaris)
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Parallelization Overheads
Inefficiencies in Parallel Processing

Parallel Overheads

PARALLEL_TIME = COMPUTATION + COORDINATION + IDLE

Communication

Synchronization

Load balancing
Sequential sections

Parallel Computing
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Parallelization Overheads
Communication

Types of Communication e 6 6 é 6 6 6 6
* Memory sharing (implicit): Access to a \\G// \\6{/

shared memory space

broadcast scatter

* Message passing (explicit): Point-to-point,

vector reductions, broadcasts, global 6 6 6 6 6 6 6 6
collective operations (all-to-all operations, \%/ \\, //

gather, scatter...)...

gather reduction

Source: https://computing.linl.gov/tutorials/parallel_comp

Scales of Communication

* Internal: Within a core (in-cache), a chip
(between caches) and a machine (across

sockets)
« External: Within a switch, across switches =3 . INTERNET
within a DC, and across internet between —
D
Cs =i |
INTRANET
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Parallelization Overheads
Minimizing Communication Overhead

Overlapping with Computation
* Memory sharing: Overlap memory requests with other instructions if there is enough
work to do

* Message passing: Send a message and do computation while the message is being sent
or initiate a recv, do work and then poll to see if it is done

Latency vs. Bandwidth
* Latency: Time it takes to send a minimal (0 byte) message from point A to point B.
Commonly expressed as microseconds.

e Bandwidth: Amount of data that can be communicated per unit of time. Commonly
expressed as megabytes/sec or gigabytes/sec.
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Parallelization Overheads
Synchronization

Synchronization

* Managing the sequence of work and the tasks performing it

* Itis a critical design consideration for most parallel programs

Types of Synchronization

* Memory sharing (explicit): Mutual exclusion (locks, mutexes, monitors, ...), consensus
(barriers...) and conditions (flags, condition variables, signals...)

* Message passing (explicit): Global synchronization (barriers, scalar reductions, ...) and
broadcasts with small signals
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Paralleliz

ation Overheads
Granularity

Computation to Communication Ratio

synchronization events.

* Periods of computation are typically separated from periods of communication by

e Qualitative measure of the computation grain, usually as the ratio of computation to
communication based on data and machine sizes.

Relatively small amounts of computational
work are done between communication
events

Low computation to communication ratio

time
B communication
I computation

Source: https://computing.linl.gov/tutorials/parallel_comp
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Relatively large amounts of computational
work are done between
communication/synchronization events

High computation to communication ratio

time

I communication
I computation
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Parallelization Overheads

Granularity

Example:

* Numerical resolution of PDE using an explicit discretization method
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1D Parallelization

n3/p

n/p*n?

Computation

n2/p1/2
n/p'/?

Communication

n/p

Granularity
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Parallelization Overheads
Load Balancing

* Load balancing refers to the practice of distributing approximately equal amounts of
work among tasks so that all tasks are kept busy all of the time

* |t can be considered a minimization of task idle time

work _ -
ait — time

Source: https://computing.linl.gov/tutorials/parallel_comp
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Parallelization Overheads
Data Dependencies (Sequential)

* A dependence exists between program statements when the order of statement
execution affects the results of the program

* A data dependence results from multiple use of the same location(s) in storage by
different tasks

* Dependencies are important to parallel programming because they are one of the
primary inhibitors to parallelism
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Parallelization Overheads
Interrelation Between the Different Overheads

OVERHEAD = COMM + SYNC + LOAD IMBALANCE

Graph of execution time using p processors

LU
=
[

COMM/SYNC LOAD IMBALANCE

DOMINATES DOMINATES
0 1 74 3 4 S 10 bl § 12 13 14 15 16 19 20 21 22 23
FINE GRANULARITY COARSE
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Numerical Complexity
Time Complexity

* How fast or slow an algorithm performs
* Numerical function that depends on the data size of the problem

Complexity oo 2 nlog
# i
Constant O(1) 90| il : //'
N -
Linear O(n) 80| i ! /,/
D i 7
Logarithmic O(log(n)) 70 ! 7l
| 7
. 2 60 :l 7
Quadratic O(n?) N | %
. 50 :,‘ /,/
Cubic O(n3) I o
40 | il 7
Exponential 200 b A
30| i 7
/,/
20 ; A
/'/ ‘
: NN
10 | { ././ B o e e e
%0 10 20 30 40 50 60 70 80 90 100
n
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Numerical Complexity
Time Complexity

Example: N-body Problem I

FMM (Fast Multipole)
Greengard, Rokhlin

2
O(N) O(NlogN) Separate short & long range forces:
P MOLMEC MEGADYN « Short-range forces
7,000 550,000 are updated in each time step
* Long-range forces
1 8152 sec are treated on "coarser scales"
2 4481 sec 6305 sec
3 3956 sec °
4 2427 sec 3295 sec } ¢
6 1769 sec ,ﬁ-’)
[ J
8 1849 sec
[ J [ ]
[ J

e Both exhibit similar speed-up
e 550,000 particles would require 18,000 processors with MOLMEC

(HarvarD  EEXSEN \nstiTuTe For APPLIED Lecture A.5: Designing Parallel Programs Dr. David Sondak

i i Ww COMPUTATIONAL SCIENCE . . ) .
e leneineering m“%ﬁ’ AT HARVARD UNIVERSITY CS205: Computing Foundations for Computational Science 21

and Applied Sciences X




Numerical Complexity
Algorithms vs. Computer Improvements

/ s DERIVED FROM COMPUTATIONAL METHODS \
10 : :
ol N e S
10 , Multigrid
3 P
10 r------------m-u-;«-u---u—~---------5 Con_]ugéte —— :i '' rrrrr l -- C nt ----------
171 P Suceessive Qm—.l.l.@.laamgn .............. m Complexity
101 T .......................... n2)
" le~Sparse Gaussian Elimination Gs o(n2
n n

1970 1980 1990 2000 og(n))

SOR O(n¥*2log(n))

(
(
s DERIVED FROM SUPERCOMPUTER HARDWARE CG O(n*log(n))
(
(

Speedup

0 | ; | | MG O(nlog(n))
’ A B Full MG o)

n)

2
107 | T
1
111} P .
0
10
1970 1980 1990 2000
K Grand Challenge: High Performance Computing and Communications (NSF) [1992] /
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Efficiency and Scalability
Speed-up

Parallel execution Speed-up and Efficiency for a given problem size and a number
of processors

T(n,1 S(n
S(n,p) = T(—’) E(n.p) (n, p)
(n, p) p
Theoretical Speed-up
* St(n, p) only considers overheads due to sequential parts
Entire Code Parallel Fraction of Code

Potentially Parallel Section

0—0 — — €= T ..
NPUT Execution Time OUTPUT entire code

T(n,1) B 1
T(n,p) (1—c)+c/p

c=1= Sr(n,p) =p (linear speed up)

Tparallel section

ST(nap) —
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Efficiency and Scalability
Speed-up

Example (fixed n): c=0.95
1
St(n,p) =
Y
0.05 + 0.95/p
SPEEDUP

p LINEAR THEORETICAL
1 1 1.0
2 2 1.9 Speedups
3 3 2.7 10

9
4 4 3.5 8

7
5 5 4.2 6

5
6 6 4.8 4

3
7 7 54 )
8 8 5.9 :
9 9 6.4 1 2 3 4 5 6 7 8 9 10
10 10 69 === |INEAR ===THEORETICAL
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Efficiency and Scalability
Amdahl Law (1967)

 Amdahl's Law states that potential program speedup is defined by the fraction
of code (c) that can be parallelized
* Speedup is limited by sequential code, even a small percentage of sequential
code can greatly limit potential speedup
SPEEDUPS FOR DIFFERENT C’s
Speedups

p 0.5 0.75 0.9 0.95

20
10 1.8 3.1 5.3 6.9 .
20 1.9 3.5 6.9 10.3 >
30 1.9 3.6 7.7 12.2 1;
40 2.0 3.7 8.2 13.6 8

6
50 2.0 3.8 8.5 14.5 4

2
60 2.0 3.8 8.7 15.2 0

10 20 30 40 50 60 70 80 90 100
70 2.0 3.8 8.9 15.7
—(),5 0,75 0,9 e==(95
80 2.0 3.9 9.0 16.2
90 2.0 3.9 9.1 16.5 1
100 2.0 3.9 9.2 16.8 Asymptotic St : lim Sp =
p—00 —c
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Efficiency and Scalability
Speed-up

In reality, the situation is even worse than predicted by Amdahl’s Law due to the
parallelization overheads

1
Real Speed-up —
Sr(MP) = 565 70,95/ K0.)

SPEEDUP OVERHEAD = COMM + SYNC + LOAD IMBALANCE

p LINEAR THEORETICAL REAL
1 1 1.0 0.9
2 2 1.9 16 Speedups
3 3 2.7 2.1 "
4 4 3.5 2.6 3
5 5 4.2 2.9 6
6 6 4.8 3.2 \
7 7 5.4 3.5 ;
8 8 59 3.7 1
9 9 6.4 3.9 ’ 1 2 3 4 5 6 7 8 9 10
10 10 6.9 4.1 === |INEAR ====THEORETICAL =====REAL
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Efficiency and Scalability
Gustafson Law (1988)

 Amdahl’s law keeps the problem size fixed.
* Larger systems should be used to solve larger problems. ideally there should be
a fixed amount of parallel work per processor. (SCALED PROBLEM SIZE)
/
ST(nap) =1—-c+ Cp
SPEEDUP

p LINEAR THEORETICAL
1 1 10 Speedups
2 2 2.0 o
3 3 2.9 8

7
4 4 3.9 6

5
5 5 4.8 4

3
6 6 5.8 2

1
7 7 6.7 0

1 2 3 4 5 6 7 8 9 10
8 8 7.7
e==| INEAR ====THEORETICAL
9 9 8.6
10 10 9.6
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Breakout Room

Try to derive Gustafson’s Law

Hints:

 Decompose the workload for a constant time into parallel and serial parts. This will
involve the parameter c.

* Next, increase the number of processors to p. How does this affect the parallel
workload?

* Finally, put the modified parallel workload back into the speedup.

Don’t worry if you don’t get it right away! The goal is to start thinking it through.
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Efficiency and Scalability

Scalability

The Program should scale up to use a large number of processors — But what does
that really mean?

FIXED PROBLEM SIZE
(strong scaling)
* Problem size stays fixed as more
processors are added.
* Goal: Run same problem faster.
* Reduce execution time.
* Perfect scaling: Problem solved in
1/p time.
* Another way of seeing this
is: S=p with n constant

FIXED SIZE PER PROCESSOR
(weak scaling)

Problem size per processor stays the
same as more processors are
added.
Goal: Run larger problem in same
amount of time.
Perfect scaling is S=p with n/p
constant.

School of Engineering
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Efficiency and Scalability

Strong vs. Weak Scaling

Strong Scaling

e Speed-up on the same size problem

e Perfect strong scaling: Speedup of p on p processors
e Typically, small data but computationally intense

e At some point it breaks down

Weak Scaling

* Problem grows “proportionally” to processors

* What does proportionally mean (for example NxN matrix multiply)?
e 2N x 2N - double N
* 1.4AN x 1.4N - double entries
e 1.26N x 1.26N - double operations
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Efficiency and Scalability

Scalability
ISOEFFICIENCY I.M. Liorente et al./ Parallel Computing 22 (1996) 1169-1195
e T(N,p))
What is the rate at which the problem size &
must increase with p to keep E(n,p) fixed?
TN
A parallel algorithm is called scalable if
E(n,p) can be kept constant by increasing -E
the problem size as n grows. 2 o
E TiN,p,)
This rate determines the scalability of the » - .
. i E(N.p,)
system. The slower this rate, the better. | | ¥

Py Py=mi
Number of processors

Fig. 8. Isoefficiency and isotime scalability metrics.
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Efficiency and Scalability
Work Span

COMPUTATIONS REPRESENTED AS A GRAPH OF DEPENDENCIES

Amdahl is too simple, only talks about serial nodes

WORK = All Computations SPAN= Critical Path Compute
Proportional to T, Proportior.1al.t<.3 Teo
(time to run on single node) (time to run on infinite nodes)

UPPER BOUNDS ON SPEEDUP
Speedup <=p
Speedup <=T,/T..
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Reading Assignments / Open Discussion
Relations between Efficiency and Executing Time at Scaling

|. M. Llorente, F. Tirado, L. Vazquez
“Some aspects about the scalability of scientific applications on parallel
architectures” Parallel Computing, 1996, Vol.22(9), pp.1169-1195

What is isomemory scaling?
What is isotime scaling?
What is isoefficiency scaling?
What is naive scaling?

What is realistic scaling?
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Next Steps

e HWA due on Tuesday!
Linpack compilation (Performance Competition!)

* Get ready for next lecture (Part B!):
B.1. Foundations of Parallel Computing

* Get ready for first hands-on:
H1. Python Multiprocessing

 Reading assighments:
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Questions
Designing Parallel Programs
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